mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-19 20:19:59 +00:00
Add user guide examples
This commit is contained in:
parent
7d0978e5fb
commit
9738154dac
7
docs/src/SUMMARY.md
Normal file
7
docs/src/SUMMARY.md
Normal file
@ -0,0 +1,7 @@
|
||||
# Summary
|
||||
|
||||
- [Introduction](./introduction.md)
|
||||
- [Data Manipulation](./data-manipulation.md)
|
||||
- [Compute Features](./compute.md)
|
||||
- [Machine Learning](./machine-learning.md)
|
||||
- [Utilities](./utilities.md)
|
31
docs/src/compute.md
Normal file
31
docs/src/compute.md
Normal file
@ -0,0 +1,31 @@
|
||||
# Compute Features
|
||||
|
||||
The `compute` module provides statistical routines like descriptive
|
||||
statistics and correlation measures.
|
||||
|
||||
## Basic Statistics
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::{mean, stddev};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let mean_val = mean(&m);
|
||||
let std_val = stddev(&m);
|
||||
```
|
||||
|
||||
## Correlation
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::pearson;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||
let corr = pearson(&x, &y);
|
||||
```
|
||||
|
||||
With the basics covered, explore predictive models in the
|
||||
[machine learning](./machine-learning.md) chapter.
|
43
docs/src/data-manipulation.md
Normal file
43
docs/src/data-manipulation.md
Normal file
@ -0,0 +1,43 @@
|
||||
# Data Manipulation
|
||||
|
||||
RustFrame's `Frame` type couples tabular data with
|
||||
column labels and a typed row index.
|
||||
|
||||
## Creating a Frame
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::{Frame, RowIndex};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let frame = Frame::new(data, vec!["A", "B"], None);
|
||||
assert_eq!(frame["A"], vec![1.0, 2.0]);
|
||||
```
|
||||
|
||||
## Indexing Rows
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::{Frame, RowIndex};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let index = RowIndex::Int(vec![10, 20]);
|
||||
let frame = Frame::new(data, vec!["A", "B"], Some(index));
|
||||
assert_eq!(frame.get_row(20)["B"], 4.0);
|
||||
```
|
||||
|
||||
## Aggregations
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::Frame;
|
||||
use rustframe::matrix::{Matrix, SeriesOps};
|
||||
|
||||
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
|
||||
assert_eq!(frame.sum_vertical(), vec![3.0]);
|
||||
```
|
||||
|
||||
When you're ready to run analytics, continue to the
|
||||
[compute features](./compute.md) chapter.
|
15
docs/src/introduction.md
Normal file
15
docs/src/introduction.md
Normal file
@ -0,0 +1,15 @@
|
||||
# Introduction
|
||||
|
||||
Welcome to the **RustFrame User Guide**. This book provides a tour of
|
||||
RustFrame's capabilities from basic data handling to advanced machine learning
|
||||
workflows. Each chapter contains runnable snippets so you can follow along.
|
||||
|
||||
To build this guide locally run `./build.sh` in the `docs/` directory. The
|
||||
chapters are arranged sequentially:
|
||||
|
||||
1. [Data manipulation](./data-manipulation.md) for loading and transforming data.
|
||||
2. [Compute features](./compute.md) for statistics and analytics.
|
||||
3. [Machine learning](./machine-learning.md) for predictive models.
|
||||
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules.
|
||||
|
||||
Let's begin with some tabular data!
|
39
docs/src/machine-learning.md
Normal file
39
docs/src/machine-learning.md
Normal file
@ -0,0 +1,39 @@
|
||||
# Machine Learning
|
||||
|
||||
RustFrame ships with several algorithms:
|
||||
|
||||
- Linear and logistic regression
|
||||
- K-means clustering
|
||||
- Principal component analysis (PCA)
|
||||
- Naive Bayes and dense neural networks
|
||||
|
||||
## Linear Regression
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::linreg::LinReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
||||
let mut model = LinReg::new(1);
|
||||
model.fit(&x, &y, 0.01, 100);
|
||||
let preds = model.predict(&x);
|
||||
assert_eq!(preds.rows(), 4);
|
||||
```
|
||||
|
||||
## K-means Walkthrough
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::k_means::KMeans;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
|
||||
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
|
||||
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
|
||||
let cluster = model.predict(&new_point)[0];
|
||||
```
|
||||
|
||||
For helper functions and upcoming modules, visit the
|
||||
[utilities](./utilities.md) section.
|
24
docs/src/utilities.md
Normal file
24
docs/src/utilities.md
Normal file
@ -0,0 +1,24 @@
|
||||
# Utilities
|
||||
|
||||
Utilities provide handy helpers around the core library. Existing tools
|
||||
include:
|
||||
|
||||
- Date utilities for generating calendar sequences.
|
||||
|
||||
## Date Helpers
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::utils::dateutils::{DatesList, DateFreq};
|
||||
|
||||
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
||||
assert_eq!(list.count().unwrap(), 3);
|
||||
```
|
||||
|
||||
Upcoming utilities will cover:
|
||||
|
||||
- Data import/export helpers
|
||||
- Visualization adapters
|
||||
- Streaming data interfaces
|
||||
|
||||
Contributions to these sections are welcome!
|
Loading…
x
Reference in New Issue
Block a user