Compare commits

..

102 Commits

Author SHA1 Message Date
c53693fa7b
Merge pull request #72 from Magnus167/release/a20250805
Bump version to 0.0.1-a.20250805 in Cargo.toml
2025-08-05 00:11:57 +01:00
109d39b248
Merge branch 'main' into release/a20250805 2025-08-05 00:08:27 +01:00
Palash Tyagi
18ad6c689a Bump version to 0.0.1-a.20250805 in Cargo.toml 2025-08-05 00:06:49 +01:00
1fead78b69
Merge pull request #71 from Magnus167/prep-release-20250804
Update package version and enhance description in Cargo.toml
2025-08-04 23:27:12 +01:00
Palash Tyagi
6fb32e743c Update package version and enhance description in Cargo.toml 2025-08-04 23:15:24 +01:00
2cb4e46217
Merge pull request #69 from Magnus167/user-guide
Add user guide mdbook
2025-08-04 22:22:55 +01:00
Palash Tyagi
a53ba63f30 Rearrange links in the introduction for improved visibility 2025-08-04 22:20:58 +01:00
Palash Tyagi
dae60ea1bd Rearrange links in the README for improved visibility 2025-08-04 22:15:42 +01:00
Palash Tyagi
755dee58e7 Refactor machine learning user-guide 2025-08-04 22:14:17 +01:00
Palash Tyagi
9e6e22fc37 Add covariance functions and examples to documentation 2025-08-04 20:37:27 +01:00
Palash Tyagi
b687fd4e6b Add advanced matrix operations and Gaussian Naive Bayes examples to documentation 2025-08-04 19:21:36 +01:00
Palash Tyagi
68a01ab528 Enhance documentation with additional compute examples and stats functions 2025-08-04 15:52:57 +01:00
Palash Tyagi
23a01dab07 Update documentation links 2025-08-04 00:29:13 +01:00
Palash Tyagi
f4ebd78234 Comment out the release build command in gen.sh for clarity 2025-08-04 00:06:59 +01:00
Palash Tyagi
1475156855 Fix casing in user guide title for consistency 2025-08-04 00:05:31 +01:00
Palash Tyagi
080680d095 Update book metadata: correct author field and ensure consistent title casing 2025-08-04 00:05:13 +01:00
Palash Tyagi
2845f357b7 Revise introduction for clarity and detail, enhancing the overview of RustFrame's features and capabilities 2025-08-04 00:04:41 +01:00
Palash Tyagi
3d11226d57 Update machine learning documentation for clarity and completeness 2025-08-04 00:04:36 +01:00
Palash Tyagi
039fb1a98e Enhance utilities documentation with additional date and random number examples 2025-08-04 00:04:07 +01:00
Palash Tyagi
31a5ba2460 Improve data manipulation examples 2025-08-04 00:02:46 +01:00
Palash Tyagi
1a9f397702 Add more statistical routines and examples 2025-08-04 00:02:17 +01:00
Palash Tyagi
ecd06eb352 update format in README 2025-08-03 23:28:19 +01:00
Palash Tyagi
ae327b6060 Update user guide build script path in CI workflows 2025-08-03 23:28:03 +01:00
Palash Tyagi
83ac9d4821 Remove local build instructions from the introduction of the user guide 2025-08-03 23:25:17 +01:00
Palash Tyagi
ae27ed9373 Add instructions for building the user guide 2025-08-03 23:25:13 +01:00
Palash Tyagi
c7552f2264 Simplify user guide build steps in CI workflows 2025-08-03 23:24:54 +01:00
Palash Tyagi
3654c7053c Refactor build process 2025-08-03 23:23:10 +01:00
Palash Tyagi
1dcd9727b4 Update output directory structure for user guide and index files 2025-08-03 23:15:54 +01:00
Palash Tyagi
b62152b4f0 Update output directory for user guide and artifact upload in CI workflow 2025-08-03 23:01:54 +01:00
Palash Tyagi
a6a901d6ab Add step to install mdBook for user guide build in CI workflows 2025-08-03 22:16:53 +01:00
Palash Tyagi
676af850ef Add step to test user guide build in CI workflow 2025-08-03 22:13:25 +01:00
Palash Tyagi
ca2ca2a738 Add link to User Guide in the main index page 2025-08-03 22:11:15 +01:00
Palash Tyagi
4876a74e01 Add user guide build and output steps to CI workflow 2025-08-03 22:11:10 +01:00
Palash Tyagi
b78dd75e77 Add build script for RustFrame user guide using mdBook 2025-08-03 22:07:38 +01:00
Palash Tyagi
9db8853d75 Add user guide configuration and update .gitignore 2025-08-03 22:07:32 +01:00
Palash Tyagi
9738154dac Add user guide examples 2025-08-03 22:07:18 +01:00
7d0978e5fb
Merge pull request #68 from Magnus167/update-docs
Enhance documentation with usage examples
2025-08-03 17:45:29 +01:00
Palash Tyagi
ed01c4b8f2 Enhance documentation with usage examples for crate::compute::models 2025-08-03 16:48:37 +01:00
Palash Tyagi
e6964795e3 Enhance documentation with usage examples for statistical routines and utilities 2025-08-03 16:48:02 +01:00
Palash Tyagi
d1dd7ea6d2 Enhance documentation with usage examples for core data-frame structures and operations 2025-08-03 16:46:20 +01:00
Palash Tyagi
676f78bb1e Enhance documentation with usage examples for boolean and series operations 2025-08-03 16:45:30 +01:00
Palash Tyagi
f7325a9558 Enhance documentation with usage examples for date generation utilities 2025-08-03 16:45:15 +01:00
Palash Tyagi
18b9eef063 Enhance documentation with usage examples for random number generation utilities 2025-08-03 16:45:00 +01:00
Palash Tyagi
f99f78d508 Update section headers in README.md for consistency 2025-08-03 16:44:34 +01:00
2926a8a6e8
Merge pull request #66 from Magnus167/update-readme
Update README
2025-08-03 00:30:28 +01:00
d851c500af
Merge pull request #67 from Magnus167/comments-cleanup
Cleanup comments and formatting
2025-08-02 22:03:14 +01:00
Palash Tyagi
d741c7f472 Remove expected output comments from matrix operations examples in README.md 2025-08-02 21:59:42 +01:00
Palash Tyagi
7720312354 Improve comments for clarity in logistic regression, stats overview, PCA, correlation, descriptive statistics, and matrix tests 2025-08-02 21:59:22 +01:00
Palash Tyagi
5509416d5f Remove unused logo comment from README.md 2025-08-02 21:22:01 +01:00
Palash Tyagi
a451ba8cc7 Clean up comments and formatting in Game of Life example 2025-08-02 21:21:09 +01:00
Palash Tyagi
bce1bdd21a Update README 2025-07-31 22:52:29 +01:00
af70f9ffd7
Merge pull request #65 from Magnus167/win-random
Refactor CryptoRng for cross-platform secure random byte generation
2025-07-29 23:29:58 +01:00
Palash Tyagi
7f33223496 Fix type name for BCRYPT_ALG_HANDLE in win_fill function 2025-07-29 23:25:07 +01:00
Palash Tyagi
73dbb25242 Refactor CryptoRng implementation for Windows and Unix, adding support for secure random byte generation on Windows. 2025-07-29 23:23:04 +01:00
4061ebf8ae
Merge pull request #64 from Magnus167/randomx
Implement built-in random number generation utilities
2025-07-29 22:21:29 +01:00
Palash Tyagi
ef322fc6a2 Refactor assertions in tests to simplify error messages for KMeans, CryptoRng, and Prng modules 2025-07-29 22:15:45 +01:00
Palash Tyagi
750adc72e9 Add missing #[cfg(test)] attribute to tests module in activations.rs 2025-07-29 21:42:47 +01:00
Palash Tyagi
3207254564 Add examples for random number generation and statistical tests 2025-07-29 00:36:14 +01:00
Palash Tyagi
2ea83727a1 enhance unittests for all random functionalities 2025-07-29 00:36:05 +01:00
Palash Tyagi
3f56b378b2 Add unit tests for SliceRandom trait and shuffle functionality 2025-07-28 23:12:20 +01:00
Palash Tyagi
afcb29e716 Add extensive tests for Prng functionality, including range checks and distribution properties 2025-07-28 23:11:54 +01:00
Palash Tyagi
113831dc8c Add comprehensive tests for CryptoRng functionality and distribution properties 2025-07-28 23:11:26 +01:00
Palash Tyagi
289c70d9e9 Refactor tests to remove unused random number generator tests and enhance range sample validation 2025-07-28 23:11:17 +01:00
Palash Tyagi
cd13d98110 Remove rand dependency from Cargo.toml 2025-07-28 20:37:37 +01:00
Palash Tyagi
b4520b0d30 Update README to reflect built-in random number generation utilities 2025-07-28 20:37:24 +01:00
Palash Tyagi
5934b163f5 Refactor random number generation to use rustframe's random module 2025-07-28 20:37:08 +01:00
Palash Tyagi
4a1843183a Add documentation for the random module 2025-07-28 20:36:52 +01:00
Palash Tyagi
252c8a3d29 Refactor KMeans module to use inbuilt random 2025-07-28 20:23:59 +01:00
Palash Tyagi
5a5baf9716 Add initial implementation of random module with submodules and prelude exports 2025-07-28 20:19:12 +01:00
Palash Tyagi
28793e5b07 Add CryptoRng for cryptographically secure random number generation 2025-07-28 20:19:01 +01:00
Palash Tyagi
d75bd7a08f Add XorShift64-based pseudo random number generator implementation 2025-07-28 20:17:59 +01:00
Palash Tyagi
6fd796cceb Add SliceRandom trait for shuffling slices using RNG 2025-07-28 20:17:35 +01:00
Palash Tyagi
d0b0f295b1 Implement Rng trait and RangeSample conversion for random number generation 2025-07-28 20:17:21 +01:00
556b08216f
Merge pull request #61 from Magnus167/add-examples
Adding examples for various functionalities
2025-07-26 23:10:16 +01:00
Palash Tyagi
17201b4d29 Add example commands for statistical operations in README 2025-07-26 23:06:47 +01:00
Palash Tyagi
2a99d8930c Add examples for descriptive stats 2025-07-26 23:06:08 +01:00
Palash Tyagi
38213c73c7 Add examples for covariance and correlation 2025-07-26 23:05:56 +01:00
Palash Tyagi
c004bd8334 Add inferential statistics examples 2025-07-26 23:05:41 +01:00
Palash Tyagi
dccbba9d1b Add examples for distribution helpers 2025-07-26 23:05:25 +01:00
Palash Tyagi
ab3509fef4 Added examples/stats_overview 2025-07-26 23:04:34 +01:00
f5c56d02e2
Merge branch 'main' into add-examples 2025-07-26 21:49:14 +01:00
069ef25ef4
Merge pull request #63 from Magnus167/update-runner
Fix package installation in runner Dockerfile
2025-07-26 21:41:08 +01:00
Palash Tyagi
f9a60608df attempting fix 2025-07-26 20:59:28 +01:00
526e22b1b7
Merge pull request #62 from Magnus167/update-cargo-authors
Add authors field to Cargo.toml
2025-07-26 20:54:53 +01:00
Palash Tyagi
845667c60a Add authors field to Cargo.toml 2025-07-26 20:53:47 +01:00
Palash Tyagi
3935e80be6 Fix typo in assertion 2025-07-26 20:35:47 +01:00
Palash Tyagi
0ce970308b Add step to run all examples in debug mode during unit tests 2025-07-26 20:33:28 +01:00
Palash Tyagi
72d02e2336 Add script to run all example programs with debug mode 2025-07-26 20:33:19 +01:00
Palash Tyagi
26213b28d6 Refactor GitHub Actions workflow to streamline unit tests and add example tests 2025-07-26 20:31:08 +01:00
Palash Tyagi
44ff16a0bb Refactor Game of Life example to support debug mode and improve board printing 2025-07-26 20:30:03 +01:00
Palash Tyagi
1192a78955 Add example demos to README.md 2025-07-26 18:38:53 +01:00
Palash Tyagi
d0f9e80dfc add test as examples 2025-07-26 18:38:27 +01:00
Palash Tyagi
b0d8050b11 add test as examples 2025-07-26 13:26:44 +01:00
Palash Tyagi
45ec754d47 add test as examples 2025-07-26 12:21:27 +01:00
Palash Tyagi
733a4da383 Add unit test in pca.rs 2025-07-26 10:51:35 +01:00
Palash Tyagi
ded5f1aa29 Add k-means examples 2025-07-26 04:06:12 +01:00
Palash Tyagi
fe9498963d Add linear regression examples 2025-07-26 04:05:56 +01:00
Palash Tyagi
6b580ec5eb Add logistic regression examples 2025-07-26 04:05:43 +01:00
Palash Tyagi
45f147e651 Add PCA examples 2025-07-26 04:05:27 +01:00
6abf4ec983
Merge pull request #60 from Magnus167/docs-title-link
Add redirect meta tag to documentation index.html
2025-07-20 00:28:10 +01:00
Palash Tyagi
037cfd9113 Empty commit for testing 2025-07-20 00:26:20 +01:00
Palash Tyagi
74fac9d512 Add redirect meta tag to generated index.html for documentation 2025-07-19 23:39:58 +01:00
59 changed files with 2793 additions and 193 deletions

View File

@ -58,6 +58,14 @@
<h2>A lightweight dataframe & math toolkit for Rust</h2>
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
<p>
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a>
<br><br>
📖 <a href="https://magnus167.github.io/rustframe/user-guide">User Guide</a>
<br><br>
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
@ -65,8 +73,7 @@
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
<br><br>
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a> |
🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a>
<!-- 🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a> -->
</p>
</main>
</body>

View File

@ -7,7 +7,7 @@ ARG DEBIAN_FRONTEND=noninteractive
RUN apt update -y && apt upgrade -y && useradd -m docker
RUN apt install -y --no-install-recommends \
curl jq git unzip \
curl jq git zip unzip \
# dev dependencies
build-essential libssl-dev libffi-dev python3 python3-venv python3-dev python3-pip \
# dot net core dependencies

16
.github/scripts/run_examples.sh vendored Normal file
View File

@ -0,0 +1,16 @@
cargo build --release --examples
for ex in examples/*.rs; do
name=$(basename "$ex" .rs)
echo
echo "🟡 Running example: $name"
if ! cargo run --release --example "$name" -- --debug; then
echo
echo "❌ Example '$name' failed. Aborting."
exit 1
fi
done
echo
echo "✅ All examples ran successfully."

View File

@ -151,7 +151,8 @@ jobs:
mkdir -p target/doc/docs
mv target/doc/rustframe/* target/doc/docs/
mkdir output
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
cp tarpaulin-report.html target/doc/docs/
cp tarpaulin-report.json target/doc/docs/
cp tarpaulin-badge.json target/doc/docs/
@ -164,16 +165,30 @@ jobs:
# copy the benchmark report to the output directory
cp -r benchmark-report target/doc/
mkdir output
cp -r target/doc/* output/
- name: Build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh
- name: Copy user guide to output directory
run: |
mkdir output/user-guide
cp -r docs/book/* output/user-guide/
- name: Add index.html to output directory
run: |
cp .github/htmldocs/index.html target/doc/index.html
cp .github/rustframe_logo.png target/doc/rustframe_logo.png
cp .github/htmldocs/index.html output/index.html
cp .github/rustframe_logo.png output/rustframe_logo.png
- name: Upload Pages artifact
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
uses: actions/upload-pages-artifact@v3
with:
path: target/doc/
# path: target/doc/
path: output/
- name: Deploy to GitHub Pages
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'

View File

@ -12,14 +12,12 @@ concurrency:
jobs:
pick-runner:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
outputs:
runner: ${{ steps.choose.outputs.use-runner }}
steps:
- uses: actions/checkout@v4
- id: choose
uses: ./.github/actions/runner-fallback
@ -28,7 +26,6 @@ jobs:
fallback-runner: "ubuntu-latest"
github-token: ${{ secrets.CUSTOM_GH_TOKEN }}
run-unit-tests:
needs: pick-runner
if: github.event.pull_request.draft == false
@ -56,6 +53,20 @@ jobs:
- name: Test docs generation
run: cargo doc --no-deps --release
- name: Test examples
run: cargo test --examples --release
- name: Run all examples
run: |
for example in examples/*.rs; do
name=$(basename "$example" .rs)
echo "Running example: $name"
cargo run --release --example "$name" -- --debug || exit 1
done
- name: Cargo test all targets
run: cargo test --all-targets --release
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:
@ -67,3 +78,8 @@ jobs:
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Test build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh

2
.gitignore vendored
View File

@ -17,3 +17,5 @@ data/
tarpaulin-report.*
.github/htmldocs/rustframe_logo.png
docs/book/

View File

@ -1,10 +1,12 @@
[package]
name = "rustframe"
version = "0.0.1-a.20250716"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
version = "0.0.1-a.20250805"
edition = "2021"
license = "GPL-3.0-or-later"
readme = "README.md"
description = "A simple dataframe library"
description = "A simple dataframe and math toolkit"
documentation = "https://magnus167.github.io/rustframe/"
[lib]
name = "rustframe"
@ -14,7 +16,6 @@ crate-type = ["cdylib", "lib"]
[dependencies]
chrono = "^0.4.10"
criterion = { version = "0.5", features = ["html_reports"], optional = true }
rand = "^0.9.1"
[features]
bench = ["dep:criterion"]

View File

@ -1,15 +1,12 @@
# rustframe
<!-- # <img align="center" alt="Rustframe" src=".github/rustframe_logo.png" height="50px" /> rustframe -->
<!-- though the centre tag doesn't work as it would normally, it achieves the desired effect -->
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🌐 [Gitea mirror](https://gitea.nulltech.uk/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
<!-- [![Last commit](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/rustframe/last-commit-date.json)](https://github.com/Magnus167/rustframe) -->
[![codecov](https://codecov.io/gh/Magnus167/rustframe/graph/badge.svg?token=J7ULJEFTVI)](https://codecov.io/gh/Magnus167/rustframe)
[![Coverage](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/docs/tarpaulin-badge.json)](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
[![gitea-mirror](https://img.shields.io/badge/git_mirror-blue)](https://gitea.nulltech.uk/Magnus167/rustframe)
---
@ -27,11 +24,9 @@ Rustframe is an educational project, and is not intended for production use. It
- **Math that reads like math** - element-wise `+`, ``, `×`, `÷` on entire frames or scalars.
- **Frames** - Column major data structure for single-type data, with labeled columns and typed row indices.
- **Compute module** - Implements various statistical computations and machine learning models.
- **Random number utils** - Built-in pseudo and cryptographically secure generators for simulations.
- **[Coming Soon]** _DataFrame_ - Multi-type data structure for heterogeneous data, with labeled columns and typed row indices.
- **[Coming Soon]** _Random number utils_ - Random number generation utilities for statistical sampling and simulations. (Currently using the [`rand`](https://crates.io/crates/rand) crate.)
#### Matrix and Frame functionality
- **Matrix operations** - Element-wise arithmetic, boolean logic, transpose, and more.
@ -131,10 +126,6 @@ let mc: Matrix<f64> = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let md: Matrix<f64> = Matrix::from_cols(vec![vec![5.0, 6.0], vec![7.0, 8.0]]);
let mul_result: Matrix<f64> = mc.matrix_mul(&md);
// Expected:
// 1*5 + 3*6 = 5 + 18 = 23
// 2*5 + 4*6 = 10 + 24 = 34
// 1*7 + 3*8 = 7 + 24 = 31
// 2*7 + 4*8 = 14 + 32 = 46
assert_eq!(mul_result.data(), &[23.0, 34.0, 31.0, 46.0]);
// Dot product (alias for matrix_mul for FloatMatrix)
@ -143,14 +134,7 @@ assert_eq!(dot_result, mul_result);
// Transpose
let original_matrix: Matrix<f64> = Matrix::from_cols(vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]);
// Original:
// 1 4
// 2 5
// 3 6
let transposed_matrix: Matrix<f64> = original_matrix.transpose();
// Transposed:
// 1 2 3
// 4 5 6
assert_eq!(transposed_matrix.rows(), 2);
assert_eq!(transposed_matrix.cols(), 3);
assert_eq!(transposed_matrix.data(), &[1.0, 4.0, 2.0, 5.0, 3.0, 6.0]);
@ -159,10 +143,6 @@ assert_eq!(transposed_matrix.data(), &[1.0, 4.0, 2.0, 5.0, 3.0, 6.0]);
let matrix = Matrix::from_cols(vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]);
// Map function to double each value
let mapped_matrix = matrix.map(|x| x * 2.0);
// Expected data after mapping
// 2 8
// 4 10
// 6 12
assert_eq!(mapped_matrix.data(), &[2.0, 4.0, 6.0, 8.0, 10.0, 12.0]);
// Zip
@ -170,13 +150,10 @@ let a = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]); // 2x2 matrix
let b = Matrix::from_cols(vec![vec![5.0, 6.0], vec![7.0, 8.0]]); // 2x2 matrix
// Zip function to add corresponding elements
let zipped_matrix = a.zip(&b, |x, y| x + y);
// Expected data after zipping
// 6 10
// 8 12
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
```
### More examples
## More examples
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
@ -192,10 +169,44 @@ E.g. to run the `game_of_life` example:
cargo run --example game_of_life
```
### Running benchmarks
More demos:
```bash
cargo run --example linear_regression
cargo run --example logistic_regression
cargo run --example k_means
cargo run --example pca
cargo run --example stats_overview
cargo run --example descriptive_stats
cargo run --example correlation
cargo run --example inferential_stats
cargo run --example distributions
```
To simply list all available examples, you can run:
```bash
# this technically raises an error, but it will list all examples
cargo run --example
```
Each demo runs a couple of mini-scenarios showcasing the APIs.
## Running benchmarks
To run the benchmarks, use:
```bash
cargo bench --features "bench"
```
## Building the user-guide
To build the user guide, use:
```bash
cargo binstall mdbook
bash docs/build.sh
```
This will generate the user guide in the `docs/book` directory.

7
docs/book.toml Normal file
View File

@ -0,0 +1,7 @@
[book]
title = "Rustframe User Guide"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
description = "Guided journey through Rustframe capabilities."
[build]
build-dir = "book"

7
docs/build.sh Executable file
View File

@ -0,0 +1,7 @@
#!/usr/bin/env sh
# Build and test the Rustframe user guide using mdBook.
set -e
cd docs
bash gen.sh "$@"
cd ..

14
docs/gen.sh Normal file
View File

@ -0,0 +1,14 @@
#!/usr/bin/env sh
set -e
cargo clean
cargo build --manifest-path ../Cargo.toml
mdbook test -L ../target/debug/deps "$@"
mdbook build "$@"
cargo build
# cargo build --release

7
docs/src/SUMMARY.md Normal file
View File

@ -0,0 +1,7 @@
# Summary
- [Introduction](./introduction.md)
- [Data Manipulation](./data-manipulation.md)
- [Compute Features](./compute.md)
- [Machine Learning](./machine-learning.md)
- [Utilities](./utilities.md)

222
docs/src/compute.md Normal file
View File

@ -0,0 +1,222 @@
# Compute Features
The `compute` module hosts numerical routines for exploratory data analysis.
It covers descriptive statistics, correlations, probability distributions and
some basic inferential tests.
## Basic Statistics
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
use rustframe::matrix::Matrix;
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
assert_eq!(mean(&m), 2.5);
assert_eq!(stddev(&m), 1.118033988749895);
assert_eq!(median(&m), 2.5);
assert_eq!(population_variance(&m), 1.25);
assert_eq!(percentile(&m, 50.0), 3.0);
// column averages returned as 1 x n matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.data(), &[2.0, 3.0]);
let col_means = mean_vertical(&m);
assert_eq!(col_means.data(), & [1.5, 3.5]);
```
### Axis-specific Operations
Operations can be applied along specific axes (rows or columns):
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
use rustframe::matrix::Matrix;
// 3x2 matrix
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Mean along columns (vertical) - returns 1 x cols matrix
let col_means = mean_vertical(&m);
assert_eq!(col_means.shape(), (1, 2));
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
// Mean along rows (horizontal) - returns rows x 1 matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.shape(), (3, 1));
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
// Standard deviation along columns
let col_stddev = stddev_vertical(&m);
assert_eq!(col_stddev.shape(), (1, 2));
// Standard deviation along rows
let row_stddev = stddev_horizontal(&m);
assert_eq!(row_stddev.shape(), (3, 1));
```
## Correlation
```rust
# extern crate rustframe;
use rustframe::compute::stats::{pearson, covariance};
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let corr = pearson(&x, &y);
let cov = covariance(&x, &y);
assert!((corr - 1.0).abs() < 1e-8);
assert!((cov - 2.5).abs() < 1e-8);
```
## Covariance
### `covariance`
Computes the population covariance between two equally sized matrices by flattening
their values.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let cov = covariance(&x, &y);
assert!((cov - 2.5).abs() < 1e-8);
```
### `covariance_vertical`
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
column pair covariances.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_vertical;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_vertical(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
```
### `covariance_horizontal`
Computes covariance between rows (i.e. across columns) returning a matrix that
describes how each pair of rows varies together.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_horizontal;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_horizontal(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
```
### `covariance_matrix`
Builds a covariance matrix either between columns (`Axis::Col`) or rows
(`Axis::Row`). Each entry represents how two series co-vary.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_matrix;
use rustframe::matrix::{Axis, Matrix};
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
// Covariance between columns
let cov_cols = covariance_matrix(&data, Axis::Col);
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
// Covariance between rows
let cov_rows = covariance_matrix(&data, Axis::Row);
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
```
## Distributions
Probability distribution helpers are available for common PDFs and CDFs.
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::normal_pdf;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let pdf = normal_pdf(x, 0.0, 1.0);
assert_eq!(pdf.data().len(), 2);
```
### Additional Distributions
Rustframe provides several other probability distributions:
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
use rustframe::matrix::Matrix;
// Normal distribution CDF
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let cdf = normal_cdf(x, 0.0, 1.0);
assert_eq!(cdf.data().len(), 2);
// Binomial distribution PMF
// Probability of k successes in n trials with probability p
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
let pmf = binomial_pmf(3, k.clone(), 0.5);
assert_eq!(pmf.data().len(), 4);
// Binomial distribution CDF
let cdf = binomial_cdf(3, k, 0.5);
assert_eq!(cdf.data().len(), 4);
// Poisson distribution PMF
// Probability of k events with rate parameter lambda
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = poisson_pmf(2.0, k);
assert_eq!(pmf.data().len(), 3);
```
### Inferential Statistics
Rustframe provides several inferential statistical tests:
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
// Two-sample t-test
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_statistic, p_value) = t_test(&sample1, &sample2);
assert!((t_statistic + 5.0).abs() < 1e-5);
assert!(p_value > 0.0 && p_value < 1.0);
// Chi-square test of independence
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2_statistic, p_value) = chi2_test(&observed);
assert!(chi2_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
// One-way ANOVA
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
let groups = vec![&group1, &group2, &group3];
let (f_statistic, p_value) = anova(groups);
assert!(f_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
```
With the basics covered, explore predictive models in the
[machine learning](./machine-learning.md) chapter.

View File

@ -0,0 +1,157 @@
# Data Manipulation
Rustframe's `Frame` type couples tabular data with
column labels and a typed row index. Frames expose a familiar API for loading
data, selecting rows or columns and performing aggregations.
## Creating a Frame
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
assert_eq!(frame["A"], vec![1.0, 2.0]);
```
## Indexing Rows
Row labels can be integers, dates or a default range. Retrieving a row returns a
view that lets you inspect values by column name or position.
```rust
# extern crate rustframe;
# extern crate chrono;
use chrono::NaiveDate;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
// mutate by row key
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
```
## Column operations
Columns can be inserted, renamed, removed or reordered in place.
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
frame.add_column("Z", vec![5, 6]);
frame.rename("Y", "W");
let removed = frame.delete_column("X");
assert_eq!(removed, vec![1, 2]);
frame.sort_columns();
assert_eq!(frame.columns(), &["W", "Z"]);
```
## Aggregations
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
```rust
# extern crate rustframe;
use rustframe::frame::Frame;
use rustframe::matrix::{Matrix, SeriesOps};
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
```
## Matrix Operations
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let sum = data1.clone() + data2.clone();
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
let product = data1.clone() * data2.clone();
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
let scalar_product = data1.clone() * 2.0;
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
let equals = data1 == data1.clone();
assert_eq!(equals, true);
```
### Advanced Matrix Operations
Matrices support a variety of advanced operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
// Matrix multiplication (dot product)
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let product = a.matrix_mul(&b);
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
// Transpose
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let transposed = m.transpose();
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
// Map function over all elements
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let squared = m.map(|x| x * x);
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
// Zip two matrices with a function
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let zipped = a.zip(&b, |x, y| x + y);
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
```
### Matrix Reductions
Matrices support various reduction operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Sum along columns (vertical)
let col_sums = m.sum_vertical();
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
// Sum along rows (horizontal)
let row_sums = m.sum_horizontal();
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
// Cumulative sum along columns
let col_cumsum = m.cumsum_vertical();
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
// Cumulative sum along rows
let row_cumsum = m.cumsum_horizontal();
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
```
With the basics covered, continue to the [compute features](./compute.md)
chapter for statistics and analytics.

40
docs/src/introduction.md Normal file
View File

@ -0,0 +1,40 @@
# Introduction
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
API approachable while offering handy features for small analytical or
educational projects.
Rustframe bundles:
- columnlabelled frames built on a fast columnmajor matrix
- familiar elementwise math and aggregation routines
- a growing `compute` module for statistics and machine learning
- utilities for dates and random numbers
```rust
# extern crate rustframe;
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
// Perform column wise aggregation
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
```
## Resources
- [GitHub repository](https://github.com/Magnus167/rustframe)
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
This guide walks through the main building blocks of the library. Each chapter
contains runnable snippets so you can follow along:
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
2. [Compute features](./compute.md) for statistics and analytics
3. [Machine learning](./machine-learning.md) for predictive models
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules

View File

@ -0,0 +1,282 @@
# Machine Learning
The `compute::models` module bundles several learning algorithms that operate on
`Matrix` structures. These examples highlight the basic training and prediction
APIs. For more endtoend walkthroughs see the examples directory in the
repository.
Currently implemented models include:
- Linear and logistic regression
- Kmeans clustering
- Principal component analysis (PCA)
- Gaussian Naive Bayes
- Dense neural networks
## Linear Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
let mut model = LinReg::new(1);
model.fit(&x, &y, 0.01, 100);
let preds = model.predict(&x);
assert_eq!(preds.rows(), 4);
```
## K-means Walkthrough
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
let cluster = model.predict(&new_point)[0];
```
## Logistic Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
let mut model = LogReg::new(1);
model.fit(&x, &y, 0.1, 200);
let preds = model.predict_proba(&x);
assert_eq!(preds.rows(), 4);
```
## Principal Component Analysis
```rust
# extern crate rustframe;
use rustframe::compute::models::pca::PCA;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let pca = PCA::fit(&data, 1, 0);
let transformed = pca.transform(&data);
assert_eq!(transformed.cols(), 1);
```
## Gaussian Naive Bayes
Gaussian Naive Bayes classifier for continuous features:
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
1.0, 2.0,
2.0, 3.0,
3.0, 4.0,
4.0, 5.0
], 4, 2);
// Class labels (0 or 1)
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
// Train the model
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Dense Neural Networks
Simple fully connected neural network:
```rust
# extern crate rustframe;
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
1.0, 1.0
], 4, 2);
// XOR target outputs
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
// Create a neural network with 2 hidden layers
let config = DenseNNConfig {
input_size: 2,
hidden_layers: vec![4, 4],
output_size: 1,
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
initializer: InitializerKind::Uniform(0.5),
loss: LossKind::MSE,
learning_rate: 0.1,
epochs: 1000,
};
let mut model = DenseNN::new(config);
// Train the model
model.train(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Real-world Examples
### Housing Price Prediction
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
// Features: square feet and bedrooms
let features = Matrix::from_rows_vec(vec![
2100.0, 3.0,
1600.0, 2.0,
2400.0, 4.0,
1400.0, 2.0,
], 4, 2);
// Sale prices
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
let mut model = LinReg::new(2);
model.fit(&features, &target, 1e-8, 10_000);
// Predict price of a new home
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
let predicted_price = model.predict(&new_home);
println!("Predicted price: ${}", predicted_price.data()[0]);
```
### Spam Detection
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
let x = Matrix::from_rows_vec(
vec![
// ─────────── spam examples ───────────
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
1.0, 0.0, 1.0, 0.0, 1.0, // ...
0.0, 1.0, 1.0, 1.0, 0.0, // ...
2.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 1.0, 0.0, 1.0, // ...
1.0, 1.0, 1.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 1.0, 1.0, // ...
// ─────────── ham examples ───────────
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
0.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0,
],
20,
5,
);
// Labels: 1 = spam, 0 = ham
let y = Matrix::from_vec(
vec![
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
],
20,
1,
);
// Train
let mut model = LogReg::new(5);
model.fit(&x, &y, 0.01, 5000);
// Predict
// e.g. "free money offer"
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
let email = Matrix::from_vec(email_data, 1, 5);
let prob_spam = model.predict_proba(&email);
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
```
### Iris Flower Classification
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Features: sepal length and petal length
let x = Matrix::from_rows_vec(vec![
5.1, 1.4, // setosa
4.9, 1.4, // setosa
6.2, 4.5, // versicolor
5.9, 5.1, // virginica
], 4, 2);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
let names = vec!["setosa", "versicolor", "virginica"];
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
let predicted_class = model.predict(&sample);
let class_name = names[predicted_class.data()[0] as usize];
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
```
### Customer Segmentation
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
// Each row: [age, annual_income]
let customers = Matrix::from_rows_vec(
vec![
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
],
4,
2,
);
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
let cluster = model.predict(&new_customer)[0];
println!("New customer belongs to cluster: {}", cluster);
println!("Cluster labels: {:?}", labels);
```
For helper functions and upcoming modules, visit the
[utilities](./utilities.md) section.

63
docs/src/utilities.md Normal file
View File

@ -0,0 +1,63 @@
# Utilities
Utilities provide handy helpers around the core library. Existing tools
include:
- Date utilities for generating calendar sequences and businessday sets
- Random number generators for simulations and testing
## Date Helpers
```rust
# extern crate rustframe;
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
// Calendar sequence
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
assert_eq!(list.count().unwrap(), 3);
// Business days starting from 20240102
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
assert_eq!(bdates.list().unwrap().len(), 3);
```
## Random Numbers
The `random` module offers deterministic and cryptographically secure RNGs.
```rust
# extern crate rustframe;
use rustframe::random::{Prng, Rng};
let mut rng = Prng::new(42);
let v1 = rng.next_u64();
let v2 = rng.next_u64();
assert_ne!(v1, v2);
```
## Stats Functions
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::descriptive::{mean, median, stddev};
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let mean_value = mean(&data);
assert_eq!(mean_value, 3.0);
let median_value = median(&data);
assert_eq!(median_value, 3.0);
let std_value = stddev(&data);
assert_eq!(std_value, 2.0_f64.sqrt());
```
Upcoming utilities will cover:
- Data import/export helpers
- Visualization adapters
- Streaming data interfaces
Contributions to these sections are welcome!

45
examples/correlation.rs Normal file
View File

@ -0,0 +1,45 @@
use rustframe::compute::stats::{covariance, covariance_matrix, pearson};
use rustframe::matrix::{Axis, Matrix};
/// Demonstrates covariance and correlation utilities.
fn main() {
pairwise_cov();
println!("\n-----\n");
matrix_cov();
}
fn pairwise_cov() {
println!("Covariance & Pearson r\n----------------------");
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
println!("covariance : {:.2}", covariance(&x, &y));
println!("pearson r : {:.3}", pearson(&x, &y));
}
fn matrix_cov() {
println!("Covariance matrix\n-----------------");
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_matrix(&data, Axis::Col);
println!("cov matrix : {:?}", cov.data());
}
#[cfg(test)]
mod tests {
use super::*;
const EPS: f64 = 1e-8;
#[test]
fn test_pairwise_cov() {
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
assert!((covariance(&x, &y) - 1.625).abs() < EPS);
assert!((pearson(&x, &y) - 0.9827076298239908).abs() < 1e-5,);
}
#[test]
fn test_matrix_cov() {
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_matrix(&data, Axis::Col);
assert_eq!(cov.data(), &[2.0, 2.0, 2.0, 2.0]);
}
}

View File

@ -0,0 +1,56 @@
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, median, percentile, stddev};
use rustframe::matrix::Matrix;
/// Demonstrates descriptive statistics utilities.
///
/// Part 1: simple mean/stddev/median/percentile on a vector.
/// Part 2: mean across rows and columns.
fn main() {
simple_stats();
println!("\n-----\n");
axis_stats();
}
fn simple_stats() {
println!("Basic stats\n-----------");
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
println!("mean : {:.2}", mean(&data));
println!("stddev : {:.2}", stddev(&data));
println!("median : {:.2}", median(&data));
println!("90th pct. : {:.2}", percentile(&data, 90.0));
}
fn axis_stats() {
println!("Row/column means\n----------------");
// 2x3 matrix
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 2, 3);
let v = mean_vertical(&data); // 1x3
let h = mean_horizontal(&data); // 2x1
println!("vertical means : {:?}", v.data());
println!("horizontal means: {:?}", h.data());
}
#[cfg(test)]
mod tests {
use super::*;
const EPS: f64 = 1e-8;
#[test]
fn test_simple_stats() {
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
assert!((mean(&data) - 3.0).abs() < EPS);
assert!((stddev(&data) - 1.4142135623730951).abs() < EPS);
assert!((median(&data) - 3.0).abs() < EPS);
assert!((percentile(&data, 90.0) - 5.0).abs() < EPS);
}
#[test]
fn test_axis_stats() {
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 2, 3);
let v = mean_vertical(&data);
assert_eq!(v.data(), &[2.5, 3.5, 4.5]);
let h = mean_horizontal(&data);
assert_eq!(h.data(), &[2.0, 5.0]);
}
}

66
examples/distributions.rs Normal file
View File

@ -0,0 +1,66 @@
use rustframe::compute::stats::{binomial_cdf, binomial_pmf, normal_cdf, normal_pdf, poisson_pmf};
use rustframe::matrix::Matrix;
/// Demonstrates some probability distribution helpers.
fn main() {
normal_example();
println!("\n-----\n");
binomial_example();
println!("\n-----\n");
poisson_example();
}
fn normal_example() {
println!("Normal distribution\n-------------------");
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let pdf = normal_pdf(x.clone(), 0.0, 1.0);
let cdf = normal_cdf(x, 0.0, 1.0);
println!("pdf : {:?}", pdf.data());
println!("cdf : {:?}", cdf.data());
}
fn binomial_example() {
println!("Binomial distribution\n---------------------");
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = binomial_pmf(4, k.clone(), 0.5);
let cdf = binomial_cdf(4, k, 0.5);
println!("pmf : {:?}", pmf.data());
println!("cdf : {:?}", cdf.data());
}
fn poisson_example() {
println!("Poisson distribution\n--------------------");
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = poisson_pmf(3.0, k);
println!("pmf : {:?}", pmf.data());
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_normal_example() {
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let pdf = normal_pdf(x.clone(), 0.0, 1.0);
let cdf = normal_cdf(x, 0.0, 1.0);
assert!((pdf.get(0, 0) - 0.39894228).abs() < 1e-6);
assert!((cdf.get(0, 1) - 0.8413447).abs() < 1e-6);
}
#[test]
fn test_binomial_example() {
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = binomial_pmf(4, k.clone(), 0.5);
let cdf = binomial_cdf(4, k, 0.5);
assert!((pmf.get(0, 2) - 0.375).abs() < 1e-6);
assert!((cdf.get(0, 2) - 0.6875).abs() < 1e-6);
}
#[test]
fn test_poisson_example() {
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = poisson_pmf(3.0, k);
assert!((pmf.get(0, 1) - 3.0_f64 * (-3.0_f64).exp()).abs() < 1e-6);
}
}

View File

@ -1,13 +1,26 @@
use rand::{self, Rng};
//! Conway's Game of Life Example
//! This example implements Conway's Game of Life using a `BoolMatrix` to represent the game board.
//! It demonstrates matrix operations like shifting, counting neighbors, and applying game rules.
//! The game runs in a loop, updating the board state and printing it to the console.
//! To modify the behaviour of the example, please change the constants at the top of this file.
use rustframe::matrix::{BoolMatrix, BoolOps, IntMatrix, Matrix};
use rustframe::random::{rng, Rng};
use std::{thread, time};
const BOARD_SIZE: usize = 50; // Size of the board (50x50)
const TICK_DURATION_MS: u64 = 10; // Milliseconds per frame
const BOARD_SIZE: usize = 20; // Size of the board (50x50)
const MAX_FRAMES: u32 = 1000;
const TICK_DURATION_MS: u64 = 0; // Milliseconds per frame
const SKIP_FRAMES: u32 = 1;
const PRINT_BOARD: bool = true; // Set to false to disable printing the board
fn main() {
// Initialize the game board.
// This demonstrates `BoolMatrix::from_vec`.
let args = std::env::args().collect::<Vec<String>>();
let debug_mode = args.contains(&"--debug".to_string());
let print_mode = if debug_mode { false } else { PRINT_BOARD };
let mut current_board =
BoolMatrix::from_vec(vec![false; BOARD_SIZE * BOARD_SIZE], BOARD_SIZE, BOARD_SIZE);
@ -16,31 +29,18 @@ fn main() {
add_simulated_activity(&mut current_board, BOARD_SIZE);
let mut generation_count: u32 = 0;
// `previous_board_state` will store a clone of the board.
// This demonstrates `Matrix::clone()` and later `PartialEq` for `Matrix`.
let mut previous_board_state: Option<BoolMatrix> = None;
let mut board_hashes = Vec::new();
// let mut print_board_bool = true;
let mut print_bool_int = 0;
loop {
// print!("{}[2J", 27 as char); // Clear screen and move cursor to top-left
if print_bool_int % SKIP_FRAMES == 0 {
print_board(&current_board, generation_count, print_mode);
// if print_board_bool {
if print_bool_int % 10 == 0 {
print!("{}[2J", 27 as char);
println!("Conway's Game of Life - Generation: {}", generation_count);
print_board(&current_board);
println!("Alive cells: {}", &current_board.count());
// print_board_bool = false;
print_bool_int = 0;
} else {
// print_board_bool = true;
print_bool_int += 1;
}
// `current_board.count()` demonstrates a method from `BoolOps`.
board_hashes.push(hash_board(&current_board, primes.clone()));
if detect_stable_state(&current_board, &previous_board_state) {
println!(
@ -61,20 +61,18 @@ fn main() {
add_simulated_activity(&mut current_board, BOARD_SIZE);
}
// `current_board.clone()` demonstrates `Clone` for `Matrix`.
previous_board_state = Some(current_board.clone());
// This is the core call to your game logic.
let next_board = game_of_life_next_frame(&current_board);
current_board = next_board;
generation_count += 1;
thread::sleep(time::Duration::from_millis(TICK_DURATION_MS));
// if generation_count > 500 { // Optional limit
// println!("\nReached generation limit.");
// break;
// }
if (MAX_FRAMES > 0) && (generation_count > MAX_FRAMES) {
println!("\nReached generation limit.");
break;
}
}
}
@ -82,7 +80,13 @@ fn main() {
///
/// - `board`: A reference to the `BoolMatrix` representing the current game state.
/// This function demonstrates `board.rows()`, `board.cols()`, and `board[(r, c)]` (Index trait).
fn print_board(board: &BoolMatrix) {
fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
if !print_mode {
return;
}
print!("{}[2J", 27 as char);
println!("Conway's Game of Life - Generation: {}", generation_count);
let mut print_str = String::new();
print_str.push_str("+");
for _ in 0..board.cols() {
@ -93,7 +97,6 @@ fn print_board(board: &BoolMatrix) {
print_str.push_str("| ");
for c in 0..board.cols() {
if board[(r, c)] {
// Using Index trait for Matrix<bool>
print_str.push_str("██");
} else {
print_str.push_str(" ");
@ -107,6 +110,8 @@ fn print_board(board: &BoolMatrix) {
}
print_str.push_str("+\n\n");
print!("{}", print_str);
println!("Alive cells: {}", board.count());
}
/// Helper function to create a shifted version of the game board.
@ -173,74 +178,38 @@ pub fn game_of_life_next_frame(current_game: &BoolMatrix) -> BoolMatrix {
if rows == 0 && cols == 0 {
return BoolMatrix::from_vec(vec![], 0, 0); // Return an empty BoolMatrix
}
// Assuming valid non-empty dimensions (e.g., 25x25) as per typical GOL.
// Your Matrix::from_vec would panic for other invalid 0-dim cases.
// Define the 8 neighbor offsets (row_delta, col_delta)
let neighbor_offsets: [(isize, isize); 8] = [
(-1, -1),
(-1, 0),
(-1, 1), // Top row (NW, N, NE)
(-1, 1),
(0, -1),
(0, 1), // Middle row (W, E)
(0, 1),
(1, -1),
(1, 0),
(1, 1), // Bottom row (SW, S, SE)
(1, 1),
];
// 1. Initialize `neighbor_counts` with the first shifted layer.
// This demonstrates creating an IntMatrix from a function and using it as a base.
let (first_dr, first_dc) = neighbor_offsets[0];
let mut neighbor_counts = get_shifted_neighbor_layer(current_game, first_dr, first_dc);
// 2. Add the remaining 7 neighbor layers.
// This demonstrates element-wise addition of matrices (`Matrix + Matrix`).
for i in 1..neighbor_offsets.len() {
let (dr, dc) = neighbor_offsets[i];
let next_neighbor_layer = get_shifted_neighbor_layer(current_game, dr, dc);
// `neighbor_counts` (owned IntMatrix) + `next_neighbor_layer` (owned IntMatrix)
// uses `impl Add for Matrix`, consumes both, returns new owned `IntMatrix`.
neighbor_counts = neighbor_counts + next_neighbor_layer;
}
// 3. Apply Game of Life rules using element-wise operations.
// Rule: Survival or Birth based on neighbor counts.
// A cell is alive in the next generation if:
// (it's currently alive AND has 2 or 3 neighbors) OR
// (it's currently dead AND has exactly 3 neighbors)
// `neighbor_counts.eq_elem(scalar)`:
// Demonstrates element-wise comparison of a Matrix with a scalar (broadcast).
// Returns an owned `BoolMatrix`.
let has_2_neighbors = neighbor_counts.eq_elem(2);
let has_3_neighbors = neighbor_counts.eq_elem(3); // This will be reused
let has_3_neighbors = neighbor_counts.eq_elem(3);
// `has_2_neighbors | has_3_neighbors`:
// Demonstrates element-wise OR (`Matrix<bool> | Matrix<bool>`).
// Consumes both operands, returns an owned `BoolMatrix`.
let has_2_or_3_neighbors = has_2_neighbors | has_3_neighbors.clone(); // Clone has_3_neighbors as it's used again
let has_2_or_3_neighbors = has_2_neighbors | has_3_neighbors.clone();
// `current_game & &has_2_or_3_neighbors`:
// `current_game` is `&BoolMatrix`. `has_2_or_3_neighbors` is owned.
// Demonstrates element-wise AND (`&Matrix<bool> & &Matrix<bool>`).
// Borrows both operands, returns an owned `BoolMatrix`.
let survives = current_game & &has_2_or_3_neighbors;
// `!current_game`:
// Demonstrates element-wise NOT (`!&Matrix<bool>`).
// Borrows operand, returns an owned `BoolMatrix`.
let is_dead = !current_game;
// `is_dead & &has_3_neighbors`:
// `is_dead` is owned. `has_3_neighbors` is owned.
// Demonstrates element-wise AND (`Matrix<bool> & &Matrix<bool>`).
// Consumes `is_dead`, borrows `has_3_neighbors`, returns an owned `BoolMatrix`.
let births = is_dead & &has_3_neighbors;
// `survives | births`:
// Demonstrates element-wise OR (`Matrix<bool> | Matrix<bool>`).
// Consumes both operands, returns an owned `BoolMatrix`.
let next_frame_game = survives | births;
next_frame_game
@ -250,7 +219,7 @@ pub fn generate_glider(board: &mut BoolMatrix, board_size: usize) {
// Initialize with a Glider pattern.
// It demonstrates how to set specific cells in the matrix.
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
let mut rng = rand::rng();
let mut rng = rng();
let r_offset = rng.random_range(0..(board_size - 3));
let c_offset = rng.random_range(0..(board_size - 3));
if board.rows() >= r_offset + 3 && board.cols() >= c_offset + 3 {
@ -266,7 +235,7 @@ pub fn generate_pulsar(board: &mut BoolMatrix, board_size: usize) {
// Initialize with a Pulsar pattern.
// This demonstrates how to set specific cells in the matrix.
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
let mut rng = rand::rng();
let mut rng = rng();
let r_offset = rng.random_range(0..(board_size - 17));
let c_offset = rng.random_range(0..(board_size - 17));
if board.rows() >= r_offset + 17 && board.cols() >= c_offset + 17 {

View File

@ -0,0 +1,66 @@
use rustframe::compute::stats::{anova, chi2_test, t_test};
use rustframe::matrix::Matrix;
/// Demonstrates simple inferential statistics tests.
fn main() {
t_test_demo();
println!("\n-----\n");
chi2_demo();
println!("\n-----\n");
anova_demo();
}
fn t_test_demo() {
println!("Two-sample t-test\n-----------------");
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let b = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t, p) = t_test(&a, &b);
println!("t statistic: {:.2}, p-value: {:.4}", t, p);
}
fn chi2_demo() {
println!("Chi-square test\n---------------");
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2, p) = chi2_test(&observed);
println!("chi^2: {:.2}, p-value: {:.4}", chi2, p);
}
fn anova_demo() {
println!("One-way ANOVA\n-------------");
let g1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
let g2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
let g3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
let (f, p) = anova(vec![&g1, &g2, &g3]);
println!("F statistic: {:.2}, p-value: {:.4}", f, p);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_t_test_demo() {
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let b = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t, _p) = t_test(&a, &b);
assert!((t + 5.0).abs() < 1e-5);
}
#[test]
fn test_chi2_demo() {
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2, p) = chi2_test(&observed);
assert!(chi2 > 0.0);
assert!(p > 0.0 && p < 1.0);
}
#[test]
fn test_anova_demo() {
let g1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
let g2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
let g3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
let (f, p) = anova(vec![&g1, &g2, &g3]);
assert!(f > 0.0);
assert!(p > 0.0 && p < 1.0);
}
}

65
examples/k_means.rs Normal file
View File

@ -0,0 +1,65 @@
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
/// Two quick K-Means clustering demos.
///
/// Example 1 groups store locations on a city map.
/// Example 2 segments customers by annual spending habits.
fn main() {
city_store_example();
println!("\n-----\n");
customer_spend_example();
}
fn city_store_example() {
println!("Example 1: store locations");
// (x, y) coordinates of stores around a city
let raw = vec![
1.0, 2.0, 1.5, 1.8, 5.0, 8.0, 8.0, 8.0, 1.0, 0.6, 9.0, 11.0, 8.0, 2.0, 10.0, 2.0, 9.0, 3.0,
];
let x = Matrix::from_rows_vec(raw, 9, 2);
// Group stores into two areas
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
println!("Centres: {:?}", model.centroids.data());
println!("Labels: {:?}", labels);
let new_points = Matrix::from_rows_vec(vec![0.0, 0.0, 8.0, 3.0], 2, 2);
let pred = model.predict(&new_points);
println!("New store assignments: {:?}", pred);
}
fn customer_spend_example() {
println!("Example 2: customer spending");
// (grocery spend, electronics spend) in dollars
let raw = vec![
200.0, 150.0, 220.0, 170.0, 250.0, 160.0, 800.0, 750.0, 820.0, 760.0, 790.0, 770.0,
];
let x = Matrix::from_rows_vec(raw, 6, 2);
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
println!("Centres: {:?}", model.centroids.data());
println!("Labels: {:?}", labels);
let new_customers = Matrix::from_rows_vec(vec![230.0, 155.0, 810.0, 760.0], 2, 2);
let pred = model.predict(&new_customers);
println!("Cluster of new customers: {:?}", pred);
}
#[test]
fn k_means_store_locations() {
let raw = vec![
1.0, 2.0, 1.5, 1.8, 5.0, 8.0, 8.0, 8.0, 1.0, 0.6, 9.0, 11.0, 8.0, 2.0, 10.0, 2.0, 9.0, 3.0,
];
let x = Matrix::from_rows_vec(raw, 9, 2);
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
assert_eq!(labels.len(), 9);
assert_eq!(model.centroids.rows(), 2);
let new_points = Matrix::from_rows_vec(vec![0.0, 0.0, 8.0, 3.0], 2, 2);
let pred = model.predict(&new_points);
assert_eq!(pred.len(), 2);
}

View File

@ -0,0 +1,118 @@
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
/// Two quick linear regression demonstrations.
///
/// Example 1 fits a model to predict house price from floor area.
/// Example 2 adds number of bedrooms as a second feature.
fn main() {
example_one_feature();
println!("\n-----\n");
example_two_features();
}
/// Price ~ floor area
fn example_one_feature() {
println!("Example 1: predict price from floor area only");
// Square meters of floor area for a few houses
let sizes = vec![50.0, 60.0, 70.0, 80.0, 90.0, 100.0];
// Thousands of dollars in sale price
let prices = vec![150.0, 180.0, 210.0, 240.0, 270.0, 300.0];
// Each row is a sample with one feature
let x = Matrix::from_vec(sizes.clone(), sizes.len(), 1);
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
// Train with a small learning rate
let mut model = LinReg::new(1);
model.fit(&x, &y, 0.0005, 20000);
let preds = model.predict(&x);
println!("Size (m^2) -> predicted price (k) vs actual");
for i in 0..x.rows() {
println!(
"{:>3} -> {:>6.1} | {:>6.1}",
sizes[i],
preds[(i, 0)],
prices[i]
);
}
let new_house = Matrix::from_vec(vec![120.0], 1, 1);
let pred = model.predict(&new_house);
println!("Predicted price for 120 m^2: {:.1}k", pred[(0, 0)]);
}
/// Price ~ floor area + bedrooms
fn example_two_features() {
println!("Example 2: price from area and bedrooms");
// (size m^2, bedrooms) for each house
let raw_x = vec![
50.0, 2.0, 70.0, 2.0, 90.0, 3.0, 110.0, 3.0, 130.0, 4.0, 150.0, 4.0,
];
let prices = vec![160.0, 195.0, 250.0, 285.0, 320.0, 350.0];
let x = Matrix::from_rows_vec(raw_x, 6, 2);
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
let mut model = LinReg::new(2);
model.fit(&x, &y, 0.0001, 50000);
let preds = model.predict(&x);
println!("size, beds -> predicted | actual (k)");
for i in 0..x.rows() {
let size = x[(i, 0)];
let beds = x[(i, 1)];
println!(
"{:>3} m^2, {:>1} -> {:>6.1} | {:>6.1}",
size,
beds,
preds[(i, 0)],
prices[i]
);
}
let new_home = Matrix::from_rows_vec(vec![120.0, 3.0], 1, 2);
let pred = model.predict(&new_home);
println!(
"Predicted price for 120 m^2 with 3 bedrooms: {:.1}k",
pred[(0, 0)]
);
}
#[test]
fn test_linear_regression_one_feature() {
let sizes = vec![50.0, 60.0, 70.0, 80.0, 90.0, 100.0];
let prices = vec![150.0, 180.0, 210.0, 240.0, 270.0, 300.0];
let scaled: Vec<f64> = sizes.iter().map(|s| s / 100.0).collect();
let x = Matrix::from_vec(scaled, sizes.len(), 1);
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
let mut model = LinReg::new(1);
model.fit(&x, &y, 0.1, 2000);
let preds = model.predict(&x);
for i in 0..y.rows() {
assert!((preds[(i, 0)] - prices[i]).abs() < 1.0);
}
}
#[test]
fn test_linear_regression_two_features() {
let raw_x = vec![
50.0, 2.0, 70.0, 2.0, 90.0, 3.0, 110.0, 3.0, 130.0, 4.0, 150.0, 4.0,
];
let prices = vec![170.0, 210.0, 270.0, 310.0, 370.0, 410.0];
let scaled_x: Vec<f64> = raw_x
.chunks(2)
.flat_map(|pair| vec![pair[0] / 100.0, pair[1]])
.collect();
let x = Matrix::from_rows_vec(scaled_x, 6, 2);
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
let mut model = LinReg::new(2);
model.fit(&x, &y, 0.01, 50000);
let preds = model.predict(&x);
for i in 0..y.rows() {
assert!((preds[(i, 0)] - prices[i]).abs() < 1.0);
}
}

View File

@ -0,0 +1,101 @@
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
/// Two binary classification demos using logistic regression.
///
/// Example 1 predicts exam success from hours studied.
/// Example 2 predicts whether an online shopper will make a purchase.
fn main() {
student_passing_example();
println!("\n-----\n");
purchase_prediction_example();
}
fn student_passing_example() {
println!("Example 1: exam pass prediction");
// Hours studied for each student
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
// Label: 0 denotes failure and 1 denotes success
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
let y = Matrix::from_vec(passed.clone(), passed.len(), 1);
let mut model = LogReg::new(1);
model.fit(&x, &y, 0.1, 10000);
let preds = model.predict(&x);
println!("Hours -> pred | actual");
for i in 0..x.rows() {
println!(
"{:>2} -> {} | {}",
hours[i] as i32,
preds[(i, 0)] as i32,
passed[i] as i32
);
}
// Probability estimate for a new student
let new_student = Matrix::from_vec(vec![5.5], 1, 1);
let p = model.predict_proba(&new_student);
println!("Probability of passing with 5.5h study: {:.2}", p[(0, 0)]);
}
fn purchase_prediction_example() {
println!("Example 2: purchase likelihood");
// minutes on site, pages viewed -> made a purchase?
let raw_x = vec![1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 5.0, 5.0, 3.5, 2.0, 6.0, 6.0];
let bought = vec![0.0, 0.0, 0.0, 1.0, 0.0, 1.0];
let x = Matrix::from_rows_vec(raw_x, 6, 2);
let y = Matrix::from_vec(bought.clone(), bought.len(), 1);
let mut model = LogReg::new(2);
model.fit(&x, &y, 0.05, 20000);
let preds = model.predict(&x);
println!("time, pages -> pred | actual");
for i in 0..x.rows() {
println!(
"{:>4}m, {:>2} -> {} | {}",
x[(i, 0)],
x[(i, 1)] as i32,
preds[(i, 0)] as i32,
bought[i] as i32
);
}
let new_visit = Matrix::from_rows_vec(vec![4.0, 4.0], 1, 2);
let p = model.predict_proba(&new_visit);
println!("Prob of purchase for 4min/4pages: {:.2}", p[(0, 0)]);
}
#[test]
fn test_student_passing_example() {
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
let y = Matrix::from_vec(passed.clone(), passed.len(), 1);
let mut model = LogReg::new(1);
model.fit(&x, &y, 0.1, 10000);
let preds = model.predict(&x);
for i in 0..y.rows() {
assert_eq!(preds[(i, 0)], passed[i]);
}
}
#[test]
fn test_purchase_prediction_example() {
let raw_x = vec![1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 5.0, 5.0, 3.5, 2.0, 6.0, 6.0];
let bought = vec![0.0, 0.0, 0.0, 1.0, 0.0, 1.0];
let x = Matrix::from_rows_vec(raw_x, 6, 2);
let y = Matrix::from_vec(bought.clone(), bought.len(), 1);
let mut model = LogReg::new(2);
model.fit(&x, &y, 0.05, 20000);
let preds = model.predict(&x);
for i in 0..y.rows() {
assert_eq!(preds[(i, 0)], bought[i]);
}
}

60
examples/pca.rs Normal file
View File

@ -0,0 +1,60 @@
use rustframe::compute::models::pca::PCA;
use rustframe::matrix::Matrix;
/// Two dimensionality reduction examples using PCA.
///
/// Example 1 reduces 3D sensor readings to two components.
/// Example 2 compresses a small four-feature dataset.
fn main() {
sensor_demo();
println!("\n-----\n");
finance_demo();
}
fn sensor_demo() {
println!("Example 1: 3D sensor data");
// Ten 3D observations from an accelerometer
let raw = vec![
2.5, 2.4, 0.5, 0.5, 0.7, 1.5, 2.2, 2.9, 0.7, 1.9, 2.2, 1.0, 3.1, 3.0, 0.6, 2.3, 2.7, 0.9,
2.0, 1.6, 1.1, 1.0, 1.1, 1.9, 1.5, 1.6, 2.2, 1.1, 0.9, 2.1,
];
let x = Matrix::from_rows_vec(raw, 10, 3);
let pca = PCA::fit(&x, 2, 0);
let reduced = pca.transform(&x);
println!("Components: {:?}", pca.components.data());
println!("First row -> {:.2?}", [reduced[(0, 0)], reduced[(0, 1)]]);
}
fn finance_demo() {
println!("Example 2: 4D finance data");
// Four daily percentage returns of different stocks
let raw = vec![
0.2, 0.1, -0.1, 0.0, 0.3, 0.2, -0.2, 0.1, 0.1, 0.0, -0.1, -0.1, 0.4, 0.3, -0.3, 0.2, 0.0,
-0.1, 0.1, -0.1,
];
let x = Matrix::from_rows_vec(raw, 5, 4);
// Keep two principal components
let pca = PCA::fit(&x, 2, 0);
let reduced = pca.transform(&x);
println!("Reduced shape: {:?}", reduced.shape());
println!("First row -> {:.2?}", [reduced[(0, 0)], reduced[(0, 1)]]);
}
#[test]
fn test_sensor_demo() {
let raw = vec![
2.5, 2.4, 0.5, 0.5, 0.7, 1.5, 2.2, 2.9, 0.7, 1.9, 2.2, 1.0, 3.1, 3.0, 0.6, 2.3, 2.7, 0.9,
2.0, 1.6, 1.1, 1.0, 1.1, 1.9, 1.5, 1.6, 2.2, 1.1, 0.9, 2.1,
];
let x = Matrix::from_rows_vec(raw, 10, 3);
let pca = PCA::fit(&x, 2, 0);
let reduced = pca.transform(&x);
assert_eq!(reduced.rows(), 10);
assert_eq!(reduced.cols(), 2);
}

67
examples/random_demo.rs Normal file
View File

@ -0,0 +1,67 @@
use rustframe::random::{crypto_rng, rng, Rng, SliceRandom};
/// Demonstrates basic usage of the random number generators.
///
/// It showcases uniform ranges, booleans, normal distribution,
/// shuffling and the cryptographically secure generator.
fn main() {
basic_usage();
println!("\n-----\n");
normal_demo();
println!("\n-----\n");
shuffle_demo();
}
fn basic_usage() {
println!("Basic PRNG usage\n----------------");
let mut prng = rng();
println!("random u64 : {}", prng.next_u64());
println!("range [10,20): {}", prng.random_range(10..20));
println!("bool : {}", prng.gen_bool());
}
fn normal_demo() {
println!("Normal distribution\n-------------------");
let mut prng = rng();
for _ in 0..3 {
let v = prng.normal(0.0, 1.0);
println!("sample: {:.3}", v);
}
}
fn shuffle_demo() {
println!("Slice shuffling\n----------------");
let mut prng = rng();
let mut data = [1, 2, 3, 4, 5];
data.shuffle(&mut prng);
println!("shuffled: {:?}", data);
let mut secure = crypto_rng();
let byte = secure.random_range(0..256usize);
println!("crypto byte: {}", byte);
}
#[cfg(test)]
mod tests {
use super::*;
use rustframe::random::{CryptoRng, Prng};
#[test]
fn test_basic_usage_range_bounds() {
let mut rng = Prng::new(1);
for _ in 0..50 {
let v = rng.random_range(5..10);
assert!(v >= 5 && v < 10);
}
}
#[test]
fn test_crypto_byte_bounds() {
let mut rng = CryptoRng::new();
for _ in 0..50 {
let v = rng.random_range(0..256usize);
assert!(v < 256);
}
}
}

57
examples/random_stats.rs Normal file
View File

@ -0,0 +1,57 @@
use rustframe::random::{crypto_rng, rng, Rng};
/// Demonstrates simple statistical checks on random number generators.
fn main() {
chi_square_demo();
println!("\n-----\n");
monobit_demo();
}
fn chi_square_demo() {
println!("Chi-square test on PRNG");
let mut rng = rng();
let mut counts = [0usize; 10];
let samples = 10000;
for _ in 0..samples {
let v = rng.random_range(0..10usize);
counts[v] += 1;
}
let expected = samples as f64 / 10.0;
let chi2: f64 = counts
.iter()
.map(|&c| {
let diff = c as f64 - expected;
diff * diff / expected
})
.sum();
println!("counts: {:?}", counts);
println!("chi-square: {:.3}", chi2);
}
fn monobit_demo() {
println!("Monobit test on crypto RNG");
let mut rng = crypto_rng();
let mut ones = 0usize;
let samples = 1000;
for _ in 0..samples {
ones += rng.next_u64().count_ones() as usize;
}
let ratio = ones as f64 / (samples as f64 * 64.0);
println!("ones ratio: {:.4}", ratio);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_chi_square_demo_runs() {
chi_square_demo();
}
#[test]
fn test_monobit_demo_runs() {
monobit_demo();
}
}

View File

@ -0,0 +1,93 @@
use rustframe::compute::stats::{
chi2_test, covariance, covariance_matrix, mean, median, pearson, percentile, stddev, t_test,
};
use rustframe::matrix::{Axis, Matrix};
/// Demonstrates some of the statistics utilities in Rustframe.
///
/// The example is split into three parts:
/// - Basic descriptive statistics on a small data set
/// - Covariance and correlation calculations
/// - Simple inferential tests (t-test and chi-square)
fn main() {
descriptive_demo();
println!("\n-----\n");
correlation_demo();
println!("\n-----\n");
inferential_demo();
}
fn descriptive_demo() {
println!("Descriptive statistics\n----------------------");
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
println!("mean : {:.2}", mean(&data));
println!("std dev : {:.2}", stddev(&data));
println!("median : {:.2}", median(&data));
println!("25th percentile: {:.2}", percentile(&data, 25.0));
}
fn correlation_demo() {
println!("Covariance and Correlation\n--------------------------");
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
let cov = covariance(&x, &y);
let cov_mat = covariance_matrix(&x, Axis::Col);
let corr = pearson(&x, &y);
println!("covariance : {:.2}", cov);
println!("cov matrix : {:?}", cov_mat.data());
println!("pearson r : {:.2}", corr);
}
fn inferential_demo() {
println!("Inferential statistics\n----------------------");
let s1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let s2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_stat, t_p) = t_test(&s1, &s2);
println!("t statistic : {:.2}, p-value: {:.4}", t_stat, t_p);
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2, chi_p) = chi2_test(&observed);
println!("chi^2 : {:.2}, p-value: {:.4}", chi2, chi_p);
}
#[cfg(test)]
mod tests {
use super::*;
const EPS: f64 = 1e-8;
#[test]
fn test_descriptive_demo() {
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
assert!((mean(&data) - 3.0).abs() < EPS);
assert!((stddev(&data) - 1.4142135623730951).abs() < EPS);
assert!((median(&data) - 3.0).abs() < EPS);
assert!((percentile(&data, 25.0) - 2.0).abs() < EPS);
}
#[test]
fn test_correlation_demo() {
let x = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
let cov = covariance(&x, &y);
assert!((cov - 1.625).abs() < EPS);
let cov_mat = covariance_matrix(&x, Axis::Col);
assert!((cov_mat.get(0, 0) - 2.0).abs() < EPS);
assert!((cov_mat.get(1, 1) - 2.0).abs() < EPS);
let corr = pearson(&x, &y);
assert!((corr - 0.9827076298239908).abs() < 1e-6);
}
#[test]
fn test_inferential_demo() {
let s1 = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let s2 = Matrix::from_rows_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_stat, p_value) = t_test(&s1, &s2);
assert!((t_stat + 5.0).abs() < 1e-5);
assert!(p_value > 0.0 && p_value < 1.0);
let observed = Matrix::from_rows_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2, p) = chi2_test(&observed);
assert!(chi2 > 0.0);
assert!(p > 0.0 && p < 1.0);
}
}

View File

@ -1,3 +1,16 @@
//! Algorithms and statistical utilities built on top of the core matrices.
//!
//! This module groups together machinelearning models and statistical helper
//! functions. For quick access to basic statistics see [`stats`](crate::compute::stats), while
//! [`models`](crate::compute::models) contains small learning algorithms.
//!
//! ```
//! use rustframe::compute::stats;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0], 3, 1);
//! assert_eq!(stats::mean(&m), 2.0);
//! ```
pub mod models;
pub mod stats;

View File

@ -1,3 +1,15 @@
//! Common activation functions used in neural networks.
//!
//! Functions operate element-wise on [`Matrix`] values.
//!
//! ```
//! use rustframe::compute::models::activations::sigmoid;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
//! let y = sigmoid(&x);
//! assert!((y.get(0,0) - 0.5).abs() < 1e-6);
//! ```
use crate::matrix::{Matrix, SeriesOps};
pub fn sigmoid(x: &Matrix<f64>) -> Matrix<f64> {
@ -25,6 +37,7 @@ pub fn dleaky_relu(x: &Matrix<f64>) -> Matrix<f64> {
x.map(|v| if v > 0.0 { 1.0 } else { 0.01 })
}
#[cfg(test)]
mod tests {
use super::*;

View File

@ -1,6 +1,33 @@
//! A minimal dense neural network implementation for educational purposes.
//!
//! Layers operate on [`Matrix`] values and support ReLU and Sigmoid
//! activations. This is not meant to be a performant deeplearning framework
//! but rather a small example of how the surrounding matrix utilities can be
//! composed.
//!
//! ```
//! use rustframe::compute::models::dense_nn::{ActivationKind, DenseNN, DenseNNConfig, InitializerKind, LossKind};
//! use rustframe::matrix::Matrix;
//!
//! // Tiny network with one input and one output neuron.
//! let config = DenseNNConfig {
//! input_size: 1,
//! hidden_layers: vec![],
//! output_size: 1,
//! activations: vec![ActivationKind::Relu],
//! initializer: InitializerKind::Uniform(0.5),
//! loss: LossKind::MSE,
//! learning_rate: 0.1,
//! epochs: 1,
//! };
//! let mut nn = DenseNN::new(config);
//! let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0], 2, 1);
//! nn.train(&x, &y);
//! ```
use crate::compute::models::activations::{drelu, relu, sigmoid};
use crate::matrix::{Matrix, SeriesOps};
use rand::prelude::*;
use crate::random::prelude::*;
/// Supported activation functions
#[derive(Clone)]
@ -46,7 +73,7 @@ pub enum InitializerKind {
impl InitializerKind {
pub fn initialize(&self, rows: usize, cols: usize) -> Matrix<f64> {
let mut rng = rand::rng();
let mut rng = rng();
let fan_in = rows;
let fan_out = cols;
let limit = match self {

View File

@ -1,3 +1,16 @@
//! Gaussian Naive Bayes classifier for dense matrices.
//!
//! ```
//! use rustframe::compute::models::gaussian_nb::GaussianNB;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 1.0, 2.0], 2, 2); // two samples
//! let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
//! let mut model = GaussianNB::new(1e-9, false);
//! model.fit(&x, &y);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 2);
//! ```
use crate::matrix::Matrix;
use std::collections::HashMap;

View File

@ -1,7 +1,17 @@
//! Simple k-means clustering working on [`Matrix`] data.
//!
//! ```
//! use rustframe::compute::models::k_means::KMeans;
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
//! let (model, labels) = KMeans::fit(&data, 2, 10, 1e-4);
//! assert_eq!(model.centroids.rows(), 2);
//! assert_eq!(labels.len(), 2);
//! ```
use crate::compute::stats::mean_vertical;
use crate::matrix::Matrix;
use rand::rng;
use rand::seq::SliceRandom;
use crate::random::prelude::*;
pub struct KMeans {
pub centroids: Matrix<f64>, // (k, n_features)
@ -193,7 +203,8 @@ mod tests {
break;
}
}
assert!(matches_data_point, "Centroid {} (empty cluster) does not match any data point", c);
// "Centroid {} (empty cluster) does not match any data point",c
assert!(matches_data_point);
}
}
break;
@ -360,5 +371,4 @@ mod tests {
assert_eq!(predicted_label.len(), 1);
assert!(predicted_label[0] < k);
}
}

View File

@ -1,3 +1,16 @@
//! Ordinary least squares linear regression.
//!
//! ```
//! use rustframe::compute::models::linreg::LinReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
//! let mut model = LinReg::new(1);
//! model.fit(&x, &y, 0.01, 100);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 4);
//! ```
use crate::matrix::{Matrix, SeriesOps};
pub struct LinReg {

View File

@ -1,3 +1,16 @@
//! Binary logistic regression classifier.
//!
//! ```
//! use rustframe::compute::models::logreg::LogReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
//! let mut model = LogReg::new(1);
//! model.fit(&x, &y, 0.1, 100);
//! let preds = model.predict(&x);
//! assert_eq!(preds[(0,0)], 0.0);
//! ```
use crate::compute::models::activations::sigmoid;
use crate::matrix::{Matrix, SeriesOps};

View File

@ -1,3 +1,19 @@
//! Lightweight machinelearning models built on matrices.
//!
//! Models are intentionally minimal and operate on the [`Matrix`](crate::matrix::Matrix) type for
//! inputs and parameters.
//!
//! ```
//! use rustframe::compute::models::linreg::LinReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
//! let mut model = LinReg::new(1);
//! model.fit(&x, &y, 0.01, 1000);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 4);
//! ```
pub mod activations;
pub mod dense_nn;
pub mod gaussian_nb;

View File

@ -1,3 +1,14 @@
//! Principal Component Analysis using covariance matrices.
//!
//! ```
//! use rustframe::compute::models::pca::PCA;
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0], 2, 2);
//! let pca = PCA::fit(&data, 1, 0);
//! let projected = pca.transform(&data);
//! assert_eq!(projected.cols(), 1);
//! ```
use crate::compute::stats::correlation::covariance_matrix;
use crate::compute::stats::descriptive::mean_vertical;
use crate::matrix::{Axis, Matrix, SeriesOps};
@ -44,11 +55,7 @@ mod tests {
#[test]
fn test_pca_basic() {
// Simple 2D data, points along y=x line
// Data:
// 1.0, 1.0
// 2.0, 2.0
// 3.0, 3.0
// Simple 2D data with points along the y = x line
let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0, 3.0, 3.0], 3, 2);
let (_n_samples, _n_features) = data.shape();
@ -71,15 +78,7 @@ mod tests {
assert!((pca.components.get(0, 0) - 1.0).abs() < EPSILON);
assert!((pca.components.get(0, 1) - 1.0).abs() < EPSILON);
// Test transform
// Centered data:
// -1.0, -1.0
// 0.0, 0.0
// 1.0, 1.0
// Projected: (centered_data * components.transpose())
// (-1.0 * 1.0 + -1.0 * 1.0) = -2.0
// ( 0.0 * 1.0 + 0.0 * 1.0) = 0.0
// ( 1.0 * 1.0 + 1.0 * 1.0) = 2.0
// Test transform: centered data projects to [-2.0, 0.0, 2.0]
let transformed_data = pca.transform(&data);
assert_eq!(transformed_data.rows(), 3);
assert_eq!(transformed_data.cols(), 1);

View File

@ -1,3 +1,16 @@
//! Covariance and correlation helpers.
//!
//! This module provides routines for measuring the relationship between
//! columns or rows of matrices.
//!
//! ```
//! use rustframe::compute::stats::correlation;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! let cov = correlation::covariance(&x, &x);
//! assert!((cov - 1.25).abs() < 1e-8);
//! ```
use crate::compute::stats::{mean, mean_horizontal, mean_vertical, stddev};
use crate::matrix::{Axis, Matrix, SeriesOps};
@ -137,10 +150,7 @@ mod tests {
#[test]
fn test_covariance_scalar_same_matrix() {
// M =
// 1,2
// 3,4
// mean = 2.5
// Matrix with rows [1, 2] and [3, 4]; mean is 2.5
let data = vec![1.0, 2.0, 3.0, 4.0];
let m = Matrix::from_vec(data.clone(), 2, 2);
@ -152,10 +162,7 @@ mod tests {
#[test]
fn test_covariance_scalar_diff_matrix() {
// x =
// 1,2
// 3,4
// y = 2*x
// Matrix x has rows [1, 2] and [3, 4]; y is two times x
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
@ -167,10 +174,7 @@ mod tests {
#[test]
fn test_covariance_vertical() {
// M =
// 1,2
// 3,4
// cols are [1,3] and [2,4], each var=1, cov=1
// Matrix with rows [1, 2] and [3, 4]; columns are [1,3] and [2,4], each var=1, cov=1
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov_mat = covariance_vertical(&m);
@ -184,10 +188,7 @@ mod tests {
#[test]
fn test_covariance_horizontal() {
// M =
// 1,2
// 3,4
// rows are [1,2] and [3,4], each var=0.25, cov=0.25
// Matrix with rows [1,2] and [3,4], each var=0.25, cov=0.25
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov_mat = covariance_horizontal(&m);
@ -201,10 +202,7 @@ mod tests {
#[test]
fn test_covariance_matrix_vertical() {
// Test with a simple 2x2 matrix
// M =
// 1, 2
// 3, 4
// Test with a simple 2x2 matrix with rows [1, 2] and [3, 4]
// Expected covariance matrix (vertical, i.e., between columns):
// Col1: [1, 3], mean = 2
// Col2: [2, 4], mean = 3
@ -212,9 +210,7 @@ mod tests {
// Cov(Col2, Col2) = ((2-3)^2 + (4-3)^2) / (2-1) = (1+1)/1 = 2
// Cov(Col1, Col2) = ((1-2)*(2-3) + (3-2)*(4-3)) / (2-1) = ((-1)*(-1) + (1)*(1))/1 = (1+1)/1 = 2
// Cov(Col2, Col1) = 2
// Expected:
// 2, 2
// 2, 2
// Expected matrix filled with 2
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov_mat = covariance_matrix(&m, Axis::Col);
@ -226,10 +222,7 @@ mod tests {
#[test]
fn test_covariance_matrix_horizontal() {
// Test with a simple 2x2 matrix
// M =
// 1, 2
// 3, 4
// Test with a simple 2x2 matrix with rows [1, 2] and [3, 4]
// Expected covariance matrix (horizontal, i.e., between rows):
// Row1: [1, 2], mean = 1.5
// Row2: [3, 4], mean = 3.5
@ -237,9 +230,7 @@ mod tests {
// Cov(Row2, Row2) = ((3-3.5)^2 + (4-3.5)^2) / (2-1) = (0.25+0.25)/1 = 0.5
// Cov(Row1, Row2) = ((1-1.5)*(3-3.5) + (2-1.5)*(4-3.5)) / (2-1) = ((-0.5)*(-0.5) + (0.5)*(0.5))/1 = (0.25+0.25)/1 = 0.5
// Cov(Row2, Row1) = 0.5
// Expected:
// 0.5, -0.5
// -0.5, 0.5
// Expected matrix: [[0.5, -0.5], [-0.5, 0.5]]
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov_mat = covariance_matrix(&m, Axis::Row);

View File

@ -1,3 +1,15 @@
//! Descriptive statistics for matrices.
//!
//! Provides means, variances, medians and other aggregations computed either
//! across the whole matrix or along a specific axis.
//!
//! ```
//! use rustframe::compute::stats::descriptive;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! assert_eq!(descriptive::mean(&m), 2.5);
//! ```
use crate::matrix::{Axis, Matrix, SeriesOps};
pub fn mean(x: &Matrix<f64>) -> f64 {
@ -350,11 +362,7 @@ mod tests {
let data: Vec<f64> = (1..=24).map(|x| x as f64).collect();
let x = Matrix::from_vec(data, 4, 6);
// columns:
// 1, 5, 9, 13, 17, 21
// 2, 6, 10, 14, 18, 22
// 3, 7, 11, 15, 19, 23
// 4, 8, 12, 16, 20, 24
// columns contain sequences increasing by four starting at 1 through 4
let er0 = vec![1., 5., 9., 13., 17., 21.];
let er50 = vec![3., 7., 11., 15., 19., 23.];

View File

@ -1,3 +1,16 @@
//! Probability distribution functions applied element-wise to matrices.
//!
//! Includes approximations for the normal, uniform and gamma distributions as
//! well as the error function.
//!
//! ```
//! use rustframe::compute::stats::distributions;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
//! let pdf = distributions::normal_pdf(x.clone(), 0.0, 1.0);
//! assert!((pdf.get(0,0) - 0.3989).abs() < 1e-3);
//! ```
use crate::matrix::{Matrix, SeriesOps};
use std::f64::consts::PI;

View File

@ -1,3 +1,14 @@
//! Basic inferential statistics such as ttests and chisquare tests.
//!
//! ```
//! use rustframe::compute::stats::inferential;
//! use rustframe::matrix::Matrix;
//!
//! let a = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
//! let b = Matrix::from_vec(vec![1.1, 1.9], 2, 1);
//! let (t, _p) = inferential::t_test(&a, &b);
//! assert!(t.abs() < 1.0);
//! ```
use crate::matrix::{Matrix, SeriesOps};
use crate::compute::stats::{gamma_cdf, mean, sample_variance};

View File

@ -1,3 +1,16 @@
//! Statistical routines for matrices.
//!
//! Functions are grouped into submodules for descriptive statistics,
//! correlations, probability distributions and basic inferential tests.
//!
//! ```
//! use rustframe::compute::stats;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! let cov = stats::covariance(&m, &m);
//! assert!((cov - 1.25).abs() < 1e-8);
//! ```
pub mod correlation;
pub mod descriptive;
pub mod distributions;

View File

@ -1,3 +1,19 @@
//! Core data-frame structures such as [`Frame`] and [`RowIndex`].
//!
//! The [`Frame`] type stores column-labelled data with an optional row index
//! and builds upon the [`crate::matrix::Matrix`] type.
//!
//! # Examples
//!
//! ```
//! use rustframe::frame::{Frame, RowIndex};
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
//! let frame = Frame::new(data, vec!["L", "R"], Some(RowIndex::Int(vec![10, 20])));
//! assert_eq!(frame.columns(), &["L", "R"]);
//! assert_eq!(frame.index(), &RowIndex::Int(vec![10, 20]));
//! ```
use crate::matrix::Matrix;
use chrono::NaiveDate;
use std::collections::HashMap;

View File

@ -1,3 +1,21 @@
//! High-level interface for working with columnar data and row indices.
//!
//! The [`Frame`](crate::frame::Frame) type combines a matrix with column labels and a typed row
//! index, similar to data frames in other data-analysis libraries.
//!
//! # Examples
//!
//! ```
//! use rustframe::frame::{Frame, RowIndex};
//! use rustframe::matrix::Matrix;
//!
//! // Build a frame from two columns labelled "A" and "B".
//! let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
//! let frame = Frame::new(data, vec!["A", "B"], None);
//!
//! assert_eq!(frame["A"], vec![1.0, 2.0]);
//! assert_eq!(frame.index(), &RowIndex::Range(0..2));
//! ```
pub mod base;
pub mod ops;

View File

@ -1,3 +1,16 @@
//! Trait implementations that allow [`Frame`] to reuse matrix operations.
//!
//! These modules forward numeric and boolean aggregation methods from the
//! underlying [`Matrix`](crate::matrix::Matrix) type so that they can be called
//! directly on a [`Frame`].
//!
//! ```
//! use rustframe::frame::Frame;
//! use rustframe::matrix::{Matrix, SeriesOps};
//!
//! let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
//! assert_eq!(frame.sum_vertical(), vec![3.0]);
//! ```
use crate::frame::Frame;
use crate::matrix::{Axis, BoolMatrix, BoolOps, FloatMatrix, SeriesOps};

View File

@ -11,3 +11,6 @@ pub mod utils;
/// Documentation for the [`crate::compute`] module.
pub mod compute;
/// Documentation for the [`crate::random`] module.
pub mod random;

View File

@ -1,3 +1,14 @@
//! Logical reductions for boolean matrices.
//!
//! The [`BoolOps`] trait mirrors common boolean aggregations such as `any` and
//! `all` over rows or columns of a [`BoolMatrix`].
//!
//! ```
//! use rustframe::matrix::{BoolMatrix, BoolOps};
//!
//! let m = BoolMatrix::from_vec(vec![true, false], 2, 1);
//! assert!(m.any());
//! ```
use crate::matrix::{Axis, BoolMatrix};
/// Boolean operations on `Matrix<bool>`

View File

@ -1028,9 +1028,7 @@ mod tests {
#[test]
fn test_from_rows_vec() {
// Representing:
// 1 2 3
// 4 5 6
// Matrix with rows [1, 2, 3] and [4, 5, 6]
let rows_data = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
let matrix = Matrix::from_rows_vec(rows_data, 2, 3);
@ -1042,19 +1040,14 @@ mod tests {
// Helper function to create a basic Matrix for testing
fn static_test_matrix() -> Matrix<i32> {
// Column-major data:
// 1 4 7
// 2 5 8
// 3 6 9
// Column-major data representing a 3x3 matrix of sequential integers
let data = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
Matrix::from_vec(data, 3, 3)
}
// Another helper for a different size
fn static_test_matrix_2x4() -> Matrix<i32> {
// Column-major data:
// 1 3 5 7
// 2 4 6 8
// Column-major data representing a 2x4 matrix of sequential integers
let data = vec![1, 2, 3, 4, 5, 6, 7, 8];
Matrix::from_vec(data, 2, 4)
}
@ -1132,10 +1125,7 @@ mod tests {
#[test]
fn test_from_cols_basic() {
// Representing:
// 1 4 7
// 2 5 8
// 3 6 9
// Matrix with columns forming a 3x3 sequence
let cols_data = vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]];
let matrix = Matrix::from_cols(cols_data);
@ -1512,8 +1502,7 @@ mod tests {
// Delete the first row
matrix.delete_row(0);
// Should be:
// 3 6 9
// Resulting data should be [3, 6, 9]
assert_eq!(matrix.rows(), 1);
assert_eq!(matrix.cols(), 3);
assert_eq!(matrix.data(), &[3, 6, 9]);

View File

@ -1,3 +1,18 @@
//! Core matrix types and operations.
//!
//! The [`Matrix`](crate::matrix::Matrix) struct provides a simple columnmajor 2D array with a
//! suite of numeric helpers. Additional traits like [`SeriesOps`](crate::matrix::SeriesOps) and
//! [`BoolOps`](crate::matrix::BoolOps) extend functionality for common statistics and logical reductions.
//!
//! # Examples
//!
//! ```
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
//! assert_eq!(m.shape(), (2, 2));
//! assert_eq!(m[(0,1)], 3);
//! ```
pub mod boolops;
pub mod mat;
pub mod seriesops;

View File

@ -1,3 +1,14 @@
//! Numeric reductions and transformations over matrix axes.
//!
//! [`SeriesOps`] provides methods like [`SeriesOps::sum_vertical`] or
//! [`SeriesOps::map`] that operate on [`FloatMatrix`] values.
//!
//! ```
//! use rustframe::matrix::{Matrix, SeriesOps};
//!
//! let m = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
//! assert_eq!(m.sum_horizontal(), vec![4.0, 6.0]);
//! ```
use crate::matrix::{Axis, BoolMatrix, FloatMatrix};
/// "Series-like" helpers that work along a single axis.
@ -215,20 +226,13 @@ mod tests {
// Helper function to create a FloatMatrix for SeriesOps testing
fn create_float_test_matrix() -> FloatMatrix {
// 3x3 matrix (column-major) with some NaNs
// 1.0 4.0 7.0
// 2.0 NaN 8.0
// 3.0 6.0 NaN
// 3x3 column-major matrix containing a few NaN values
let data = vec![1.0, 2.0, 3.0, 4.0, f64::NAN, 6.0, 7.0, 8.0, f64::NAN];
FloatMatrix::from_vec(data, 3, 3)
}
fn create_float_test_matrix_4x4() -> FloatMatrix {
// 4x4 matrix (column-major) with some NaNs
// 1.0 5.0 9.0 13.0
// 2.0 NaN 10.0 NaN
// 3.0 6.0 NaN 14.0
// NaN 7.0 11.0 NaN
// 4x4 column-major matrix with NaNs inserted at positions where index % 5 == 0
// first make array with 16 elements
FloatMatrix::from_vec(
(0..16)

237
src/random/crypto.rs Normal file
View File

@ -0,0 +1,237 @@
//! Cryptographically secure random number generator.
//!
//! On Unix systems this reads from `/dev/urandom`; on Windows it uses the
//! system's preferred CNG provider.
//!
//! ```
//! use rustframe::random::{crypto_rng, Rng};
//! let mut rng = crypto_rng();
//! let _v = rng.next_u64();
//! ```
#[cfg(unix)]
use std::{fs::File, io::Read};
use crate::random::Rng;
#[cfg(unix)]
pub struct CryptoRng {
file: File,
}
#[cfg(unix)]
impl CryptoRng {
/// Open `/dev/urandom`.
pub fn new() -> Self {
let file = File::open("/dev/urandom").expect("failed to open /dev/urandom");
Self { file }
}
}
#[cfg(unix)]
impl Rng for CryptoRng {
fn next_u64(&mut self) -> u64 {
let mut buf = [0u8; 8];
self.file
.read_exact(&mut buf)
.expect("failed reading from /dev/urandom");
u64::from_ne_bytes(buf)
}
}
#[cfg(windows)]
pub struct CryptoRng;
#[cfg(windows)]
impl CryptoRng {
/// No handle is needed on Windows.
pub fn new() -> Self {
Self
}
}
#[cfg(windows)]
impl Rng for CryptoRng {
fn next_u64(&mut self) -> u64 {
let mut buf = [0u8; 8];
win_fill(&mut buf).expect("BCryptGenRandom failed");
u64::from_ne_bytes(buf)
}
}
/// Fill `buf` with cryptographically secure random bytes using CNG.
///
/// * `BCryptGenRandom(NULL, buf, len, BCRYPT_USE_SYSTEM_PREFERRED_RNG)`
/// asks the OS for its systempreferred DRBG (CTR_DRBG on modern
/// Windows).
#[cfg(windows)]
fn win_fill(buf: &mut [u8]) -> Result<(), ()> {
use core::ffi::c_void;
type BcryptAlgHandle = *mut c_void;
type NTSTATUS = i32;
const BCRYPT_USE_SYSTEM_PREFERRED_RNG: u32 = 0x0000_0002;
#[link(name = "bcrypt")]
extern "system" {
fn BCryptGenRandom(
hAlgorithm: BcryptAlgHandle,
pbBuffer: *mut u8,
cbBuffer: u32,
dwFlags: u32,
) -> NTSTATUS;
}
// NT_SUCCESS(status) == status >= 0
let status = unsafe {
BCryptGenRandom(
core::ptr::null_mut(),
buf.as_mut_ptr(),
buf.len() as u32,
BCRYPT_USE_SYSTEM_PREFERRED_RNG,
)
};
if status >= 0 {
Ok(())
} else {
Err(())
}
}
/// Convenience constructor for [`CryptoRng`].
pub fn crypto_rng() -> CryptoRng {
CryptoRng::new()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::random::Rng;
use std::collections::HashSet;
#[test]
fn test_crypto_rng_nonzero() {
let mut rng = CryptoRng::new();
let mut all_same = true;
let mut prev = rng.next_u64();
for _ in 0..5 {
let val = rng.next_u64();
if val != prev {
all_same = false;
}
prev = val;
}
assert!(!all_same, "CryptoRng produced identical values");
}
#[test]
fn test_crypto_rng_variation_large() {
let mut rng = CryptoRng::new();
let mut values = HashSet::new();
for _ in 0..100 {
values.insert(rng.next_u64());
}
assert!(values.len() > 90, "CryptoRng output not varied enough");
}
#[test]
fn test_crypto_rng_random_range_uniform() {
let mut rng = CryptoRng::new();
let mut counts = [0usize; 10];
for _ in 0..1000 {
let v = rng.random_range(0..10usize);
counts[v] += 1;
}
for &c in &counts {
// "Crypto RNG counts far from uniform: {c}"
assert!((c as isize - 100).abs() < 50);
}
}
#[test]
fn test_crypto_normal_distribution() {
let mut rng = CryptoRng::new();
let mean = 0.0;
let sd = 1.0;
let n = 2000;
let mut sum = 0.0;
let mut sum_sq = 0.0;
for _ in 0..n {
let val = rng.normal(mean, sd);
sum += val;
sum_sq += val * val;
}
let sample_mean = sum / n as f64;
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
assert!(sample_mean.abs() < 0.1);
assert!((sample_var - 1.0).abs() < 0.2);
}
#[test]
fn test_two_instances_different_values() {
let mut a = CryptoRng::new();
let mut b = CryptoRng::new();
let va = a.next_u64();
let vb = b.next_u64();
assert_ne!(va, vb);
}
#[test]
fn test_crypto_rng_helper_function() {
let mut rng = crypto_rng();
let _ = rng.next_u64();
}
#[test]
fn test_crypto_normal_zero_sd() {
let mut rng = CryptoRng::new();
for _ in 0..5 {
let v = rng.normal(10.0, 0.0);
assert_eq!(v, 10.0);
}
}
#[test]
fn test_crypto_shuffle_empty_slice() {
use crate::random::SliceRandom;
let mut rng = CryptoRng::new();
let mut arr: [u8; 0] = [];
arr.shuffle(&mut rng);
assert!(arr.is_empty());
}
#[test]
fn test_crypto_chi_square_uniform() {
let mut rng = CryptoRng::new();
let mut counts = [0usize; 10];
let samples = 10000;
for _ in 0..samples {
let v = rng.random_range(0..10usize);
counts[v] += 1;
}
let expected = samples as f64 / 10.0;
let chi2: f64 = counts
.iter()
.map(|&c| {
let diff = c as f64 - expected;
diff * diff / expected
})
.sum();
assert!(chi2 < 40.0, "chi-square statistic too high: {chi2}");
}
#[test]
fn test_crypto_monobit() {
let mut rng = CryptoRng::new();
let mut ones = 0usize;
let samples = 1000;
for _ in 0..samples {
ones += rng.next_u64().count_ones() as usize;
}
let total_bits = samples * 64;
let ratio = ones as f64 / total_bits as f64;
// "bit ratio far from 0.5: {ratio}"
assert!((ratio - 0.5).abs() < 0.02);
}
}

29
src/random/mod.rs Normal file
View File

@ -0,0 +1,29 @@
//! Random number generation utilities.
//!
//! Provides both a simple pseudo-random generator [`Prng`](crate::random::Prng) and a
//! cryptographically secure alternative [`CryptoRng`](crate::random::CryptoRng). The
//! [`SliceRandom`](crate::random::SliceRandom) trait offers shuffling of slices using any RNG
//! implementing [`Rng`](crate::random::Rng).
//!
//! ```
//! use rustframe::random::{rng, SliceRandom};
//!
//! let mut rng = rng();
//! let mut data = [1, 2, 3, 4];
//! data.shuffle(&mut rng);
//! assert_eq!(data.len(), 4);
//! ```
pub mod crypto;
pub mod prng;
pub mod random_core;
pub mod seq;
pub use crypto::{crypto_rng, CryptoRng};
pub use prng::{rng, Prng};
pub use random_core::{RangeSample, Rng};
pub use seq::SliceRandom;
pub mod prelude {
pub use super::seq::SliceRandom;
pub use super::{crypto_rng, rng, CryptoRng, Prng, RangeSample, Rng};
}

235
src/random/prng.rs Normal file
View File

@ -0,0 +1,235 @@
//! A tiny XorShift64-based pseudo random number generator.
//!
//! ```
//! use rustframe::random::{rng, Rng};
//! let mut rng = rng();
//! let x = rng.next_u64();
//! assert!(x >= 0);
//! ```
use std::time::{SystemTime, UNIX_EPOCH};
use crate::random::Rng;
/// Simple XorShift64-based pseudo random number generator.
#[derive(Clone)]
pub struct Prng {
state: u64,
}
impl Prng {
/// Create a new generator from the given seed.
pub fn new(seed: u64) -> Self {
Self { state: seed }
}
/// Create a generator seeded from the current time.
pub fn from_entropy() -> Self {
let nanos = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_nanos() as u64;
Self::new(nanos)
}
}
impl Rng for Prng {
fn next_u64(&mut self) -> u64 {
let mut x = self.state;
x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
self.state = x;
x
}
}
/// Convenience constructor using system entropy.
pub fn rng() -> Prng {
Prng::from_entropy()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::random::Rng;
#[test]
fn test_prng_determinism() {
let mut a = Prng::new(42);
let mut b = Prng::new(42);
for _ in 0..5 {
assert_eq!(a.next_u64(), b.next_u64());
}
}
#[test]
fn test_random_range_f64() {
let mut rng = Prng::new(1);
for _ in 0..10 {
let v = rng.random_range(-1.0..1.0);
assert!(v >= -1.0 && v < 1.0);
}
}
#[test]
fn test_random_range_usize() {
let mut rng = Prng::new(9);
for _ in 0..100 {
let v = rng.random_range(10..20);
assert!(v >= 10 && v < 20);
}
}
#[test]
fn test_gen_bool_balance() {
let mut rng = Prng::new(123);
let mut trues = 0;
for _ in 0..1000 {
if rng.gen_bool() {
trues += 1;
}
}
let ratio = trues as f64 / 1000.0;
assert!(ratio > 0.4 && ratio < 0.6);
}
#[test]
fn test_normal_distribution() {
let mut rng = Prng::new(7);
let mut sum = 0.0;
let mut sum_sq = 0.0;
let mean = 5.0;
let sd = 2.0;
let n = 5000;
for _ in 0..n {
let val = rng.normal(mean, sd);
sum += val;
sum_sq += val * val;
}
let sample_mean = sum / n as f64;
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
assert!((sample_mean - mean).abs() < 0.1);
assert!((sample_var - sd * sd).abs() < 0.2 * sd * sd);
}
#[test]
fn test_prng_from_entropy_unique() {
use std::{collections::HashSet, thread, time::Duration};
let mut seen = HashSet::new();
for _ in 0..5 {
let mut rng = Prng::from_entropy();
seen.insert(rng.next_u64());
thread::sleep(Duration::from_micros(1));
}
assert!(seen.len() > 1, "Entropy seeds produced identical outputs");
}
#[test]
fn test_prng_uniform_distribution() {
let mut rng = Prng::new(12345);
let mut counts = [0usize; 10];
for _ in 0..10000 {
let v = rng.random_range(0..10usize);
counts[v] += 1;
}
for &c in &counts {
// "PRNG counts far from uniform: {c}"
assert!((c as isize - 1000).abs() < 150);
}
}
#[test]
fn test_prng_different_seeds_different_output() {
let mut a = Prng::new(1);
let mut b = Prng::new(2);
let va = a.next_u64();
let vb = b.next_u64();
assert_ne!(va, vb);
}
#[test]
fn test_prng_gen_bool_varies() {
let mut rng = Prng::new(99);
let mut seen_true = false;
let mut seen_false = false;
for _ in 0..100 {
if rng.gen_bool() {
seen_true = true;
} else {
seen_false = true;
}
}
assert!(seen_true && seen_false);
}
#[test]
fn test_random_range_single_usize() {
let mut rng = Prng::new(42);
for _ in 0..10 {
let v = rng.random_range(5..6);
assert_eq!(v, 5);
}
}
#[test]
fn test_random_range_single_f64() {
let mut rng = Prng::new(42);
for _ in 0..10 {
let v = rng.random_range(1.234..1.235);
assert!(v >= 1.234 && v < 1.235);
}
}
#[test]
fn test_prng_normal_zero_sd() {
let mut rng = Prng::new(7);
for _ in 0..5 {
let v = rng.normal(3.0, 0.0);
assert_eq!(v, 3.0);
}
}
#[test]
fn test_random_range_extreme_usize() {
let mut rng = Prng::new(5);
for _ in 0..10 {
let v = rng.random_range(0..usize::MAX);
assert!(v < usize::MAX);
}
}
#[test]
fn test_prng_chi_square_uniform() {
let mut rng = Prng::new(12345);
let mut counts = [0usize; 10];
let samples = 10000;
for _ in 0..samples {
let v = rng.random_range(0..10usize);
counts[v] += 1;
}
let expected = samples as f64 / 10.0;
let chi2: f64 = counts
.iter()
.map(|&c| {
let diff = c as f64 - expected;
diff * diff / expected
})
.sum();
// "chi-square statistic too high: {chi2}"
assert!(chi2 < 20.0);
}
#[test]
fn test_prng_monobit() {
let mut rng = Prng::new(42);
let mut ones = 0usize;
let samples = 1000;
for _ in 0..samples {
ones += rng.next_u64().count_ones() as usize;
}
let total_bits = samples * 64;
let ratio = ones as f64 / total_bits as f64;
// "bit ratio far from 0.5: {ratio}"
assert!((ratio - 0.5).abs() < 0.01);
}
}

106
src/random/random_core.rs Normal file
View File

@ -0,0 +1,106 @@
//! Core traits for random number generators and sampling ranges.
//!
//! ```
//! use rustframe::random::{rng, Rng};
//! let mut r = rng();
//! let value: f64 = r.random_range(0.0..1.0);
//! assert!(value >= 0.0 && value < 1.0);
//! ```
use std::f64::consts::PI;
use std::ops::Range;
/// Trait implemented by random number generators.
pub trait Rng {
/// Generate the next random `u64` value.
fn next_u64(&mut self) -> u64;
/// Generate a value uniformly in the given range.
fn random_range<T>(&mut self, range: Range<T>) -> T
where
T: RangeSample,
{
T::from_u64(self.next_u64(), &range)
}
/// Generate a boolean with probability 0.5 of being `true`.
fn gen_bool(&mut self) -> bool {
self.random_range(0..2usize) == 1
}
/// Sample from a normal distribution using the Box-Muller transform.
fn normal(&mut self, mean: f64, sd: f64) -> f64 {
let u1 = self.random_range(0.0..1.0);
let u2 = self.random_range(0.0..1.0);
mean + sd * (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
}
}
/// Conversion from a raw `u64` into a type within a range.
pub trait RangeSample: Sized {
fn from_u64(value: u64, range: &Range<Self>) -> Self;
}
impl RangeSample for usize {
fn from_u64(value: u64, range: &Range<Self>) -> Self {
let span = range.end - range.start;
(value as usize % span) + range.start
}
}
impl RangeSample for f64 {
fn from_u64(value: u64, range: &Range<Self>) -> Self {
let span = range.end - range.start;
range.start + (value as f64 / u64::MAX as f64) * span
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_range_sample_usize_boundary() {
assert_eq!(<usize as RangeSample>::from_u64(0, &(0..1)), 0);
assert_eq!(<usize as RangeSample>::from_u64(u64::MAX, &(0..1)), 0);
}
#[test]
fn test_range_sample_f64_boundary() {
let v0 = <f64 as RangeSample>::from_u64(0, &(0.0..1.0));
let vmax = <f64 as RangeSample>::from_u64(u64::MAX, &(0.0..1.0));
assert!(v0 >= 0.0 && v0 < 1.0);
assert!(vmax > 0.999999999999 && vmax <= 1.0);
}
#[test]
fn test_range_sample_usize_varied() {
for i in 0..5 {
let v = <usize as RangeSample>::from_u64(i, &(10..15));
assert!(v >= 10 && v < 15);
}
}
#[test]
fn test_range_sample_f64_span() {
for val in [0, u64::MAX / 2, u64::MAX] {
let f = <f64 as RangeSample>::from_u64(val, &(2.0..4.0));
assert!(f >= 2.0 && f <= 4.0);
}
}
#[test]
fn test_range_sample_usize_single_value() {
for val in [0, 1, u64::MAX] {
let n = <usize as RangeSample>::from_u64(val, &(5..6));
assert_eq!(n, 5);
}
}
#[test]
fn test_range_sample_f64_negative_range() {
for val in [0, u64::MAX / 3, u64::MAX] {
let f = <f64 as RangeSample>::from_u64(val, &(-2.0..2.0));
assert!(f >= -2.0 && f <= 2.0);
}
}
}

113
src/random/seq.rs Normal file
View File

@ -0,0 +1,113 @@
//! Extensions for shuffling slices with a random number generator.
//!
//! ```
//! use rustframe::random::{rng, SliceRandom};
//! let mut data = [1, 2, 3];
//! data.shuffle(&mut rng());
//! assert_eq!(data.len(), 3);
//! ```
use crate::random::Rng;
/// Trait for randomizing slices.
pub trait SliceRandom {
/// Shuffle the slice in place using the provided RNG.
fn shuffle<R: Rng>(&mut self, rng: &mut R);
}
impl<T> SliceRandom for [T] {
fn shuffle<R: Rng>(&mut self, rng: &mut R) {
for i in (1..self.len()).rev() {
let j = rng.random_range(0..(i + 1));
self.swap(i, j);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::random::{CryptoRng, Prng};
#[test]
fn test_shuffle_slice() {
let mut rng = Prng::new(3);
let mut arr = [1, 2, 3, 4, 5];
let orig = arr.clone();
arr.shuffle(&mut rng);
assert_eq!(arr.len(), orig.len());
let mut sorted = arr.to_vec();
sorted.sort();
assert_eq!(sorted, orig.to_vec());
}
#[test]
fn test_slice_shuffle_deterministic_with_prng() {
let mut rng1 = Prng::new(11);
let mut rng2 = Prng::new(11);
let mut a = [1u8, 2, 3, 4, 5, 6, 7, 8, 9];
let mut b = a.clone();
a.shuffle(&mut rng1);
b.shuffle(&mut rng2);
assert_eq!(a, b);
}
#[test]
fn test_slice_shuffle_crypto_random_changes() {
let mut rng1 = CryptoRng::new();
let mut rng2 = CryptoRng::new();
let orig = [1u8, 2, 3, 4, 5, 6, 7, 8, 9];
let mut a = orig.clone();
let mut b = orig.clone();
a.shuffle(&mut rng1);
b.shuffle(&mut rng2);
assert!(a != orig || b != orig, "Shuffles did not change order");
assert_ne!(a, b, "Two Crypto RNG shuffles produced same order");
}
#[test]
fn test_shuffle_single_element_no_change() {
let mut rng = Prng::new(1);
let mut arr = [42];
arr.shuffle(&mut rng);
assert_eq!(arr, [42]);
}
#[test]
fn test_multiple_shuffles_different_results() {
let mut rng = Prng::new(5);
let mut arr1 = [1, 2, 3, 4];
let mut arr2 = [1, 2, 3, 4];
arr1.shuffle(&mut rng);
arr2.shuffle(&mut rng);
assert_ne!(arr1, arr2);
}
#[test]
fn test_shuffle_empty_slice() {
let mut rng = Prng::new(1);
let mut arr: [i32; 0] = [];
arr.shuffle(&mut rng);
assert!(arr.is_empty());
}
#[test]
fn test_shuffle_three_uniform() {
use std::collections::HashMap;
let mut rng = Prng::new(123);
let mut counts: HashMap<[u8; 3], usize> = HashMap::new();
for _ in 0..6000 {
let mut arr = [1u8, 2, 3];
arr.shuffle(&mut rng);
*counts.entry(arr).or_insert(0) += 1;
}
let expected = 1000.0;
let chi2: f64 = counts
.values()
.map(|&c| {
let diff = c as f64 - expected;
diff * diff / expected
})
.sum();
assert!(chi2 < 30.0, "shuffle chi-square too high: {chi2}");
}
}

View File

@ -1,3 +1,10 @@
//! Generation and manipulation of calendar date sequences.
//!
//! ```
//! use rustframe::utils::dateutils::dates::{DateFreq, DatesList};
//! let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
//! assert_eq!(list.count().unwrap(), 3);
//! ```
use chrono::{Datelike, Duration, NaiveDate, Weekday};
use std::collections::HashMap;
use std::error::Error;

View File

@ -1,3 +1,13 @@
//! Generators for sequences of calendar and business dates.
//!
//! See [`dates`] for all-day calendars and [`bdates`] for business-day aware
//! variants.
//!
//! ```
//! use rustframe::utils::dateutils::{DatesList, DateFreq};
//! let list = DatesList::new("2024-01-01".into(), "2024-01-02".into(), DateFreq::Daily);
//! assert_eq!(list.count().unwrap(), 2);
//! ```
pub mod bdates;
pub mod dates;

View File

@ -1,3 +1,14 @@
//! Assorted helper utilities.
//!
//! Currently this module exposes date generation utilities in [`dateutils`](crate::utils::dateutils),
//! including calendar and business date sequences.
//!
//! ```
//! use rustframe::utils::DatesList;
//! use rustframe::utils::DateFreq;
//! let dates = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
//! assert_eq!(dates.count().unwrap(), 3);
//! ```
pub mod dateutils;
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};