mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00
Compare commits
No commits in common. "main" and "v0.0.1-a.20250716" have entirely different histories.
main
...
v0.0.1-a.2
11
.github/htmldocs/index.html
vendored
11
.github/htmldocs/index.html
vendored
@ -58,14 +58,6 @@
|
||||
<h2>A lightweight dataframe & math toolkit for Rust</h2>
|
||||
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
|
||||
<p>
|
||||
|
||||
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a>
|
||||
<br><br>
|
||||
|
||||
📖 <a href="https://magnus167.github.io/rustframe/user-guide">User Guide</a>
|
||||
<br><br>
|
||||
|
||||
|
||||
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
|
||||
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
|
||||
|
||||
@ -73,7 +65,8 @@
|
||||
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
|
||||
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
|
||||
<br><br>
|
||||
<!-- 🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a> -->
|
||||
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a> |
|
||||
🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a>
|
||||
</p>
|
||||
</main>
|
||||
</body>
|
||||
|
2
.github/runners/runner-x64/Dockerfile
vendored
2
.github/runners/runner-x64/Dockerfile
vendored
@ -7,7 +7,7 @@ ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt update -y && apt upgrade -y && useradd -m docker
|
||||
RUN apt install -y --no-install-recommends \
|
||||
curl jq git zip unzip \
|
||||
curl jq git unzip \
|
||||
# dev dependencies
|
||||
build-essential libssl-dev libffi-dev python3 python3-venv python3-dev python3-pip \
|
||||
# dot net core dependencies
|
||||
|
16
.github/scripts/run_examples.sh
vendored
16
.github/scripts/run_examples.sh
vendored
@ -1,16 +0,0 @@
|
||||
cargo build --release --examples
|
||||
|
||||
for ex in examples/*.rs; do
|
||||
name=$(basename "$ex" .rs)
|
||||
echo
|
||||
echo "🟡 Running example: $name"
|
||||
|
||||
if ! cargo run --release --example "$name" -- --debug; then
|
||||
echo
|
||||
echo "❌ Example '$name' failed. Aborting."
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
|
||||
echo
|
||||
echo "✅ All examples ran successfully."
|
23
.github/workflows/docs-and-testcov.yml
vendored
23
.github/workflows/docs-and-testcov.yml
vendored
@ -151,8 +151,7 @@ jobs:
|
||||
mkdir -p target/doc/docs
|
||||
mv target/doc/rustframe/* target/doc/docs/
|
||||
|
||||
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
|
||||
|
||||
mkdir output
|
||||
cp tarpaulin-report.html target/doc/docs/
|
||||
cp tarpaulin-report.json target/doc/docs/
|
||||
cp tarpaulin-badge.json target/doc/docs/
|
||||
@ -165,30 +164,16 @@ jobs:
|
||||
# copy the benchmark report to the output directory
|
||||
cp -r benchmark-report target/doc/
|
||||
|
||||
mkdir output
|
||||
cp -r target/doc/* output/
|
||||
|
||||
- name: Build user guide
|
||||
run: |
|
||||
cargo binstall mdbook
|
||||
bash ./docs/build.sh
|
||||
|
||||
- name: Copy user guide to output directory
|
||||
run: |
|
||||
mkdir output/user-guide
|
||||
cp -r docs/book/* output/user-guide/
|
||||
|
||||
- name: Add index.html to output directory
|
||||
run: |
|
||||
cp .github/htmldocs/index.html output/index.html
|
||||
cp .github/rustframe_logo.png output/rustframe_logo.png
|
||||
cp .github/htmldocs/index.html target/doc/index.html
|
||||
cp .github/rustframe_logo.png target/doc/rustframe_logo.png
|
||||
|
||||
- name: Upload Pages artifact
|
||||
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
|
||||
uses: actions/upload-pages-artifact@v3
|
||||
with:
|
||||
# path: target/doc/
|
||||
path: output/
|
||||
path: target/doc/
|
||||
|
||||
- name: Deploy to GitHub Pages
|
||||
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
|
||||
|
22
.github/workflows/run-unit-tests.yml
vendored
22
.github/workflows/run-unit-tests.yml
vendored
@ -12,12 +12,14 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
pick-runner:
|
||||
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner: ${{ steps.choose.outputs.use-runner }}
|
||||
steps:
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- id: choose
|
||||
uses: ./.github/actions/runner-fallback
|
||||
@ -25,6 +27,7 @@ jobs:
|
||||
primary-runner: "self-hosted"
|
||||
fallback-runner: "ubuntu-latest"
|
||||
github-token: ${{ secrets.CUSTOM_GH_TOKEN }}
|
||||
|
||||
|
||||
run-unit-tests:
|
||||
needs: pick-runner
|
||||
@ -53,20 +56,6 @@ jobs:
|
||||
- name: Test docs generation
|
||||
run: cargo doc --no-deps --release
|
||||
|
||||
- name: Test examples
|
||||
run: cargo test --examples --release
|
||||
|
||||
- name: Run all examples
|
||||
run: |
|
||||
for example in examples/*.rs; do
|
||||
name=$(basename "$example" .rs)
|
||||
echo "Running example: $name"
|
||||
cargo run --release --example "$name" -- --debug || exit 1
|
||||
done
|
||||
|
||||
- name: Cargo test all targets
|
||||
run: cargo test --all-targets --release
|
||||
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
with:
|
||||
@ -78,8 +67,3 @@ jobs:
|
||||
uses: codecov/test-results-action@v1
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
|
||||
- name: Test build user guide
|
||||
run: |
|
||||
cargo binstall mdbook
|
||||
bash ./docs/build.sh
|
||||
|
4
.gitignore
vendored
4
.gitignore
vendored
@ -16,6 +16,4 @@ data/
|
||||
|
||||
tarpaulin-report.*
|
||||
|
||||
.github/htmldocs/rustframe_logo.png
|
||||
|
||||
docs/book/
|
||||
.github/htmldocs/rustframe_logo.png
|
@ -1,12 +1,10 @@
|
||||
[package]
|
||||
name = "rustframe"
|
||||
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
||||
version = "0.0.1-a.20250805"
|
||||
version = "0.0.1-a.20250716"
|
||||
edition = "2021"
|
||||
license = "GPL-3.0-or-later"
|
||||
readme = "README.md"
|
||||
description = "A simple dataframe and math toolkit"
|
||||
documentation = "https://magnus167.github.io/rustframe/"
|
||||
description = "A simple dataframe library"
|
||||
|
||||
[lib]
|
||||
name = "rustframe"
|
||||
@ -16,6 +14,7 @@ crate-type = ["cdylib", "lib"]
|
||||
[dependencies]
|
||||
chrono = "^0.4.10"
|
||||
criterion = { version = "0.5", features = ["html_reports"], optional = true }
|
||||
rand = "^0.9.1"
|
||||
|
||||
[features]
|
||||
bench = ["dep:criterion"]
|
||||
|
67
README.md
67
README.md
@ -1,12 +1,15 @@
|
||||
# rustframe
|
||||
|
||||
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||
<!-- # <img align="center" alt="Rustframe" src=".github/rustframe_logo.png" height="50px" /> rustframe -->
|
||||
|
||||
<!-- though the centre tag doesn't work as it would normally, it achieves the desired effect -->
|
||||
|
||||
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🌐 [Gitea mirror](https://gitea.nulltech.uk/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||
|
||||
<!-- [](https://github.com/Magnus167/rustframe) -->
|
||||
|
||||
[](https://codecov.io/gh/Magnus167/rustframe)
|
||||
[](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
|
||||
[](https://gitea.nulltech.uk/Magnus167/rustframe)
|
||||
|
||||
---
|
||||
|
||||
@ -24,9 +27,11 @@ Rustframe is an educational project, and is not intended for production use. It
|
||||
- **Math that reads like math** - element-wise `+`, `−`, `×`, `÷` on entire frames or scalars.
|
||||
- **Frames** - Column major data structure for single-type data, with labeled columns and typed row indices.
|
||||
- **Compute module** - Implements various statistical computations and machine learning models.
|
||||
- **Random number utils** - Built-in pseudo and cryptographically secure generators for simulations.
|
||||
|
||||
- **[Coming Soon]** _DataFrame_ - Multi-type data structure for heterogeneous data, with labeled columns and typed row indices.
|
||||
|
||||
- **[Coming Soon]** _Random number utils_ - Random number generation utilities for statistical sampling and simulations. (Currently using the [`rand`](https://crates.io/crates/rand) crate.)
|
||||
|
||||
#### Matrix and Frame functionality
|
||||
|
||||
- **Matrix operations** - Element-wise arithmetic, boolean logic, transpose, and more.
|
||||
@ -126,6 +131,10 @@ let mc: Matrix<f64> = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let md: Matrix<f64> = Matrix::from_cols(vec![vec![5.0, 6.0], vec![7.0, 8.0]]);
|
||||
let mul_result: Matrix<f64> = mc.matrix_mul(&md);
|
||||
// Expected:
|
||||
// 1*5 + 3*6 = 5 + 18 = 23
|
||||
// 2*5 + 4*6 = 10 + 24 = 34
|
||||
// 1*7 + 3*8 = 7 + 24 = 31
|
||||
// 2*7 + 4*8 = 14 + 32 = 46
|
||||
assert_eq!(mul_result.data(), &[23.0, 34.0, 31.0, 46.0]);
|
||||
|
||||
// Dot product (alias for matrix_mul for FloatMatrix)
|
||||
@ -134,7 +143,14 @@ assert_eq!(dot_result, mul_result);
|
||||
|
||||
// Transpose
|
||||
let original_matrix: Matrix<f64> = Matrix::from_cols(vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]);
|
||||
// Original:
|
||||
// 1 4
|
||||
// 2 5
|
||||
// 3 6
|
||||
let transposed_matrix: Matrix<f64> = original_matrix.transpose();
|
||||
// Transposed:
|
||||
// 1 2 3
|
||||
// 4 5 6
|
||||
assert_eq!(transposed_matrix.rows(), 2);
|
||||
assert_eq!(transposed_matrix.cols(), 3);
|
||||
assert_eq!(transposed_matrix.data(), &[1.0, 4.0, 2.0, 5.0, 3.0, 6.0]);
|
||||
@ -143,6 +159,10 @@ assert_eq!(transposed_matrix.data(), &[1.0, 4.0, 2.0, 5.0, 3.0, 6.0]);
|
||||
let matrix = Matrix::from_cols(vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]);
|
||||
// Map function to double each value
|
||||
let mapped_matrix = matrix.map(|x| x * 2.0);
|
||||
// Expected data after mapping
|
||||
// 2 8
|
||||
// 4 10
|
||||
// 6 12
|
||||
assert_eq!(mapped_matrix.data(), &[2.0, 4.0, 6.0, 8.0, 10.0, 12.0]);
|
||||
|
||||
// Zip
|
||||
@ -150,10 +170,13 @@ let a = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]); // 2x2 matrix
|
||||
let b = Matrix::from_cols(vec![vec![5.0, 6.0], vec![7.0, 8.0]]); // 2x2 matrix
|
||||
// Zip function to add corresponding elements
|
||||
let zipped_matrix = a.zip(&b, |x, y| x + y);
|
||||
// Expected data after zipping
|
||||
// 6 10
|
||||
// 8 12
|
||||
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
||||
```
|
||||
|
||||
## More examples
|
||||
### More examples
|
||||
|
||||
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
||||
|
||||
@ -169,44 +192,10 @@ E.g. to run the `game_of_life` example:
|
||||
cargo run --example game_of_life
|
||||
```
|
||||
|
||||
More demos:
|
||||
|
||||
```bash
|
||||
cargo run --example linear_regression
|
||||
cargo run --example logistic_regression
|
||||
cargo run --example k_means
|
||||
cargo run --example pca
|
||||
cargo run --example stats_overview
|
||||
cargo run --example descriptive_stats
|
||||
cargo run --example correlation
|
||||
cargo run --example inferential_stats
|
||||
cargo run --example distributions
|
||||
```
|
||||
|
||||
To simply list all available examples, you can run:
|
||||
|
||||
```bash
|
||||
# this technically raises an error, but it will list all examples
|
||||
cargo run --example
|
||||
```
|
||||
|
||||
Each demo runs a couple of mini-scenarios showcasing the APIs.
|
||||
|
||||
## Running benchmarks
|
||||
### Running benchmarks
|
||||
|
||||
To run the benchmarks, use:
|
||||
|
||||
```bash
|
||||
cargo bench --features "bench"
|
||||
```
|
||||
|
||||
## Building the user-guide
|
||||
|
||||
To build the user guide, use:
|
||||
|
||||
```bash
|
||||
cargo binstall mdbook
|
||||
bash docs/build.sh
|
||||
```
|
||||
|
||||
This will generate the user guide in the `docs/book` directory.
|
||||
|
@ -1,7 +0,0 @@
|
||||
[book]
|
||||
title = "Rustframe User Guide"
|
||||
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
||||
description = "Guided journey through Rustframe capabilities."
|
||||
|
||||
[build]
|
||||
build-dir = "book"
|
@ -1,7 +0,0 @@
|
||||
#!/usr/bin/env sh
|
||||
# Build and test the Rustframe user guide using mdBook.
|
||||
set -e
|
||||
|
||||
cd docs
|
||||
bash gen.sh "$@"
|
||||
cd ..
|
14
docs/gen.sh
14
docs/gen.sh
@ -1,14 +0,0 @@
|
||||
#!/usr/bin/env sh
|
||||
|
||||
set -e
|
||||
|
||||
cargo clean
|
||||
|
||||
cargo build --manifest-path ../Cargo.toml
|
||||
|
||||
mdbook test -L ../target/debug/deps "$@"
|
||||
|
||||
mdbook build "$@"
|
||||
|
||||
cargo build
|
||||
# cargo build --release
|
@ -1,7 +0,0 @@
|
||||
# Summary
|
||||
|
||||
- [Introduction](./introduction.md)
|
||||
- [Data Manipulation](./data-manipulation.md)
|
||||
- [Compute Features](./compute.md)
|
||||
- [Machine Learning](./machine-learning.md)
|
||||
- [Utilities](./utilities.md)
|
@ -1,222 +0,0 @@
|
||||
# Compute Features
|
||||
|
||||
The `compute` module hosts numerical routines for exploratory data analysis.
|
||||
It covers descriptive statistics, correlations, probability distributions and
|
||||
some basic inferential tests.
|
||||
|
||||
## Basic Statistics
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
assert_eq!(mean(&m), 2.5);
|
||||
assert_eq!(stddev(&m), 1.118033988749895);
|
||||
assert_eq!(median(&m), 2.5);
|
||||
assert_eq!(population_variance(&m), 1.25);
|
||||
assert_eq!(percentile(&m, 50.0), 3.0);
|
||||
// column averages returned as 1 x n matrix
|
||||
let row_means = mean_horizontal(&m);
|
||||
assert_eq!(row_means.data(), &[2.0, 3.0]);
|
||||
let col_means = mean_vertical(&m);
|
||||
assert_eq!(col_means.data(), & [1.5, 3.5]);
|
||||
```
|
||||
|
||||
### Axis-specific Operations
|
||||
|
||||
Operations can be applied along specific axes (rows or columns):
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// 3x2 matrix
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
|
||||
|
||||
// Mean along columns (vertical) - returns 1 x cols matrix
|
||||
let col_means = mean_vertical(&m);
|
||||
assert_eq!(col_means.shape(), (1, 2));
|
||||
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
|
||||
|
||||
// Mean along rows (horizontal) - returns rows x 1 matrix
|
||||
let row_means = mean_horizontal(&m);
|
||||
assert_eq!(row_means.shape(), (3, 1));
|
||||
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
|
||||
|
||||
// Standard deviation along columns
|
||||
let col_stddev = stddev_vertical(&m);
|
||||
assert_eq!(col_stddev.shape(), (1, 2));
|
||||
|
||||
// Standard deviation along rows
|
||||
let row_stddev = stddev_horizontal(&m);
|
||||
assert_eq!(row_stddev.shape(), (3, 1));
|
||||
```
|
||||
|
||||
## Correlation
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::{pearson, covariance};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||
let corr = pearson(&x, &y);
|
||||
let cov = covariance(&x, &y);
|
||||
assert!((corr - 1.0).abs() < 1e-8);
|
||||
assert!((cov - 2.5).abs() < 1e-8);
|
||||
```
|
||||
|
||||
## Covariance
|
||||
|
||||
### `covariance`
|
||||
|
||||
Computes the population covariance between two equally sized matrices by flattening
|
||||
their values.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::covariance;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||
let cov = covariance(&x, &y);
|
||||
assert!((cov - 2.5).abs() < 1e-8);
|
||||
```
|
||||
|
||||
### `covariance_vertical`
|
||||
|
||||
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
|
||||
column pair covariances.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::covariance_vertical;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov = covariance_vertical(&m);
|
||||
assert_eq!(cov.shape(), (2, 2));
|
||||
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
|
||||
```
|
||||
|
||||
### `covariance_horizontal`
|
||||
|
||||
Computes covariance between rows (i.e. across columns) returning a matrix that
|
||||
describes how each pair of rows varies together.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::covariance_horizontal;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov = covariance_horizontal(&m);
|
||||
assert_eq!(cov.shape(), (2, 2));
|
||||
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
|
||||
```
|
||||
|
||||
### `covariance_matrix`
|
||||
|
||||
Builds a covariance matrix either between columns (`Axis::Col`) or rows
|
||||
(`Axis::Row`). Each entry represents how two series co-vary.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::covariance_matrix;
|
||||
use rustframe::matrix::{Axis, Matrix};
|
||||
|
||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
|
||||
// Covariance between columns
|
||||
let cov_cols = covariance_matrix(&data, Axis::Col);
|
||||
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
|
||||
|
||||
// Covariance between rows
|
||||
let cov_rows = covariance_matrix(&data, Axis::Row);
|
||||
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
|
||||
```
|
||||
|
||||
## Distributions
|
||||
|
||||
Probability distribution helpers are available for common PDFs and CDFs.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::distributions::normal_pdf;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||
let pdf = normal_pdf(x, 0.0, 1.0);
|
||||
assert_eq!(pdf.data().len(), 2);
|
||||
```
|
||||
|
||||
### Additional Distributions
|
||||
|
||||
Rustframe provides several other probability distributions:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Normal distribution CDF
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||
let cdf = normal_cdf(x, 0.0, 1.0);
|
||||
assert_eq!(cdf.data().len(), 2);
|
||||
|
||||
// Binomial distribution PMF
|
||||
// Probability of k successes in n trials with probability p
|
||||
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
|
||||
let pmf = binomial_pmf(3, k.clone(), 0.5);
|
||||
assert_eq!(pmf.data().len(), 4);
|
||||
|
||||
// Binomial distribution CDF
|
||||
let cdf = binomial_cdf(3, k, 0.5);
|
||||
assert_eq!(cdf.data().len(), 4);
|
||||
|
||||
// Poisson distribution PMF
|
||||
// Probability of k events with rate parameter lambda
|
||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||
let pmf = poisson_pmf(2.0, k);
|
||||
assert_eq!(pmf.data().len(), 3);
|
||||
```
|
||||
|
||||
### Inferential Statistics
|
||||
|
||||
Rustframe provides several inferential statistical tests:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::Matrix;
|
||||
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
|
||||
|
||||
// Two-sample t-test
|
||||
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||
let (t_statistic, p_value) = t_test(&sample1, &sample2);
|
||||
assert!((t_statistic + 5.0).abs() < 1e-5);
|
||||
assert!(p_value > 0.0 && p_value < 1.0);
|
||||
|
||||
// Chi-square test of independence
|
||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||
let (chi2_statistic, p_value) = chi2_test(&observed);
|
||||
assert!(chi2_statistic > 0.0);
|
||||
assert!(p_value > 0.0 && p_value < 1.0);
|
||||
|
||||
// One-way ANOVA
|
||||
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
||||
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
||||
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
||||
let groups = vec![&group1, &group2, &group3];
|
||||
let (f_statistic, p_value) = anova(groups);
|
||||
assert!(f_statistic > 0.0);
|
||||
assert!(p_value > 0.0 && p_value < 1.0);
|
||||
```
|
||||
|
||||
With the basics covered, explore predictive models in the
|
||||
[machine learning](./machine-learning.md) chapter.
|
@ -1,157 +0,0 @@
|
||||
# Data Manipulation
|
||||
|
||||
Rustframe's `Frame` type couples tabular data with
|
||||
column labels and a typed row index. Frames expose a familiar API for loading
|
||||
data, selecting rows or columns and performing aggregations.
|
||||
|
||||
## Creating a Frame
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::{Frame, RowIndex};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let frame = Frame::new(data, vec!["A", "B"], None);
|
||||
assert_eq!(frame["A"], vec![1.0, 2.0]);
|
||||
```
|
||||
|
||||
## Indexing Rows
|
||||
|
||||
Row labels can be integers, dates or a default range. Retrieving a row returns a
|
||||
view that lets you inspect values by column name or position.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
# extern crate chrono;
|
||||
use chrono::NaiveDate;
|
||||
use rustframe::frame::{Frame, RowIndex};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
|
||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
|
||||
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
|
||||
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
|
||||
|
||||
// mutate by row key
|
||||
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
|
||||
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
|
||||
```
|
||||
|
||||
## Column operations
|
||||
|
||||
Columns can be inserted, renamed, removed or reordered in place.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::{Frame, RowIndex};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
||||
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
|
||||
|
||||
frame.add_column("Z", vec![5, 6]);
|
||||
frame.rename("Y", "W");
|
||||
let removed = frame.delete_column("X");
|
||||
assert_eq!(removed, vec![1, 2]);
|
||||
frame.sort_columns();
|
||||
assert_eq!(frame.columns(), &["W", "Z"]);
|
||||
```
|
||||
|
||||
## Aggregations
|
||||
|
||||
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::Frame;
|
||||
use rustframe::matrix::{Matrix, SeriesOps};
|
||||
|
||||
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
|
||||
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
||||
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
|
||||
```
|
||||
|
||||
## Matrix Operations
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||
|
||||
let sum = data1.clone() + data2.clone();
|
||||
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
|
||||
|
||||
let product = data1.clone() * data2.clone();
|
||||
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
|
||||
|
||||
let scalar_product = data1.clone() * 2.0;
|
||||
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
|
||||
|
||||
let equals = data1 == data1.clone();
|
||||
assert_eq!(equals, true);
|
||||
```
|
||||
|
||||
### Advanced Matrix Operations
|
||||
|
||||
Matrices support a variety of advanced operations:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::{Matrix, SeriesOps};
|
||||
|
||||
// Matrix multiplication (dot product)
|
||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||
let product = a.matrix_mul(&b);
|
||||
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
|
||||
|
||||
// Transpose
|
||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let transposed = m.transpose();
|
||||
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
|
||||
|
||||
// Map function over all elements
|
||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let squared = m.map(|x| x * x);
|
||||
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
|
||||
|
||||
// Zip two matrices with a function
|
||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||
let zipped = a.zip(&b, |x, y| x + y);
|
||||
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
|
||||
```
|
||||
|
||||
### Matrix Reductions
|
||||
|
||||
Matrices support various reduction operations:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::{Matrix, SeriesOps};
|
||||
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
|
||||
|
||||
// Sum along columns (vertical)
|
||||
let col_sums = m.sum_vertical();
|
||||
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
|
||||
|
||||
// Sum along rows (horizontal)
|
||||
let row_sums = m.sum_horizontal();
|
||||
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
|
||||
|
||||
// Cumulative sum along columns
|
||||
let col_cumsum = m.cumsum_vertical();
|
||||
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
|
||||
|
||||
// Cumulative sum along rows
|
||||
let row_cumsum = m.cumsum_horizontal();
|
||||
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
|
||||
```
|
||||
|
||||
With the basics covered, continue to the [compute features](./compute.md)
|
||||
chapter for statistics and analytics.
|
@ -1,40 +0,0 @@
|
||||
# Introduction
|
||||
|
||||
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||
|
||||
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
|
||||
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
|
||||
API approachable while offering handy features for small analytical or
|
||||
educational projects.
|
||||
|
||||
Rustframe bundles:
|
||||
|
||||
- column‑labelled frames built on a fast column‑major matrix
|
||||
- familiar element‑wise math and aggregation routines
|
||||
- a growing `compute` module for statistics and machine learning
|
||||
- utilities for dates and random numbers
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
|
||||
|
||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let frame = Frame::new(data, vec!["A", "B"], None);
|
||||
|
||||
// Perform column wise aggregation
|
||||
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
- [GitHub repository](https://github.com/Magnus167/rustframe)
|
||||
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
|
||||
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
|
||||
|
||||
This guide walks through the main building blocks of the library. Each chapter
|
||||
contains runnable snippets so you can follow along:
|
||||
|
||||
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
|
||||
2. [Compute features](./compute.md) for statistics and analytics
|
||||
3. [Machine learning](./machine-learning.md) for predictive models
|
||||
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules
|
@ -1,282 +0,0 @@
|
||||
# Machine Learning
|
||||
|
||||
The `compute::models` module bundles several learning algorithms that operate on
|
||||
`Matrix` structures. These examples highlight the basic training and prediction
|
||||
APIs. For more end‑to‑end walkthroughs see the examples directory in the
|
||||
repository.
|
||||
|
||||
Currently implemented models include:
|
||||
|
||||
- Linear and logistic regression
|
||||
- K‑means clustering
|
||||
- Principal component analysis (PCA)
|
||||
- Gaussian Naive Bayes
|
||||
- Dense neural networks
|
||||
|
||||
## Linear Regression
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::linreg::LinReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
||||
let mut model = LinReg::new(1);
|
||||
model.fit(&x, &y, 0.01, 100);
|
||||
let preds = model.predict(&x);
|
||||
assert_eq!(preds.rows(), 4);
|
||||
```
|
||||
|
||||
## K-means Walkthrough
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::k_means::KMeans;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
|
||||
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
|
||||
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
|
||||
let cluster = model.predict(&new_point)[0];
|
||||
```
|
||||
|
||||
## Logistic Regression
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::logreg::LogReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
let mut model = LogReg::new(1);
|
||||
model.fit(&x, &y, 0.1, 200);
|
||||
let preds = model.predict_proba(&x);
|
||||
assert_eq!(preds.rows(), 4);
|
||||
```
|
||||
|
||||
## Principal Component Analysis
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::pca::PCA;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let pca = PCA::fit(&data, 1, 0);
|
||||
let transformed = pca.transform(&data);
|
||||
assert_eq!(transformed.cols(), 1);
|
||||
```
|
||||
|
||||
## Gaussian Naive Bayes
|
||||
|
||||
Gaussian Naive Bayes classifier for continuous features:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::gaussian_nb::GaussianNB;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Training data with 2 features
|
||||
let x = Matrix::from_rows_vec(vec![
|
||||
1.0, 2.0,
|
||||
2.0, 3.0,
|
||||
3.0, 4.0,
|
||||
4.0, 5.0
|
||||
], 4, 2);
|
||||
|
||||
// Class labels (0 or 1)
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
|
||||
// Train the model
|
||||
let mut model = GaussianNB::new(1e-9, true);
|
||||
model.fit(&x, &y);
|
||||
|
||||
// Make predictions
|
||||
let predictions = model.predict(&x);
|
||||
assert_eq!(predictions.rows(), 4);
|
||||
```
|
||||
|
||||
## Dense Neural Networks
|
||||
|
||||
Simple fully connected neural network:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Training data with 2 features
|
||||
let x = Matrix::from_rows_vec(vec![
|
||||
0.0, 0.0,
|
||||
0.0, 1.0,
|
||||
1.0, 0.0,
|
||||
1.0, 1.0
|
||||
], 4, 2);
|
||||
|
||||
// XOR target outputs
|
||||
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
|
||||
|
||||
// Create a neural network with 2 hidden layers
|
||||
let config = DenseNNConfig {
|
||||
input_size: 2,
|
||||
hidden_layers: vec![4, 4],
|
||||
output_size: 1,
|
||||
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
|
||||
initializer: InitializerKind::Uniform(0.5),
|
||||
loss: LossKind::MSE,
|
||||
learning_rate: 0.1,
|
||||
epochs: 1000,
|
||||
};
|
||||
let mut model = DenseNN::new(config);
|
||||
|
||||
// Train the model
|
||||
model.train(&x, &y);
|
||||
|
||||
// Make predictions
|
||||
let predictions = model.predict(&x);
|
||||
assert_eq!(predictions.rows(), 4);
|
||||
```
|
||||
|
||||
## Real-world Examples
|
||||
|
||||
### Housing Price Prediction
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::linreg::LinReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Features: square feet and bedrooms
|
||||
let features = Matrix::from_rows_vec(vec![
|
||||
2100.0, 3.0,
|
||||
1600.0, 2.0,
|
||||
2400.0, 4.0,
|
||||
1400.0, 2.0,
|
||||
], 4, 2);
|
||||
|
||||
// Sale prices
|
||||
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
|
||||
|
||||
let mut model = LinReg::new(2);
|
||||
model.fit(&features, &target, 1e-8, 10_000);
|
||||
|
||||
// Predict price of a new home
|
||||
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
|
||||
let predicted_price = model.predict(&new_home);
|
||||
println!("Predicted price: ${}", predicted_price.data()[0]);
|
||||
```
|
||||
|
||||
### Spam Detection
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::logreg::LogReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
|
||||
let x = Matrix::from_rows_vec(
|
||||
vec![
|
||||
// ─────────── spam examples ───────────
|
||||
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
|
||||
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
|
||||
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
|
||||
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
|
||||
1.0, 0.0, 1.0, 0.0, 1.0, // ...
|
||||
0.0, 1.0, 1.0, 1.0, 0.0, // ...
|
||||
2.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||
0.0, 1.0, 1.0, 0.0, 1.0, // ...
|
||||
1.0, 1.0, 1.0, 1.0, 0.0, // ...
|
||||
1.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||
// ─────────── ham examples ───────────
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
|
||||
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
|
||||
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
|
||||
0.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, // ...
|
||||
0.0, 0.0, 0.0, 1.0, 0.0, // ...
|
||||
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, // ...
|
||||
0.0, 0.0, 0.0, 1.0, 0.0,
|
||||
],
|
||||
20,
|
||||
5,
|
||||
);
|
||||
|
||||
// Labels: 1 = spam, 0 = ham
|
||||
let y = Matrix::from_vec(
|
||||
vec![
|
||||
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
|
||||
],
|
||||
20,
|
||||
1,
|
||||
);
|
||||
|
||||
// Train
|
||||
let mut model = LogReg::new(5);
|
||||
model.fit(&x, &y, 0.01, 5000);
|
||||
|
||||
// Predict
|
||||
// e.g. "free money offer"
|
||||
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
|
||||
let email = Matrix::from_vec(email_data, 1, 5);
|
||||
let prob_spam = model.predict_proba(&email);
|
||||
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
|
||||
```
|
||||
|
||||
### Iris Flower Classification
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::gaussian_nb::GaussianNB;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Features: sepal length and petal length
|
||||
let x = Matrix::from_rows_vec(vec![
|
||||
5.1, 1.4, // setosa
|
||||
4.9, 1.4, // setosa
|
||||
6.2, 4.5, // versicolor
|
||||
5.9, 5.1, // virginica
|
||||
], 4, 2);
|
||||
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
|
||||
let names = vec!["setosa", "versicolor", "virginica"];
|
||||
|
||||
let mut model = GaussianNB::new(1e-9, true);
|
||||
model.fit(&x, &y);
|
||||
|
||||
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
|
||||
let predicted_class = model.predict(&sample);
|
||||
let class_name = names[predicted_class.data()[0] as usize];
|
||||
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
|
||||
```
|
||||
|
||||
### Customer Segmentation
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::k_means::KMeans;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Each row: [age, annual_income]
|
||||
let customers = Matrix::from_rows_vec(
|
||||
vec![
|
||||
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
|
||||
],
|
||||
4,
|
||||
2,
|
||||
);
|
||||
|
||||
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
|
||||
|
||||
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
|
||||
let cluster = model.predict(&new_customer)[0];
|
||||
println!("New customer belongs to cluster: {}", cluster);
|
||||
println!("Cluster labels: {:?}", labels);
|
||||
```
|
||||
|
||||
For helper functions and upcoming modules, visit the
|
||||
[utilities](./utilities.md) section.
|
@ -1,63 +0,0 @@
|
||||
# Utilities
|
||||
|
||||
Utilities provide handy helpers around the core library. Existing tools
|
||||
include:
|
||||
|
||||
- Date utilities for generating calendar sequences and business‑day sets
|
||||
- Random number generators for simulations and testing
|
||||
|
||||
## Date Helpers
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
|
||||
|
||||
// Calendar sequence
|
||||
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
||||
assert_eq!(list.count().unwrap(), 3);
|
||||
|
||||
// Business days starting from 2024‑01‑02
|
||||
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
|
||||
assert_eq!(bdates.list().unwrap().len(), 3);
|
||||
```
|
||||
|
||||
## Random Numbers
|
||||
|
||||
The `random` module offers deterministic and cryptographically secure RNGs.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::random::{Prng, Rng};
|
||||
|
||||
let mut rng = Prng::new(42);
|
||||
let v1 = rng.next_u64();
|
||||
let v2 = rng.next_u64();
|
||||
assert_ne!(v1, v2);
|
||||
```
|
||||
|
||||
## Stats Functions
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::Matrix;
|
||||
use rustframe::compute::stats::descriptive::{mean, median, stddev};
|
||||
|
||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
|
||||
let mean_value = mean(&data);
|
||||
assert_eq!(mean_value, 3.0);
|
||||
|
||||
let median_value = median(&data);
|
||||
assert_eq!(median_value, 3.0);
|
||||
|
||||
let std_value = stddev(&data);
|
||||
assert_eq!(std_value, 2.0_f64.sqrt());
|
||||
```
|
||||
|
||||
Upcoming utilities will cover:
|
||||
|
||||
- Data import/export helpers
|
||||
- Visualization adapters
|
||||
- Streaming data interfaces
|
||||
|
||||
Contributions to these sections are welcome!
|
@ -1,45 +0,0 @@
|
||||
use rustframe::compute::stats::{covariance, covariance_matrix, pearson};
|
||||
use rustframe::matrix::{Axis, Matrix};
|
||||
|
||||
/// Demonstrates covariance and correlation utilities.
|
||||
fn main() {
|
||||
pairwise_cov();
|
||||
println!("\n-----\n");
|
||||
matrix_cov();
|
||||
}
|
||||
|
||||
fn pairwise_cov() {
|
||||
println!("Covariance & Pearson r\n----------------------");
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
||||
println!("covariance : {:.2}", covariance(&x, &y));
|
||||
println!("pearson r : {:.3}", pearson(&x, &y));
|
||||
}
|
||||
|
||||
fn matrix_cov() {
|
||||
println!("Covariance matrix\n-----------------");
|
||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov = covariance_matrix(&data, Axis::Col);
|
||||
println!("cov matrix : {:?}", cov.data());
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
const EPS: f64 = 1e-8;
|
||||
|
||||
#[test]
|
||||
fn test_pairwise_cov() {
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
||||
assert!((covariance(&x, &y) - 1.625).abs() < EPS);
|
||||
assert!((pearson(&x, &y) - 0.9827076298239908).abs() < 1e-5,);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_matrix_cov() {
|
||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov = covariance_matrix(&data, Axis::Col);
|
||||
assert_eq!(cov.data(), &[2.0, 2.0, 2.0, 2.0]);
|
||||
}
|
||||
}
|
@ -1,56 +0,0 @@
|
||||
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, median, percentile, stddev};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
/// Demonstrates descriptive statistics utilities.
|
||||
///
|
||||
/// Part 1: simple mean/stddev/median/percentile on a vector.
|
||||
/// Part 2: mean across rows and columns.
|
||||
fn main() {
|
||||
simple_stats();
|
||||
println!("\n-----\n");
|
||||
axis_stats();
|
||||
}
|
||||
|
||||
fn simple_stats() {
|
||||
println!("Basic stats\n-----------");
|
||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
println!("mean : {:.2}", mean(&data));
|
||||
println!("stddev : {:.2}", stddev(&data));
|
||||
println!("median : {:.2}", median(&data));
|
||||
println!("90th pct. : {:.2}", percentile(&data, 90.0));
|
||||
}
|
||||
|
||||
fn axis_stats() {
|
||||
println!("Row/column means\n----------------");
|
||||
// 2x3 matrix
|
||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 2, 3);
|
||||
let v = mean_vertical(&data); // 1x3
|
||||
let h = mean_horizontal(&data); // 2x1
|
||||
println!("vertical means : {:?}", v.data());
|
||||
println!("horizontal means: {:?}", h.data());
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
const EPS: f64 = 1e-8;
|
||||
|
||||
#[test]
|
||||
fn test_simple_stats() {
|
||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
assert!((mean(&data) - 3.0).abs() < EPS);
|
||||
assert!((stddev(&data) - 1.4142135623730951).abs() < EPS);
|
||||
assert!((median(&data) - 3.0).abs() < EPS);
|
||||
assert!((percentile(&data, 90.0) - 5.0).abs() < EPS);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_axis_stats() {
|
||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 2, 3);
|
||||
let v = mean_vertical(&data);
|
||||
assert_eq!(v.data(), &[2.5, 3.5, 4.5]);
|
||||
let h = mean_horizontal(&data);
|
||||
assert_eq!(h.data(), &[2.0, 5.0]);
|
||||
}
|
||||
}
|
||||
|
@ -1,66 +0,0 @@
|
||||
use rustframe::compute::stats::{binomial_cdf, binomial_pmf, normal_cdf, normal_pdf, poisson_pmf};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
/// Demonstrates some probability distribution helpers.
|
||||
fn main() {
|
||||
normal_example();
|
||||
println!("\n-----\n");
|
||||
binomial_example();
|
||||
println!("\n-----\n");
|
||||
poisson_example();
|
||||
}
|
||||
|
||||
fn normal_example() {
|
||||
println!("Normal distribution\n-------------------");
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||
let pdf = normal_pdf(x.clone(), 0.0, 1.0);
|
||||
let cdf = normal_cdf(x, 0.0, 1.0);
|
||||
println!("pdf : {:?}", pdf.data());
|
||||
println!("cdf : {:?}", cdf.data());
|
||||
}
|
||||
|
||||
fn binomial_example() {
|
||||
println!("Binomial distribution\n---------------------");
|
||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||
let pmf = binomial_pmf(4, k.clone(), 0.5);
|
||||
let cdf = binomial_cdf(4, k, 0.5);
|
||||
println!("pmf : {:?}", pmf.data());
|
||||
println!("cdf : {:?}", cdf.data());
|
||||
}
|
||||
|
||||
fn poisson_example() {
|
||||
println!("Poisson distribution\n--------------------");
|
||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||
let pmf = poisson_pmf(3.0, k);
|
||||
println!("pmf : {:?}", pmf.data());
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_normal_example() {
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||
let pdf = normal_pdf(x.clone(), 0.0, 1.0);
|
||||
let cdf = normal_cdf(x, 0.0, 1.0);
|
||||
assert!((pdf.get(0, 0) - 0.39894228).abs() < 1e-6);
|
||||
assert!((cdf.get(0, 1) - 0.8413447).abs() < 1e-6);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_binomial_example() {
|
||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||
let pmf = binomial_pmf(4, k.clone(), 0.5);
|
||||
let cdf = binomial_cdf(4, k, 0.5);
|
||||
assert!((pmf.get(0, 2) - 0.375).abs() < 1e-6);
|
||||
assert!((cdf.get(0, 2) - 0.6875).abs() < 1e-6);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_poisson_example() {
|
||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||
let pmf = poisson_pmf(3.0, k);
|
||||
assert!((pmf.get(0, 1) - 3.0_f64 * (-3.0_f64).exp()).abs() < 1e-6);
|
||||
}
|
||||
}
|
@ -1,26 +1,13 @@
|
||||
//! Conway's Game of Life Example
|
||||
//! This example implements Conway's Game of Life using a `BoolMatrix` to represent the game board.
|
||||
//! It demonstrates matrix operations like shifting, counting neighbors, and applying game rules.
|
||||
//! The game runs in a loop, updating the board state and printing it to the console.
|
||||
//! To modify the behaviour of the example, please change the constants at the top of this file.
|
||||
|
||||
|
||||
use rand::{self, Rng};
|
||||
use rustframe::matrix::{BoolMatrix, BoolOps, IntMatrix, Matrix};
|
||||
use rustframe::random::{rng, Rng};
|
||||
use std::{thread, time};
|
||||
|
||||
const BOARD_SIZE: usize = 20; // Size of the board (50x50)
|
||||
const MAX_FRAMES: u32 = 1000;
|
||||
|
||||
const TICK_DURATION_MS: u64 = 0; // Milliseconds per frame
|
||||
const SKIP_FRAMES: u32 = 1;
|
||||
const PRINT_BOARD: bool = true; // Set to false to disable printing the board
|
||||
const BOARD_SIZE: usize = 50; // Size of the board (50x50)
|
||||
const TICK_DURATION_MS: u64 = 10; // Milliseconds per frame
|
||||
|
||||
fn main() {
|
||||
let args = std::env::args().collect::<Vec<String>>();
|
||||
let debug_mode = args.contains(&"--debug".to_string());
|
||||
let print_mode = if debug_mode { false } else { PRINT_BOARD };
|
||||
|
||||
// Initialize the game board.
|
||||
// This demonstrates `BoolMatrix::from_vec`.
|
||||
let mut current_board =
|
||||
BoolMatrix::from_vec(vec![false; BOARD_SIZE * BOARD_SIZE], BOARD_SIZE, BOARD_SIZE);
|
||||
|
||||
@ -29,18 +16,31 @@ fn main() {
|
||||
add_simulated_activity(&mut current_board, BOARD_SIZE);
|
||||
|
||||
let mut generation_count: u32 = 0;
|
||||
// `previous_board_state` will store a clone of the board.
|
||||
// This demonstrates `Matrix::clone()` and later `PartialEq` for `Matrix`.
|
||||
let mut previous_board_state: Option<BoolMatrix> = None;
|
||||
let mut board_hashes = Vec::new();
|
||||
// let mut print_board_bool = true;
|
||||
let mut print_bool_int = 0;
|
||||
|
||||
loop {
|
||||
if print_bool_int % SKIP_FRAMES == 0 {
|
||||
print_board(¤t_board, generation_count, print_mode);
|
||||
// print!("{}[2J", 27 as char); // Clear screen and move cursor to top-left
|
||||
|
||||
// if print_board_bool {
|
||||
if print_bool_int % 10 == 0 {
|
||||
print!("{}[2J", 27 as char);
|
||||
println!("Conway's Game of Life - Generation: {}", generation_count);
|
||||
|
||||
print_board(¤t_board);
|
||||
println!("Alive cells: {}", ¤t_board.count());
|
||||
|
||||
// print_board_bool = false;
|
||||
print_bool_int = 0;
|
||||
} else {
|
||||
// print_board_bool = true;
|
||||
print_bool_int += 1;
|
||||
}
|
||||
// `current_board.count()` demonstrates a method from `BoolOps`.
|
||||
board_hashes.push(hash_board(¤t_board, primes.clone()));
|
||||
if detect_stable_state(¤t_board, &previous_board_state) {
|
||||
println!(
|
||||
@ -61,18 +61,20 @@ fn main() {
|
||||
add_simulated_activity(&mut current_board, BOARD_SIZE);
|
||||
}
|
||||
|
||||
// `current_board.clone()` demonstrates `Clone` for `Matrix`.
|
||||
previous_board_state = Some(current_board.clone());
|
||||
|
||||
// This is the core call to your game logic.
|
||||
let next_board = game_of_life_next_frame(¤t_board);
|
||||
current_board = next_board;
|
||||
|
||||
generation_count += 1;
|
||||
thread::sleep(time::Duration::from_millis(TICK_DURATION_MS));
|
||||
|
||||
if (MAX_FRAMES > 0) && (generation_count > MAX_FRAMES) {
|
||||
println!("\nReached generation limit.");
|
||||
break;
|
||||
}
|
||||
// if generation_count > 500 { // Optional limit
|
||||
// println!("\nReached generation limit.");
|
||||
// break;
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
@ -80,13 +82,7 @@ fn main() {
|
||||
///
|
||||
/// - `board`: A reference to the `BoolMatrix` representing the current game state.
|
||||
/// This function demonstrates `board.rows()`, `board.cols()`, and `board[(r, c)]` (Index trait).
|
||||
fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
|
||||
if !print_mode {
|
||||
return;
|
||||
}
|
||||
|
||||
print!("{}[2J", 27 as char);
|
||||
println!("Conway's Game of Life - Generation: {}", generation_count);
|
||||
fn print_board(board: &BoolMatrix) {
|
||||
let mut print_str = String::new();
|
||||
print_str.push_str("+");
|
||||
for _ in 0..board.cols() {
|
||||
@ -97,6 +93,7 @@ fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
|
||||
print_str.push_str("| ");
|
||||
for c in 0..board.cols() {
|
||||
if board[(r, c)] {
|
||||
// Using Index trait for Matrix<bool>
|
||||
print_str.push_str("██");
|
||||
} else {
|
||||
print_str.push_str(" ");
|
||||
@ -110,8 +107,6 @@ fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
|
||||
}
|
||||
print_str.push_str("+\n\n");
|
||||
print!("{}", print_str);
|
||||
|
||||
println!("Alive cells: {}", board.count());
|
||||
}
|
||||
|
||||
/// Helper function to create a shifted version of the game board.
|
||||
@ -178,38 +173,74 @@ pub fn game_of_life_next_frame(current_game: &BoolMatrix) -> BoolMatrix {
|
||||
if rows == 0 && cols == 0 {
|
||||
return BoolMatrix::from_vec(vec![], 0, 0); // Return an empty BoolMatrix
|
||||
}
|
||||
// Assuming valid non-empty dimensions (e.g., 25x25) as per typical GOL.
|
||||
// Your Matrix::from_vec would panic for other invalid 0-dim cases.
|
||||
|
||||
// Define the 8 neighbor offsets (row_delta, col_delta)
|
||||
let neighbor_offsets: [(isize, isize); 8] = [
|
||||
(-1, -1),
|
||||
(-1, 0),
|
||||
(-1, 1),
|
||||
(-1, 1), // Top row (NW, N, NE)
|
||||
(0, -1),
|
||||
(0, 1),
|
||||
(0, 1), // Middle row (W, E)
|
||||
(1, -1),
|
||||
(1, 0),
|
||||
(1, 1),
|
||||
(1, 1), // Bottom row (SW, S, SE)
|
||||
];
|
||||
|
||||
// 1. Initialize `neighbor_counts` with the first shifted layer.
|
||||
// This demonstrates creating an IntMatrix from a function and using it as a base.
|
||||
let (first_dr, first_dc) = neighbor_offsets[0];
|
||||
let mut neighbor_counts = get_shifted_neighbor_layer(current_game, first_dr, first_dc);
|
||||
|
||||
// 2. Add the remaining 7 neighbor layers.
|
||||
// This demonstrates element-wise addition of matrices (`Matrix + Matrix`).
|
||||
for i in 1..neighbor_offsets.len() {
|
||||
let (dr, dc) = neighbor_offsets[i];
|
||||
let next_neighbor_layer = get_shifted_neighbor_layer(current_game, dr, dc);
|
||||
// `neighbor_counts` (owned IntMatrix) + `next_neighbor_layer` (owned IntMatrix)
|
||||
// uses `impl Add for Matrix`, consumes both, returns new owned `IntMatrix`.
|
||||
neighbor_counts = neighbor_counts + next_neighbor_layer;
|
||||
}
|
||||
|
||||
// 3. Apply Game of Life rules using element-wise operations.
|
||||
|
||||
// Rule: Survival or Birth based on neighbor counts.
|
||||
// A cell is alive in the next generation if:
|
||||
// (it's currently alive AND has 2 or 3 neighbors) OR
|
||||
// (it's currently dead AND has exactly 3 neighbors)
|
||||
|
||||
// `neighbor_counts.eq_elem(scalar)`:
|
||||
// Demonstrates element-wise comparison of a Matrix with a scalar (broadcast).
|
||||
// Returns an owned `BoolMatrix`.
|
||||
let has_2_neighbors = neighbor_counts.eq_elem(2);
|
||||
let has_3_neighbors = neighbor_counts.eq_elem(3);
|
||||
let has_3_neighbors = neighbor_counts.eq_elem(3); // This will be reused
|
||||
|
||||
let has_2_or_3_neighbors = has_2_neighbors | has_3_neighbors.clone();
|
||||
// `has_2_neighbors | has_3_neighbors`:
|
||||
// Demonstrates element-wise OR (`Matrix<bool> | Matrix<bool>`).
|
||||
// Consumes both operands, returns an owned `BoolMatrix`.
|
||||
let has_2_or_3_neighbors = has_2_neighbors | has_3_neighbors.clone(); // Clone has_3_neighbors as it's used again
|
||||
|
||||
// `current_game & &has_2_or_3_neighbors`:
|
||||
// `current_game` is `&BoolMatrix`. `has_2_or_3_neighbors` is owned.
|
||||
// Demonstrates element-wise AND (`&Matrix<bool> & &Matrix<bool>`).
|
||||
// Borrows both operands, returns an owned `BoolMatrix`.
|
||||
let survives = current_game & &has_2_or_3_neighbors;
|
||||
|
||||
// `!current_game`:
|
||||
// Demonstrates element-wise NOT (`!&Matrix<bool>`).
|
||||
// Borrows operand, returns an owned `BoolMatrix`.
|
||||
let is_dead = !current_game;
|
||||
|
||||
// `is_dead & &has_3_neighbors`:
|
||||
// `is_dead` is owned. `has_3_neighbors` is owned.
|
||||
// Demonstrates element-wise AND (`Matrix<bool> & &Matrix<bool>`).
|
||||
// Consumes `is_dead`, borrows `has_3_neighbors`, returns an owned `BoolMatrix`.
|
||||
let births = is_dead & &has_3_neighbors;
|
||||
|
||||
// `survives | births`:
|
||||
// Demonstrates element-wise OR (`Matrix<bool> | Matrix<bool>`).
|
||||
// Consumes both operands, returns an owned `BoolMatrix`.
|
||||
let next_frame_game = survives | births;
|
||||
|
||||
next_frame_game
|
||||
@ -219,7 +250,7 @@ pub fn generate_glider(board: &mut BoolMatrix, board_size: usize) {
|
||||
// Initialize with a Glider pattern.
|
||||
// It demonstrates how to set specific cells in the matrix.
|
||||
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
||||
let mut rng = rng();
|
||||
let mut rng = rand::rng();
|
||||
let r_offset = rng.random_range(0..(board_size - 3));
|
||||
let c_offset = rng.random_range(0..(board_size - 3));
|
||||
if board.rows() >= r_offset + 3 && board.cols() >= c_offset + 3 {
|
||||
@ -235,7 +266,7 @@ pub fn generate_pulsar(board: &mut BoolMatrix, board_size: usize) {
|
||||
// Initialize with a Pulsar pattern.
|
||||
// This demonstrates how to set specific cells in the matrix.
|
||||
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
||||
let mut rng = rng();
|
||||
let mut rng = rand::rng();
|
||||
let r_offset = rng.random_range(0..(board_size - 17));
|
||||
let c_offset = rng.random_range(0..(board_size - 17));
|
||||
if board.rows() >= r_offset + 17 && board.cols() >= c_offset + 17 {
|
||||
|
@ -1,66 +0,0 @@
|
||||
use rustframe::compute::stats::{anova, chi2_test, t_test};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
/// Demonstrates simple inferential statistics tests.
|
||||
fn main() {
|
||||
t_test_demo();
|
||||
println!("\n-----\n");
|
||||
chi2_demo();
|
||||
println!("\n-----\n");
|
||||
anova_demo();
|
||||
}
|
||||
|
||||
fn t_test_demo() {
|
||||
println!("Two-sample t-test\n-----------------");
|
||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
let b = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||
let (t, p) = t_test(&a, &b);
|
||||
println!("t statistic: {:.2}, p-value: {:.4}", t, p);
|
||||
}
|
||||
|
||||
fn chi2_demo() {
|
||||
println!("Chi-square test\n---------------");
|
||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||
let (chi2, p) = chi2_test(&observed);
|
||||
println!("chi^2: {:.2}, p-value: {:.4}", chi2, p);
|
||||
}
|
||||
|
||||
fn anova_demo() {
|
||||
println!("One-way ANOVA\n-------------");
|
||||
let g1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
||||
let g2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
||||
let g3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
||||
let (f, p) = anova(vec![&g1, &g2, &g3]);
|
||||
println!("F statistic: {:.2}, p-value: {:.4}", f, p);
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_t_test_demo() {
|
||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
let b = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||
let (t, _p) = t_test(&a, &b);
|
||||
assert!((t + 5.0).abs() < 1e-5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_chi2_demo() {
|
||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||
let (chi2, p) = chi2_test(&observed);
|
||||
assert!(chi2 > 0.0);
|
||||
assert!(p > 0.0 && p < 1.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_anova_demo() {
|
||||
let g1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
||||
let g2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
||||
let g3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
||||
let (f, p) = anova(vec![&g1, &g2, &g3]);
|
||||
assert!(f > 0.0);
|
||||
assert!(p > 0.0 && p < 1.0);
|
||||
}
|
||||
}
|
@ -1,65 +0,0 @@
|
||||
use rustframe::compute::models::k_means::KMeans;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
/// Two quick K-Means clustering demos.
|
||||
///
|
||||
/// Example 1 groups store locations on a city map.
|
||||
/// Example 2 segments customers by annual spending habits.
|
||||
fn main() {
|
||||
city_store_example();
|
||||
println!("\n-----\n");
|
||||
customer_spend_example();
|
||||
}
|
||||
|
||||
fn city_store_example() {
|
||||
println!("Example 1: store locations");
|
||||
|
||||
// (x, y) coordinates of stores around a city
|
||||
let raw = vec![
|
||||
1.0, 2.0, 1.5, 1.8, 5.0, 8.0, 8.0, 8.0, 1.0, 0.6, 9.0, 11.0, 8.0, 2.0, 10.0, 2.0, 9.0, 3.0,
|
||||
];
|
||||
let x = Matrix::from_rows_vec(raw, 9, 2);
|
||||
|
||||
// Group stores into two areas
|
||||
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
||||
|
||||
println!("Centres: {:?}", model.centroids.data());
|
||||
println!("Labels: {:?}", labels);
|
||||
|
||||
let new_points = Matrix::from_rows_vec(vec![0.0, 0.0, 8.0, 3.0], 2, 2);
|
||||
let pred = model.predict(&new_points);
|
||||
println!("New store assignments: {:?}", pred);
|
||||
}
|
||||
|
||||
fn customer_spend_example() {
|
||||
println!("Example 2: customer spending");
|
||||
|
||||
// (grocery spend, electronics spend) in dollars
|
||||
let raw = vec![
|
||||
200.0, 150.0, 220.0, 170.0, 250.0, 160.0, 800.0, 750.0, 820.0, 760.0, 790.0, 770.0,
|
||||
];
|
||||
let x = Matrix::from_rows_vec(raw, 6, 2);
|
||||
|
||||
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
||||
|
||||
println!("Centres: {:?}", model.centroids.data());
|
||||
println!("Labels: {:?}", labels);
|
||||
|
||||
let new_customers = Matrix::from_rows_vec(vec![230.0, 155.0, 810.0, 760.0], 2, 2);
|
||||
let pred = model.predict(&new_customers);
|
||||
println!("Cluster of new customers: {:?}", pred);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn k_means_store_locations() {
|
||||
let raw = vec![
|
||||
1.0, 2.0, 1.5, 1.8, 5.0, 8.0, 8.0, 8.0, 1.0, 0.6, 9.0, 11.0, 8.0, 2.0, 10.0, 2.0, 9.0, 3.0,
|
||||
];
|
||||
let x = Matrix::from_rows_vec(raw, 9, 2);
|
||||
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
||||
assert_eq!(labels.len(), 9);
|
||||
assert_eq!(model.centroids.rows(), 2);
|
||||
let new_points = Matrix::from_rows_vec(vec![0.0, 0.0, 8.0, 3.0], 2, 2);
|
||||
let pred = model.predict(&new_points);
|
||||
assert_eq!(pred.len(), 2);
|
||||
}
|
@ -1,118 +0,0 @@
|
||||
use rustframe::compute::models::linreg::LinReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
/// Two quick linear regression demonstrations.
|
||||
///
|
||||
/// Example 1 fits a model to predict house price from floor area.
|
||||
/// Example 2 adds number of bedrooms as a second feature.
|
||||
fn main() {
|
||||
example_one_feature();
|
||||
println!("\n-----\n");
|
||||
example_two_features();
|
||||
}
|
||||
|
||||
/// Price ~ floor area
|
||||
fn example_one_feature() {
|
||||
println!("Example 1: predict price from floor area only");
|
||||
|
||||
// Square meters of floor area for a few houses
|
||||
let sizes = vec![50.0, 60.0, 70.0, 80.0, 90.0, 100.0];
|
||||
// Thousands of dollars in sale price
|
||||
let prices = vec![150.0, 180.0, 210.0, 240.0, 270.0, 300.0];
|
||||
|
||||
// Each row is a sample with one feature
|
||||
let x = Matrix::from_vec(sizes.clone(), sizes.len(), 1);
|
||||
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
||||
|
||||
// Train with a small learning rate
|
||||
let mut model = LinReg::new(1);
|
||||
model.fit(&x, &y, 0.0005, 20000);
|
||||
|
||||
let preds = model.predict(&x);
|
||||
println!("Size (m^2) -> predicted price (k) vs actual");
|
||||
for i in 0..x.rows() {
|
||||
println!(
|
||||
"{:>3} -> {:>6.1} | {:>6.1}",
|
||||
sizes[i],
|
||||
preds[(i, 0)],
|
||||
prices[i]
|
||||
);
|
||||
}
|
||||
|
||||
let new_house = Matrix::from_vec(vec![120.0], 1, 1);
|
||||
let pred = model.predict(&new_house);
|
||||
println!("Predicted price for 120 m^2: {:.1}k", pred[(0, 0)]);
|
||||
}
|
||||
|
||||
/// Price ~ floor area + bedrooms
|
||||
fn example_two_features() {
|
||||
println!("Example 2: price from area and bedrooms");
|
||||
|
||||
// (size m^2, bedrooms) for each house
|
||||
let raw_x = vec![
|
||||
50.0, 2.0, 70.0, 2.0, 90.0, 3.0, 110.0, 3.0, 130.0, 4.0, 150.0, 4.0,
|
||||
];
|
||||
let prices = vec![160.0, 195.0, 250.0, 285.0, 320.0, 350.0];
|
||||
|
||||
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
||||
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
||||
|
||||
let mut model = LinReg::new(2);
|
||||
model.fit(&x, &y, 0.0001, 50000);
|
||||
|
||||
let preds = model.predict(&x);
|
||||
println!("size, beds -> predicted | actual (k)");
|
||||
for i in 0..x.rows() {
|
||||
let size = x[(i, 0)];
|
||||
let beds = x[(i, 1)];
|
||||
println!(
|
||||
"{:>3} m^2, {:>1} -> {:>6.1} | {:>6.1}",
|
||||
size,
|
||||
beds,
|
||||
preds[(i, 0)],
|
||||
prices[i]
|
||||
);
|
||||
}
|
||||
|
||||
let new_home = Matrix::from_rows_vec(vec![120.0, 3.0], 1, 2);
|
||||
let pred = model.predict(&new_home);
|
||||
println!(
|
||||
"Predicted price for 120 m^2 with 3 bedrooms: {:.1}k",
|
||||
pred[(0, 0)]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_linear_regression_one_feature() {
|
||||
let sizes = vec![50.0, 60.0, 70.0, 80.0, 90.0, 100.0];
|
||||
let prices = vec![150.0, 180.0, 210.0, 240.0, 270.0, 300.0];
|
||||
let scaled: Vec<f64> = sizes.iter().map(|s| s / 100.0).collect();
|
||||
let x = Matrix::from_vec(scaled, sizes.len(), 1);
|
||||
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
||||
let mut model = LinReg::new(1);
|
||||
model.fit(&x, &y, 0.1, 2000);
|
||||
let preds = model.predict(&x);
|
||||
for i in 0..y.rows() {
|
||||
assert!((preds[(i, 0)] - prices[i]).abs() < 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_linear_regression_two_features() {
|
||||
let raw_x = vec![
|
||||
50.0, 2.0, 70.0, 2.0, 90.0, 3.0, 110.0, 3.0, 130.0, 4.0, 150.0, 4.0,
|
||||
];
|
||||
let prices = vec![170.0, 210.0, 270.0, 310.0, 370.0, 410.0];
|
||||
let scaled_x: Vec<f64> = raw_x
|
||||
.chunks(2)
|
||||
.flat_map(|pair| vec![pair[0] / 100.0, pair[1]])
|
||||
.collect();
|
||||
let x = Matrix::from_rows_vec(scaled_x, 6, 2);
|
||||
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
||||
let mut model = LinReg::new(2);
|
||||
model.fit(&x, &y, 0.01, 50000);
|
||||
let preds = model.predict(&x);
|
||||
for i in 0..y.rows() {
|
||||
assert!((preds[(i, 0)] - prices[i]).abs() < 1.0);
|
||||
}
|
||||
}
|
@ -1,101 +0,0 @@
|
||||
use rustframe::compute::models::logreg::LogReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
/// Two binary classification demos using logistic regression.
|
||||
///
|
||||
/// Example 1 predicts exam success from hours studied.
|
||||
/// Example 2 predicts whether an online shopper will make a purchase.
|
||||
fn main() {
|
||||
student_passing_example();
|
||||
println!("\n-----\n");
|
||||
purchase_prediction_example();
|
||||
}
|
||||
|
||||
fn student_passing_example() {
|
||||
println!("Example 1: exam pass prediction");
|
||||
|
||||
// Hours studied for each student
|
||||
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
|
||||
// Label: 0 denotes failure and 1 denotes success
|
||||
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
|
||||
|
||||
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
|
||||
let y = Matrix::from_vec(passed.clone(), passed.len(), 1);
|
||||
|
||||
let mut model = LogReg::new(1);
|
||||
model.fit(&x, &y, 0.1, 10000);
|
||||
|
||||
let preds = model.predict(&x);
|
||||
println!("Hours -> pred | actual");
|
||||
for i in 0..x.rows() {
|
||||
println!(
|
||||
"{:>2} -> {} | {}",
|
||||
hours[i] as i32,
|
||||
preds[(i, 0)] as i32,
|
||||
passed[i] as i32
|
||||
);
|
||||
}
|
||||
|
||||
// Probability estimate for a new student
|
||||
let new_student = Matrix::from_vec(vec![5.5], 1, 1);
|
||||
let p = model.predict_proba(&new_student);
|
||||
println!("Probability of passing with 5.5h study: {:.2}", p[(0, 0)]);
|
||||
}
|
||||
|
||||
fn purchase_prediction_example() {
|
||||
println!("Example 2: purchase likelihood");
|
||||
|
||||
// minutes on site, pages viewed -> made a purchase?
|
||||
let raw_x = vec![1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 5.0, 5.0, 3.5, 2.0, 6.0, 6.0];
|
||||
let bought = vec![0.0, 0.0, 0.0, 1.0, 0.0, 1.0];
|
||||
|
||||
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
||||
let y = Matrix::from_vec(bought.clone(), bought.len(), 1);
|
||||
|
||||
let mut model = LogReg::new(2);
|
||||
model.fit(&x, &y, 0.05, 20000);
|
||||
|
||||
let preds = model.predict(&x);
|
||||
println!("time, pages -> pred | actual");
|
||||
for i in 0..x.rows() {
|
||||
println!(
|
||||
"{:>4}m, {:>2} -> {} | {}",
|
||||
x[(i, 0)],
|
||||
x[(i, 1)] as i32,
|
||||
preds[(i, 0)] as i32,
|
||||
bought[i] as i32
|
||||
);
|
||||
}
|
||||
|
||||
let new_visit = Matrix::from_rows_vec(vec![4.0, 4.0], 1, 2);
|
||||
let p = model.predict_proba(&new_visit);
|
||||
println!("Prob of purchase for 4min/4pages: {:.2}", p[(0, 0)]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_student_passing_example() {
|
||||
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
|
||||
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
|
||||
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
|
||||
let y = Matrix::from_vec(passed.clone(), passed.len(), 1);
|
||||
let mut model = LogReg::new(1);
|
||||
model.fit(&x, &y, 0.1, 10000);
|
||||
let preds = model.predict(&x);
|
||||
for i in 0..y.rows() {
|
||||
assert_eq!(preds[(i, 0)], passed[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_purchase_prediction_example() {
|
||||
let raw_x = vec![1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 5.0, 5.0, 3.5, 2.0, 6.0, 6.0];
|
||||
let bought = vec![0.0, 0.0, 0.0, 1.0, 0.0, 1.0];
|
||||
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
||||
let y = Matrix::from_vec(bought.clone(), bought.len(), 1);
|
||||
let mut model = LogReg::new(2);
|
||||
model.fit(&x, &y, 0.05, 20000);
|
||||
let preds = model.predict(&x);
|
||||
for i in 0..y.rows() {
|
||||
assert_eq!(preds[(i, 0)], bought[i]);
|
||||
}
|
||||
}
|
@ -1,60 +0,0 @@
|
||||
use rustframe::compute::models::pca::PCA;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
/// Two dimensionality reduction examples using PCA.
|
||||
///
|
||||
/// Example 1 reduces 3D sensor readings to two components.
|
||||
/// Example 2 compresses a small four-feature dataset.
|
||||
fn main() {
|
||||
sensor_demo();
|
||||
println!("\n-----\n");
|
||||
finance_demo();
|
||||
}
|
||||
|
||||
fn sensor_demo() {
|
||||
println!("Example 1: 3D sensor data");
|
||||
|
||||
// Ten 3D observations from an accelerometer
|
||||
let raw = vec![
|
||||
2.5, 2.4, 0.5, 0.5, 0.7, 1.5, 2.2, 2.9, 0.7, 1.9, 2.2, 1.0, 3.1, 3.0, 0.6, 2.3, 2.7, 0.9,
|
||||
2.0, 1.6, 1.1, 1.0, 1.1, 1.9, 1.5, 1.6, 2.2, 1.1, 0.9, 2.1,
|
||||
];
|
||||
let x = Matrix::from_rows_vec(raw, 10, 3);
|
||||
|
||||
let pca = PCA::fit(&x, 2, 0);
|
||||
let reduced = pca.transform(&x);
|
||||
|
||||
println!("Components: {:?}", pca.components.data());
|
||||
println!("First row -> {:.2?}", [reduced[(0, 0)], reduced[(0, 1)]]);
|
||||
}
|
||||
|
||||
fn finance_demo() {
|
||||
println!("Example 2: 4D finance data");
|
||||
|
||||
// Four daily percentage returns of different stocks
|
||||
let raw = vec![
|
||||
0.2, 0.1, -0.1, 0.0, 0.3, 0.2, -0.2, 0.1, 0.1, 0.0, -0.1, -0.1, 0.4, 0.3, -0.3, 0.2, 0.0,
|
||||
-0.1, 0.1, -0.1,
|
||||
];
|
||||
let x = Matrix::from_rows_vec(raw, 5, 4);
|
||||
|
||||
// Keep two principal components
|
||||
let pca = PCA::fit(&x, 2, 0);
|
||||
let reduced = pca.transform(&x);
|
||||
|
||||
println!("Reduced shape: {:?}", reduced.shape());
|
||||
println!("First row -> {:.2?}", [reduced[(0, 0)], reduced[(0, 1)]]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sensor_demo() {
|
||||
let raw = vec![
|
||||
2.5, 2.4, 0.5, 0.5, 0.7, 1.5, 2.2, 2.9, 0.7, 1.9, 2.2, 1.0, 3.1, 3.0, 0.6, 2.3, 2.7, 0.9,
|
||||
2.0, 1.6, 1.1, 1.0, 1.1, 1.9, 1.5, 1.6, 2.2, 1.1, 0.9, 2.1,
|
||||
];
|
||||
let x = Matrix::from_rows_vec(raw, 10, 3);
|
||||
let pca = PCA::fit(&x, 2, 0);
|
||||
let reduced = pca.transform(&x);
|
||||
assert_eq!(reduced.rows(), 10);
|
||||
assert_eq!(reduced.cols(), 2);
|
||||
}
|
@ -1,67 +0,0 @@
|
||||
use rustframe::random::{crypto_rng, rng, Rng, SliceRandom};
|
||||
|
||||
/// Demonstrates basic usage of the random number generators.
|
||||
///
|
||||
/// It showcases uniform ranges, booleans, normal distribution,
|
||||
/// shuffling and the cryptographically secure generator.
|
||||
fn main() {
|
||||
basic_usage();
|
||||
println!("\n-----\n");
|
||||
normal_demo();
|
||||
println!("\n-----\n");
|
||||
shuffle_demo();
|
||||
}
|
||||
|
||||
fn basic_usage() {
|
||||
println!("Basic PRNG usage\n----------------");
|
||||
let mut prng = rng();
|
||||
println!("random u64 : {}", prng.next_u64());
|
||||
println!("range [10,20): {}", prng.random_range(10..20));
|
||||
println!("bool : {}", prng.gen_bool());
|
||||
}
|
||||
|
||||
fn normal_demo() {
|
||||
println!("Normal distribution\n-------------------");
|
||||
let mut prng = rng();
|
||||
for _ in 0..3 {
|
||||
let v = prng.normal(0.0, 1.0);
|
||||
println!("sample: {:.3}", v);
|
||||
}
|
||||
}
|
||||
|
||||
fn shuffle_demo() {
|
||||
println!("Slice shuffling\n----------------");
|
||||
let mut prng = rng();
|
||||
let mut data = [1, 2, 3, 4, 5];
|
||||
data.shuffle(&mut prng);
|
||||
println!("shuffled: {:?}", data);
|
||||
|
||||
let mut secure = crypto_rng();
|
||||
let byte = secure.random_range(0..256usize);
|
||||
println!("crypto byte: {}", byte);
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rustframe::random::{CryptoRng, Prng};
|
||||
|
||||
#[test]
|
||||
fn test_basic_usage_range_bounds() {
|
||||
let mut rng = Prng::new(1);
|
||||
for _ in 0..50 {
|
||||
let v = rng.random_range(5..10);
|
||||
assert!(v >= 5 && v < 10);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_byte_bounds() {
|
||||
let mut rng = CryptoRng::new();
|
||||
for _ in 0..50 {
|
||||
let v = rng.random_range(0..256usize);
|
||||
assert!(v < 256);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,57 +0,0 @@
|
||||
use rustframe::random::{crypto_rng, rng, Rng};
|
||||
|
||||
/// Demonstrates simple statistical checks on random number generators.
|
||||
fn main() {
|
||||
chi_square_demo();
|
||||
println!("\n-----\n");
|
||||
monobit_demo();
|
||||
}
|
||||
|
||||
fn chi_square_demo() {
|
||||
println!("Chi-square test on PRNG");
|
||||
let mut rng = rng();
|
||||
let mut counts = [0usize; 10];
|
||||
let samples = 10000;
|
||||
for _ in 0..samples {
|
||||
let v = rng.random_range(0..10usize);
|
||||
counts[v] += 1;
|
||||
}
|
||||
let expected = samples as f64 / 10.0;
|
||||
let chi2: f64 = counts
|
||||
.iter()
|
||||
.map(|&c| {
|
||||
let diff = c as f64 - expected;
|
||||
diff * diff / expected
|
||||
})
|
||||
.sum();
|
||||
println!("counts: {:?}", counts);
|
||||
println!("chi-square: {:.3}", chi2);
|
||||
}
|
||||
|
||||
fn monobit_demo() {
|
||||
println!("Monobit test on crypto RNG");
|
||||
let mut rng = crypto_rng();
|
||||
let mut ones = 0usize;
|
||||
let samples = 1000;
|
||||
for _ in 0..samples {
|
||||
ones += rng.next_u64().count_ones() as usize;
|
||||
}
|
||||
let ratio = ones as f64 / (samples as f64 * 64.0);
|
||||
println!("ones ratio: {:.4}", ratio);
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_chi_square_demo_runs() {
|
||||
chi_square_demo();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monobit_demo_runs() {
|
||||
monobit_demo();
|
||||
}
|
||||
}
|
||||
|
@ -1,93 +0,0 @@
|
||||
use rustframe::compute::stats::{
|
||||
chi2_test, covariance, covariance_matrix, mean, median, pearson, percentile, stddev, t_test,
|
||||
};
|
||||
use rustframe::matrix::{Axis, Matrix};
|
||||
|
||||
/// Demonstrates some of the statistics utilities in Rustframe.
|
||||
///
|
||||
/// The example is split into three parts:
|
||||
/// - Basic descriptive statistics on a small data set
|
||||
/// - Covariance and correlation calculations
|
||||
/// - Simple inferential tests (t-test and chi-square)
|
||||
fn main() {
|
||||
descriptive_demo();
|
||||
println!("\n-----\n");
|
||||
correlation_demo();
|
||||
println!("\n-----\n");
|
||||
inferential_demo();
|
||||
}
|
||||
|
||||
fn descriptive_demo() {
|
||||
println!("Descriptive statistics\n----------------------");
|
||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
println!("mean : {:.2}", mean(&data));
|
||||
println!("std dev : {:.2}", stddev(&data));
|
||||
println!("median : {:.2}", median(&data));
|
||||
println!("25th percentile: {:.2}", percentile(&data, 25.0));
|
||||
}
|
||||
|
||||
fn correlation_demo() {
|
||||
println!("Covariance and Correlation\n--------------------------");
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
||||
let cov = covariance(&x, &y);
|
||||
let cov_mat = covariance_matrix(&x, Axis::Col);
|
||||
let corr = pearson(&x, &y);
|
||||
println!("covariance : {:.2}", cov);
|
||||
println!("cov matrix : {:?}", cov_mat.data());
|
||||
println!("pearson r : {:.2}", corr);
|
||||
}
|
||||
|
||||
fn inferential_demo() {
|
||||
println!("Inferential statistics\n----------------------");
|
||||
let s1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
let s2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||
let (t_stat, t_p) = t_test(&s1, &s2);
|
||||
println!("t statistic : {:.2}, p-value: {:.4}", t_stat, t_p);
|
||||
|
||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||
let (chi2, chi_p) = chi2_test(&observed);
|
||||
println!("chi^2 : {:.2}, p-value: {:.4}", chi2, chi_p);
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
const EPS: f64 = 1e-8;
|
||||
|
||||
#[test]
|
||||
fn test_descriptive_demo() {
|
||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
assert!((mean(&data) - 3.0).abs() < EPS);
|
||||
assert!((stddev(&data) - 1.4142135623730951).abs() < EPS);
|
||||
assert!((median(&data) - 3.0).abs() < EPS);
|
||||
assert!((percentile(&data, 25.0) - 2.0).abs() < EPS);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_correlation_demo() {
|
||||
let x = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
||||
let cov = covariance(&x, &y);
|
||||
assert!((cov - 1.625).abs() < EPS);
|
||||
let cov_mat = covariance_matrix(&x, Axis::Col);
|
||||
assert!((cov_mat.get(0, 0) - 2.0).abs() < EPS);
|
||||
assert!((cov_mat.get(1, 1) - 2.0).abs() < EPS);
|
||||
let corr = pearson(&x, &y);
|
||||
assert!((corr - 0.9827076298239908).abs() < 1e-6);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_inferential_demo() {
|
||||
let s1 = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
let s2 = Matrix::from_rows_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||
let (t_stat, p_value) = t_test(&s1, &s2);
|
||||
assert!((t_stat + 5.0).abs() < 1e-5);
|
||||
assert!(p_value > 0.0 && p_value < 1.0);
|
||||
|
||||
let observed = Matrix::from_rows_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||
let (chi2, p) = chi2_test(&observed);
|
||||
assert!(chi2 > 0.0);
|
||||
assert!(p > 0.0 && p < 1.0);
|
||||
}
|
||||
}
|
@ -1,16 +1,3 @@
|
||||
//! Algorithms and statistical utilities built on top of the core matrices.
|
||||
//!
|
||||
//! This module groups together machine‑learning models and statistical helper
|
||||
//! functions. For quick access to basic statistics see [`stats`](crate::compute::stats), while
|
||||
//! [`models`](crate::compute::models) contains small learning algorithms.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0], 3, 1);
|
||||
//! assert_eq!(stats::mean(&m), 2.0);
|
||||
//! ```
|
||||
pub mod models;
|
||||
|
||||
pub mod stats;
|
||||
|
@ -1,15 +1,3 @@
|
||||
//! Common activation functions used in neural networks.
|
||||
//!
|
||||
//! Functions operate element-wise on [`Matrix`] values.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::activations::sigmoid;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
|
||||
//! let y = sigmoid(&x);
|
||||
//! assert!((y.get(0,0) - 0.5).abs() < 1e-6);
|
||||
//! ```
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
pub fn sigmoid(x: &Matrix<f64>) -> Matrix<f64> {
|
||||
@ -37,7 +25,6 @@ pub fn dleaky_relu(x: &Matrix<f64>) -> Matrix<f64> {
|
||||
x.map(|v| if v > 0.0 { 1.0 } else { 0.01 })
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
|
@ -1,33 +1,6 @@
|
||||
//! A minimal dense neural network implementation for educational purposes.
|
||||
//!
|
||||
//! Layers operate on [`Matrix`] values and support ReLU and Sigmoid
|
||||
//! activations. This is not meant to be a performant deep‑learning framework
|
||||
//! but rather a small example of how the surrounding matrix utilities can be
|
||||
//! composed.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::dense_nn::{ActivationKind, DenseNN, DenseNNConfig, InitializerKind, LossKind};
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! // Tiny network with one input and one output neuron.
|
||||
//! let config = DenseNNConfig {
|
||||
//! input_size: 1,
|
||||
//! hidden_layers: vec![],
|
||||
//! output_size: 1,
|
||||
//! activations: vec![ActivationKind::Relu],
|
||||
//! initializer: InitializerKind::Uniform(0.5),
|
||||
//! loss: LossKind::MSE,
|
||||
//! learning_rate: 0.1,
|
||||
//! epochs: 1,
|
||||
//! };
|
||||
//! let mut nn = DenseNN::new(config);
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
|
||||
//! let y = Matrix::from_vec(vec![2.0, 3.0], 2, 1);
|
||||
//! nn.train(&x, &y);
|
||||
//! ```
|
||||
use crate::compute::models::activations::{drelu, relu, sigmoid};
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
use crate::random::prelude::*;
|
||||
use rand::prelude::*;
|
||||
|
||||
/// Supported activation functions
|
||||
#[derive(Clone)]
|
||||
@ -73,7 +46,7 @@ pub enum InitializerKind {
|
||||
|
||||
impl InitializerKind {
|
||||
pub fn initialize(&self, rows: usize, cols: usize) -> Matrix<f64> {
|
||||
let mut rng = rng();
|
||||
let mut rng = rand::rng();
|
||||
let fan_in = rows;
|
||||
let fan_out = cols;
|
||||
let limit = match self {
|
||||
|
@ -1,16 +1,3 @@
|
||||
//! Gaussian Naive Bayes classifier for dense matrices.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::gaussian_nb::GaussianNB;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 1.0, 2.0], 2, 2); // two samples
|
||||
//! let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
|
||||
//! let mut model = GaussianNB::new(1e-9, false);
|
||||
//! model.fit(&x, &y);
|
||||
//! let preds = model.predict(&x);
|
||||
//! assert_eq!(preds.rows(), 2);
|
||||
//! ```
|
||||
use crate::matrix::Matrix;
|
||||
use std::collections::HashMap;
|
||||
|
||||
|
@ -1,17 +1,7 @@
|
||||
//! Simple k-means clustering working on [`Matrix`] data.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::k_means::KMeans;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
|
||||
//! let (model, labels) = KMeans::fit(&data, 2, 10, 1e-4);
|
||||
//! assert_eq!(model.centroids.rows(), 2);
|
||||
//! assert_eq!(labels.len(), 2);
|
||||
//! ```
|
||||
use crate::compute::stats::mean_vertical;
|
||||
use crate::matrix::Matrix;
|
||||
use crate::random::prelude::*;
|
||||
use rand::rng;
|
||||
use rand::seq::SliceRandom;
|
||||
|
||||
pub struct KMeans {
|
||||
pub centroids: Matrix<f64>, // (k, n_features)
|
||||
@ -203,8 +193,7 @@ mod tests {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// "Centroid {} (empty cluster) does not match any data point",c
|
||||
assert!(matches_data_point);
|
||||
assert!(matches_data_point, "Centroid {} (empty cluster) does not match any data point", c);
|
||||
}
|
||||
}
|
||||
break;
|
||||
@ -371,4 +360,5 @@ mod tests {
|
||||
assert_eq!(predicted_label.len(), 1);
|
||||
assert!(predicted_label[0] < k);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -1,16 +1,3 @@
|
||||
//! Ordinary least squares linear regression.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::linreg::LinReg;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
||||
//! let mut model = LinReg::new(1);
|
||||
//! model.fit(&x, &y, 0.01, 100);
|
||||
//! let preds = model.predict(&x);
|
||||
//! assert_eq!(preds.rows(), 4);
|
||||
//! ```
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
pub struct LinReg {
|
||||
|
@ -1,16 +1,3 @@
|
||||
//! Binary logistic regression classifier.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::logreg::LogReg;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
//! let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
//! let mut model = LogReg::new(1);
|
||||
//! model.fit(&x, &y, 0.1, 100);
|
||||
//! let preds = model.predict(&x);
|
||||
//! assert_eq!(preds[(0,0)], 0.0);
|
||||
//! ```
|
||||
use crate::compute::models::activations::sigmoid;
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
|
@ -1,19 +1,3 @@
|
||||
//! Lightweight machine‑learning models built on matrices.
|
||||
//!
|
||||
//! Models are intentionally minimal and operate on the [`Matrix`](crate::matrix::Matrix) type for
|
||||
//! inputs and parameters.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::linreg::LinReg;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
||||
//! let mut model = LinReg::new(1);
|
||||
//! model.fit(&x, &y, 0.01, 1000);
|
||||
//! let preds = model.predict(&x);
|
||||
//! assert_eq!(preds.rows(), 4);
|
||||
//! ```
|
||||
pub mod activations;
|
||||
pub mod dense_nn;
|
||||
pub mod gaussian_nb;
|
||||
|
@ -1,14 +1,3 @@
|
||||
//! Principal Component Analysis using covariance matrices.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::pca::PCA;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0], 2, 2);
|
||||
//! let pca = PCA::fit(&data, 1, 0);
|
||||
//! let projected = pca.transform(&data);
|
||||
//! assert_eq!(projected.cols(), 1);
|
||||
//! ```
|
||||
use crate::compute::stats::correlation::covariance_matrix;
|
||||
use crate::compute::stats::descriptive::mean_vertical;
|
||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||
@ -55,7 +44,11 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_pca_basic() {
|
||||
// Simple 2D data with points along the y = x line
|
||||
// Simple 2D data, points along y=x line
|
||||
// Data:
|
||||
// 1.0, 1.0
|
||||
// 2.0, 2.0
|
||||
// 3.0, 3.0
|
||||
let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0, 3.0, 3.0], 3, 2);
|
||||
let (_n_samples, _n_features) = data.shape();
|
||||
|
||||
@ -78,7 +71,15 @@ mod tests {
|
||||
assert!((pca.components.get(0, 0) - 1.0).abs() < EPSILON);
|
||||
assert!((pca.components.get(0, 1) - 1.0).abs() < EPSILON);
|
||||
|
||||
// Test transform: centered data projects to [-2.0, 0.0, 2.0]
|
||||
// Test transform
|
||||
// Centered data:
|
||||
// -1.0, -1.0
|
||||
// 0.0, 0.0
|
||||
// 1.0, 1.0
|
||||
// Projected: (centered_data * components.transpose())
|
||||
// (-1.0 * 1.0 + -1.0 * 1.0) = -2.0
|
||||
// ( 0.0 * 1.0 + 0.0 * 1.0) = 0.0
|
||||
// ( 1.0 * 1.0 + 1.0 * 1.0) = 2.0
|
||||
let transformed_data = pca.transform(&data);
|
||||
assert_eq!(transformed_data.rows(), 3);
|
||||
assert_eq!(transformed_data.cols(), 1);
|
||||
|
@ -1,16 +1,3 @@
|
||||
//! Covariance and correlation helpers.
|
||||
//!
|
||||
//! This module provides routines for measuring the relationship between
|
||||
//! columns or rows of matrices.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats::correlation;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
//! let cov = correlation::covariance(&x, &x);
|
||||
//! assert!((cov - 1.25).abs() < 1e-8);
|
||||
//! ```
|
||||
use crate::compute::stats::{mean, mean_horizontal, mean_vertical, stddev};
|
||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||
|
||||
@ -150,7 +137,10 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_scalar_same_matrix() {
|
||||
// Matrix with rows [1, 2] and [3, 4]; mean is 2.5
|
||||
// M =
|
||||
// 1,2
|
||||
// 3,4
|
||||
// mean = 2.5
|
||||
let data = vec![1.0, 2.0, 3.0, 4.0];
|
||||
let m = Matrix::from_vec(data.clone(), 2, 2);
|
||||
|
||||
@ -162,7 +152,10 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_scalar_diff_matrix() {
|
||||
// Matrix x has rows [1, 2] and [3, 4]; y is two times x
|
||||
// x =
|
||||
// 1,2
|
||||
// 3,4
|
||||
// y = 2*x
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||
|
||||
@ -174,7 +167,10 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_vertical() {
|
||||
// Matrix with rows [1, 2] and [3, 4]; columns are [1,3] and [2,4], each var=1, cov=1
|
||||
// M =
|
||||
// 1,2
|
||||
// 3,4
|
||||
// cols are [1,3] and [2,4], each var=1, cov=1
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov_mat = covariance_vertical(&m);
|
||||
|
||||
@ -188,7 +184,10 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_horizontal() {
|
||||
// Matrix with rows [1,2] and [3,4], each var=0.25, cov=0.25
|
||||
// M =
|
||||
// 1,2
|
||||
// 3,4
|
||||
// rows are [1,2] and [3,4], each var=0.25, cov=0.25
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov_mat = covariance_horizontal(&m);
|
||||
|
||||
@ -202,7 +201,10 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_matrix_vertical() {
|
||||
// Test with a simple 2x2 matrix with rows [1, 2] and [3, 4]
|
||||
// Test with a simple 2x2 matrix
|
||||
// M =
|
||||
// 1, 2
|
||||
// 3, 4
|
||||
// Expected covariance matrix (vertical, i.e., between columns):
|
||||
// Col1: [1, 3], mean = 2
|
||||
// Col2: [2, 4], mean = 3
|
||||
@ -210,7 +212,9 @@ mod tests {
|
||||
// Cov(Col2, Col2) = ((2-3)^2 + (4-3)^2) / (2-1) = (1+1)/1 = 2
|
||||
// Cov(Col1, Col2) = ((1-2)*(2-3) + (3-2)*(4-3)) / (2-1) = ((-1)*(-1) + (1)*(1))/1 = (1+1)/1 = 2
|
||||
// Cov(Col2, Col1) = 2
|
||||
// Expected matrix filled with 2
|
||||
// Expected:
|
||||
// 2, 2
|
||||
// 2, 2
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov_mat = covariance_matrix(&m, Axis::Col);
|
||||
|
||||
@ -222,7 +226,10 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_matrix_horizontal() {
|
||||
// Test with a simple 2x2 matrix with rows [1, 2] and [3, 4]
|
||||
// Test with a simple 2x2 matrix
|
||||
// M =
|
||||
// 1, 2
|
||||
// 3, 4
|
||||
// Expected covariance matrix (horizontal, i.e., between rows):
|
||||
// Row1: [1, 2], mean = 1.5
|
||||
// Row2: [3, 4], mean = 3.5
|
||||
@ -230,7 +237,9 @@ mod tests {
|
||||
// Cov(Row2, Row2) = ((3-3.5)^2 + (4-3.5)^2) / (2-1) = (0.25+0.25)/1 = 0.5
|
||||
// Cov(Row1, Row2) = ((1-1.5)*(3-3.5) + (2-1.5)*(4-3.5)) / (2-1) = ((-0.5)*(-0.5) + (0.5)*(0.5))/1 = (0.25+0.25)/1 = 0.5
|
||||
// Cov(Row2, Row1) = 0.5
|
||||
// Expected matrix: [[0.5, -0.5], [-0.5, 0.5]]
|
||||
// Expected:
|
||||
// 0.5, -0.5
|
||||
// -0.5, 0.5
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov_mat = covariance_matrix(&m, Axis::Row);
|
||||
|
||||
|
@ -1,15 +1,3 @@
|
||||
//! Descriptive statistics for matrices.
|
||||
//!
|
||||
//! Provides means, variances, medians and other aggregations computed either
|
||||
//! across the whole matrix or along a specific axis.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats::descriptive;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
//! assert_eq!(descriptive::mean(&m), 2.5);
|
||||
//! ```
|
||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||
|
||||
pub fn mean(x: &Matrix<f64>) -> f64 {
|
||||
@ -362,7 +350,11 @@ mod tests {
|
||||
let data: Vec<f64> = (1..=24).map(|x| x as f64).collect();
|
||||
let x = Matrix::from_vec(data, 4, 6);
|
||||
|
||||
// columns contain sequences increasing by four starting at 1 through 4
|
||||
// columns:
|
||||
// 1, 5, 9, 13, 17, 21
|
||||
// 2, 6, 10, 14, 18, 22
|
||||
// 3, 7, 11, 15, 19, 23
|
||||
// 4, 8, 12, 16, 20, 24
|
||||
|
||||
let er0 = vec![1., 5., 9., 13., 17., 21.];
|
||||
let er50 = vec![3., 7., 11., 15., 19., 23.];
|
||||
|
@ -1,16 +1,3 @@
|
||||
//! Probability distribution functions applied element-wise to matrices.
|
||||
//!
|
||||
//! Includes approximations for the normal, uniform and gamma distributions as
|
||||
//! well as the error function.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats::distributions;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
|
||||
//! let pdf = distributions::normal_pdf(x.clone(), 0.0, 1.0);
|
||||
//! assert!((pdf.get(0,0) - 0.3989).abs() < 1e-3);
|
||||
//! ```
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
use std::f64::consts::PI;
|
||||
|
@ -1,14 +1,3 @@
|
||||
//! Basic inferential statistics such as t‑tests and chi‑square tests.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats::inferential;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let a = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
|
||||
//! let b = Matrix::from_vec(vec![1.1, 1.9], 2, 1);
|
||||
//! let (t, _p) = inferential::t_test(&a, &b);
|
||||
//! assert!(t.abs() < 1.0);
|
||||
//! ```
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
use crate::compute::stats::{gamma_cdf, mean, sample_variance};
|
||||
|
@ -1,16 +1,3 @@
|
||||
//! Statistical routines for matrices.
|
||||
//!
|
||||
//! Functions are grouped into submodules for descriptive statistics,
|
||||
//! correlations, probability distributions and basic inferential tests.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
//! let cov = stats::covariance(&m, &m);
|
||||
//! assert!((cov - 1.25).abs() < 1e-8);
|
||||
//! ```
|
||||
pub mod correlation;
|
||||
pub mod descriptive;
|
||||
pub mod distributions;
|
||||
|
@ -1,19 +1,3 @@
|
||||
//! Core data-frame structures such as [`Frame`] and [`RowIndex`].
|
||||
//!
|
||||
//! The [`Frame`] type stores column-labelled data with an optional row index
|
||||
//! and builds upon the [`crate::matrix::Matrix`] type.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::frame::{Frame, RowIndex};
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
||||
//! let frame = Frame::new(data, vec!["L", "R"], Some(RowIndex::Int(vec![10, 20])));
|
||||
//! assert_eq!(frame.columns(), &["L", "R"]);
|
||||
//! assert_eq!(frame.index(), &RowIndex::Int(vec![10, 20]));
|
||||
//! ```
|
||||
use crate::matrix::Matrix;
|
||||
use chrono::NaiveDate;
|
||||
use std::collections::HashMap;
|
||||
|
@ -1,21 +1,3 @@
|
||||
//! High-level interface for working with columnar data and row indices.
|
||||
//!
|
||||
//! The [`Frame`](crate::frame::Frame) type combines a matrix with column labels and a typed row
|
||||
//! index, similar to data frames in other data-analysis libraries.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::frame::{Frame, RowIndex};
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! // Build a frame from two columns labelled "A" and "B".
|
||||
//! let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
//! let frame = Frame::new(data, vec!["A", "B"], None);
|
||||
//!
|
||||
//! assert_eq!(frame["A"], vec![1.0, 2.0]);
|
||||
//! assert_eq!(frame.index(), &RowIndex::Range(0..2));
|
||||
//! ```
|
||||
pub mod base;
|
||||
pub mod ops;
|
||||
|
||||
|
@ -1,16 +1,3 @@
|
||||
//! Trait implementations that allow [`Frame`] to reuse matrix operations.
|
||||
//!
|
||||
//! These modules forward numeric and boolean aggregation methods from the
|
||||
//! underlying [`Matrix`](crate::matrix::Matrix) type so that they can be called
|
||||
//! directly on a [`Frame`].
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::frame::Frame;
|
||||
//! use rustframe::matrix::{Matrix, SeriesOps};
|
||||
//!
|
||||
//! let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
|
||||
//! assert_eq!(frame.sum_vertical(), vec![3.0]);
|
||||
//! ```
|
||||
use crate::frame::Frame;
|
||||
use crate::matrix::{Axis, BoolMatrix, BoolOps, FloatMatrix, SeriesOps};
|
||||
|
||||
|
@ -11,6 +11,3 @@ pub mod utils;
|
||||
|
||||
/// Documentation for the [`crate::compute`] module.
|
||||
pub mod compute;
|
||||
|
||||
/// Documentation for the [`crate::random`] module.
|
||||
pub mod random;
|
||||
|
@ -1,14 +1,3 @@
|
||||
//! Logical reductions for boolean matrices.
|
||||
//!
|
||||
//! The [`BoolOps`] trait mirrors common boolean aggregations such as `any` and
|
||||
//! `all` over rows or columns of a [`BoolMatrix`].
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::matrix::{BoolMatrix, BoolOps};
|
||||
//!
|
||||
//! let m = BoolMatrix::from_vec(vec![true, false], 2, 1);
|
||||
//! assert!(m.any());
|
||||
//! ```
|
||||
use crate::matrix::{Axis, BoolMatrix};
|
||||
|
||||
/// Boolean operations on `Matrix<bool>`
|
||||
|
@ -1028,7 +1028,9 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_from_rows_vec() {
|
||||
// Matrix with rows [1, 2, 3] and [4, 5, 6]
|
||||
// Representing:
|
||||
// 1 2 3
|
||||
// 4 5 6
|
||||
let rows_data = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||
let matrix = Matrix::from_rows_vec(rows_data, 2, 3);
|
||||
|
||||
@ -1040,14 +1042,19 @@ mod tests {
|
||||
|
||||
// Helper function to create a basic Matrix for testing
|
||||
fn static_test_matrix() -> Matrix<i32> {
|
||||
// Column-major data representing a 3x3 matrix of sequential integers
|
||||
// Column-major data:
|
||||
// 1 4 7
|
||||
// 2 5 8
|
||||
// 3 6 9
|
||||
let data = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||
Matrix::from_vec(data, 3, 3)
|
||||
}
|
||||
|
||||
// Another helper for a different size
|
||||
fn static_test_matrix_2x4() -> Matrix<i32> {
|
||||
// Column-major data representing a 2x4 matrix of sequential integers
|
||||
// Column-major data:
|
||||
// 1 3 5 7
|
||||
// 2 4 6 8
|
||||
let data = vec![1, 2, 3, 4, 5, 6, 7, 8];
|
||||
Matrix::from_vec(data, 2, 4)
|
||||
}
|
||||
@ -1125,7 +1132,10 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_from_cols_basic() {
|
||||
// Matrix with columns forming a 3x3 sequence
|
||||
// Representing:
|
||||
// 1 4 7
|
||||
// 2 5 8
|
||||
// 3 6 9
|
||||
let cols_data = vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]];
|
||||
let matrix = Matrix::from_cols(cols_data);
|
||||
|
||||
@ -1502,7 +1512,8 @@ mod tests {
|
||||
|
||||
// Delete the first row
|
||||
matrix.delete_row(0);
|
||||
// Resulting data should be [3, 6, 9]
|
||||
// Should be:
|
||||
// 3 6 9
|
||||
assert_eq!(matrix.rows(), 1);
|
||||
assert_eq!(matrix.cols(), 3);
|
||||
assert_eq!(matrix.data(), &[3, 6, 9]);
|
||||
|
@ -1,18 +1,3 @@
|
||||
//! Core matrix types and operations.
|
||||
//!
|
||||
//! The [`Matrix`](crate::matrix::Matrix) struct provides a simple column‑major 2D array with a
|
||||
//! suite of numeric helpers. Additional traits like [`SeriesOps`](crate::matrix::SeriesOps) and
|
||||
//! [`BoolOps`](crate::matrix::BoolOps) extend functionality for common statistics and logical reductions.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let m = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
||||
//! assert_eq!(m.shape(), (2, 2));
|
||||
//! assert_eq!(m[(0,1)], 3);
|
||||
//! ```
|
||||
pub mod boolops;
|
||||
pub mod mat;
|
||||
pub mod seriesops;
|
||||
|
@ -1,14 +1,3 @@
|
||||
//! Numeric reductions and transformations over matrix axes.
|
||||
//!
|
||||
//! [`SeriesOps`] provides methods like [`SeriesOps::sum_vertical`] or
|
||||
//! [`SeriesOps::map`] that operate on [`FloatMatrix`] values.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::matrix::{Matrix, SeriesOps};
|
||||
//!
|
||||
//! let m = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
//! assert_eq!(m.sum_horizontal(), vec![4.0, 6.0]);
|
||||
//! ```
|
||||
use crate::matrix::{Axis, BoolMatrix, FloatMatrix};
|
||||
|
||||
/// "Series-like" helpers that work along a single axis.
|
||||
@ -226,13 +215,20 @@ mod tests {
|
||||
|
||||
// Helper function to create a FloatMatrix for SeriesOps testing
|
||||
fn create_float_test_matrix() -> FloatMatrix {
|
||||
// 3x3 column-major matrix containing a few NaN values
|
||||
// 3x3 matrix (column-major) with some NaNs
|
||||
// 1.0 4.0 7.0
|
||||
// 2.0 NaN 8.0
|
||||
// 3.0 6.0 NaN
|
||||
let data = vec![1.0, 2.0, 3.0, 4.0, f64::NAN, 6.0, 7.0, 8.0, f64::NAN];
|
||||
FloatMatrix::from_vec(data, 3, 3)
|
||||
}
|
||||
|
||||
fn create_float_test_matrix_4x4() -> FloatMatrix {
|
||||
// 4x4 column-major matrix with NaNs inserted at positions where index % 5 == 0
|
||||
// 4x4 matrix (column-major) with some NaNs
|
||||
// 1.0 5.0 9.0 13.0
|
||||
// 2.0 NaN 10.0 NaN
|
||||
// 3.0 6.0 NaN 14.0
|
||||
// NaN 7.0 11.0 NaN
|
||||
// first make array with 16 elements
|
||||
FloatMatrix::from_vec(
|
||||
(0..16)
|
||||
|
@ -1,237 +0,0 @@
|
||||
//! Cryptographically secure random number generator.
|
||||
//!
|
||||
//! On Unix systems this reads from `/dev/urandom`; on Windows it uses the
|
||||
//! system's preferred CNG provider.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{crypto_rng, Rng};
|
||||
//! let mut rng = crypto_rng();
|
||||
//! let _v = rng.next_u64();
|
||||
//! ```
|
||||
#[cfg(unix)]
|
||||
use std::{fs::File, io::Read};
|
||||
|
||||
use crate::random::Rng;
|
||||
|
||||
#[cfg(unix)]
|
||||
pub struct CryptoRng {
|
||||
file: File,
|
||||
}
|
||||
|
||||
#[cfg(unix)]
|
||||
impl CryptoRng {
|
||||
/// Open `/dev/urandom`.
|
||||
pub fn new() -> Self {
|
||||
let file = File::open("/dev/urandom").expect("failed to open /dev/urandom");
|
||||
Self { file }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(unix)]
|
||||
impl Rng for CryptoRng {
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
let mut buf = [0u8; 8];
|
||||
self.file
|
||||
.read_exact(&mut buf)
|
||||
.expect("failed reading from /dev/urandom");
|
||||
u64::from_ne_bytes(buf)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(windows)]
|
||||
pub struct CryptoRng;
|
||||
|
||||
#[cfg(windows)]
|
||||
impl CryptoRng {
|
||||
/// No handle is needed on Windows.
|
||||
pub fn new() -> Self {
|
||||
Self
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(windows)]
|
||||
impl Rng for CryptoRng {
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
let mut buf = [0u8; 8];
|
||||
win_fill(&mut buf).expect("BCryptGenRandom failed");
|
||||
u64::from_ne_bytes(buf)
|
||||
}
|
||||
}
|
||||
|
||||
/// Fill `buf` with cryptographically secure random bytes using CNG.
|
||||
///
|
||||
/// * `BCryptGenRandom(NULL, buf, len, BCRYPT_USE_SYSTEM_PREFERRED_RNG)`
|
||||
/// asks the OS for its system‑preferred DRBG (CTR_DRBG on modern
|
||||
/// Windows).
|
||||
#[cfg(windows)]
|
||||
fn win_fill(buf: &mut [u8]) -> Result<(), ()> {
|
||||
use core::ffi::c_void;
|
||||
|
||||
type BcryptAlgHandle = *mut c_void;
|
||||
type NTSTATUS = i32;
|
||||
|
||||
const BCRYPT_USE_SYSTEM_PREFERRED_RNG: u32 = 0x0000_0002;
|
||||
|
||||
#[link(name = "bcrypt")]
|
||||
extern "system" {
|
||||
fn BCryptGenRandom(
|
||||
hAlgorithm: BcryptAlgHandle,
|
||||
pbBuffer: *mut u8,
|
||||
cbBuffer: u32,
|
||||
dwFlags: u32,
|
||||
) -> NTSTATUS;
|
||||
}
|
||||
|
||||
// NT_SUCCESS(status) == status >= 0
|
||||
let status = unsafe {
|
||||
BCryptGenRandom(
|
||||
core::ptr::null_mut(),
|
||||
buf.as_mut_ptr(),
|
||||
buf.len() as u32,
|
||||
BCRYPT_USE_SYSTEM_PREFERRED_RNG,
|
||||
)
|
||||
};
|
||||
|
||||
if status >= 0 {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Convenience constructor for [`CryptoRng`].
|
||||
pub fn crypto_rng() -> CryptoRng {
|
||||
CryptoRng::new()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::random::Rng;
|
||||
use std::collections::HashSet;
|
||||
|
||||
#[test]
|
||||
fn test_crypto_rng_nonzero() {
|
||||
let mut rng = CryptoRng::new();
|
||||
let mut all_same = true;
|
||||
let mut prev = rng.next_u64();
|
||||
for _ in 0..5 {
|
||||
let val = rng.next_u64();
|
||||
if val != prev {
|
||||
all_same = false;
|
||||
}
|
||||
prev = val;
|
||||
}
|
||||
assert!(!all_same, "CryptoRng produced identical values");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_rng_variation_large() {
|
||||
let mut rng = CryptoRng::new();
|
||||
let mut values = HashSet::new();
|
||||
for _ in 0..100 {
|
||||
values.insert(rng.next_u64());
|
||||
}
|
||||
assert!(values.len() > 90, "CryptoRng output not varied enough");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_rng_random_range_uniform() {
|
||||
let mut rng = CryptoRng::new();
|
||||
let mut counts = [0usize; 10];
|
||||
for _ in 0..1000 {
|
||||
let v = rng.random_range(0..10usize);
|
||||
counts[v] += 1;
|
||||
}
|
||||
for &c in &counts {
|
||||
// "Crypto RNG counts far from uniform: {c}"
|
||||
assert!((c as isize - 100).abs() < 50);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_normal_distribution() {
|
||||
let mut rng = CryptoRng::new();
|
||||
let mean = 0.0;
|
||||
let sd = 1.0;
|
||||
let n = 2000;
|
||||
let mut sum = 0.0;
|
||||
let mut sum_sq = 0.0;
|
||||
for _ in 0..n {
|
||||
let val = rng.normal(mean, sd);
|
||||
sum += val;
|
||||
sum_sq += val * val;
|
||||
}
|
||||
let sample_mean = sum / n as f64;
|
||||
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
|
||||
assert!(sample_mean.abs() < 0.1);
|
||||
assert!((sample_var - 1.0).abs() < 0.2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_two_instances_different_values() {
|
||||
let mut a = CryptoRng::new();
|
||||
let mut b = CryptoRng::new();
|
||||
let va = a.next_u64();
|
||||
let vb = b.next_u64();
|
||||
assert_ne!(va, vb);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_rng_helper_function() {
|
||||
let mut rng = crypto_rng();
|
||||
let _ = rng.next_u64();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_normal_zero_sd() {
|
||||
let mut rng = CryptoRng::new();
|
||||
for _ in 0..5 {
|
||||
let v = rng.normal(10.0, 0.0);
|
||||
assert_eq!(v, 10.0);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_shuffle_empty_slice() {
|
||||
use crate::random::SliceRandom;
|
||||
let mut rng = CryptoRng::new();
|
||||
let mut arr: [u8; 0] = [];
|
||||
arr.shuffle(&mut rng);
|
||||
assert!(arr.is_empty());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_chi_square_uniform() {
|
||||
let mut rng = CryptoRng::new();
|
||||
let mut counts = [0usize; 10];
|
||||
let samples = 10000;
|
||||
for _ in 0..samples {
|
||||
let v = rng.random_range(0..10usize);
|
||||
counts[v] += 1;
|
||||
}
|
||||
let expected = samples as f64 / 10.0;
|
||||
let chi2: f64 = counts
|
||||
.iter()
|
||||
.map(|&c| {
|
||||
let diff = c as f64 - expected;
|
||||
diff * diff / expected
|
||||
})
|
||||
.sum();
|
||||
assert!(chi2 < 40.0, "chi-square statistic too high: {chi2}");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_crypto_monobit() {
|
||||
let mut rng = CryptoRng::new();
|
||||
let mut ones = 0usize;
|
||||
let samples = 1000;
|
||||
for _ in 0..samples {
|
||||
ones += rng.next_u64().count_ones() as usize;
|
||||
}
|
||||
let total_bits = samples * 64;
|
||||
let ratio = ones as f64 / total_bits as f64;
|
||||
// "bit ratio far from 0.5: {ratio}"
|
||||
assert!((ratio - 0.5).abs() < 0.02);
|
||||
}
|
||||
}
|
@ -1,29 +0,0 @@
|
||||
//! Random number generation utilities.
|
||||
//!
|
||||
//! Provides both a simple pseudo-random generator [`Prng`](crate::random::Prng) and a
|
||||
//! cryptographically secure alternative [`CryptoRng`](crate::random::CryptoRng). The
|
||||
//! [`SliceRandom`](crate::random::SliceRandom) trait offers shuffling of slices using any RNG
|
||||
//! implementing [`Rng`](crate::random::Rng).
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{rng, SliceRandom};
|
||||
//!
|
||||
//! let mut rng = rng();
|
||||
//! let mut data = [1, 2, 3, 4];
|
||||
//! data.shuffle(&mut rng);
|
||||
//! assert_eq!(data.len(), 4);
|
||||
//! ```
|
||||
pub mod crypto;
|
||||
pub mod prng;
|
||||
pub mod random_core;
|
||||
pub mod seq;
|
||||
|
||||
pub use crypto::{crypto_rng, CryptoRng};
|
||||
pub use prng::{rng, Prng};
|
||||
pub use random_core::{RangeSample, Rng};
|
||||
pub use seq::SliceRandom;
|
||||
|
||||
pub mod prelude {
|
||||
pub use super::seq::SliceRandom;
|
||||
pub use super::{crypto_rng, rng, CryptoRng, Prng, RangeSample, Rng};
|
||||
}
|
@ -1,235 +0,0 @@
|
||||
//! A tiny XorShift64-based pseudo random number generator.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{rng, Rng};
|
||||
//! let mut rng = rng();
|
||||
//! let x = rng.next_u64();
|
||||
//! assert!(x >= 0);
|
||||
//! ```
|
||||
use std::time::{SystemTime, UNIX_EPOCH};
|
||||
|
||||
use crate::random::Rng;
|
||||
|
||||
/// Simple XorShift64-based pseudo random number generator.
|
||||
#[derive(Clone)]
|
||||
pub struct Prng {
|
||||
state: u64,
|
||||
}
|
||||
|
||||
impl Prng {
|
||||
/// Create a new generator from the given seed.
|
||||
pub fn new(seed: u64) -> Self {
|
||||
Self { state: seed }
|
||||
}
|
||||
|
||||
/// Create a generator seeded from the current time.
|
||||
pub fn from_entropy() -> Self {
|
||||
let nanos = SystemTime::now()
|
||||
.duration_since(UNIX_EPOCH)
|
||||
.unwrap()
|
||||
.as_nanos() as u64;
|
||||
Self::new(nanos)
|
||||
}
|
||||
}
|
||||
|
||||
impl Rng for Prng {
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
let mut x = self.state;
|
||||
x ^= x << 13;
|
||||
x ^= x >> 7;
|
||||
x ^= x << 17;
|
||||
self.state = x;
|
||||
x
|
||||
}
|
||||
}
|
||||
|
||||
/// Convenience constructor using system entropy.
|
||||
pub fn rng() -> Prng {
|
||||
Prng::from_entropy()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::random::Rng;
|
||||
|
||||
#[test]
|
||||
fn test_prng_determinism() {
|
||||
let mut a = Prng::new(42);
|
||||
let mut b = Prng::new(42);
|
||||
for _ in 0..5 {
|
||||
assert_eq!(a.next_u64(), b.next_u64());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_random_range_f64() {
|
||||
let mut rng = Prng::new(1);
|
||||
for _ in 0..10 {
|
||||
let v = rng.random_range(-1.0..1.0);
|
||||
assert!(v >= -1.0 && v < 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_random_range_usize() {
|
||||
let mut rng = Prng::new(9);
|
||||
for _ in 0..100 {
|
||||
let v = rng.random_range(10..20);
|
||||
assert!(v >= 10 && v < 20);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gen_bool_balance() {
|
||||
let mut rng = Prng::new(123);
|
||||
let mut trues = 0;
|
||||
for _ in 0..1000 {
|
||||
if rng.gen_bool() {
|
||||
trues += 1;
|
||||
}
|
||||
}
|
||||
let ratio = trues as f64 / 1000.0;
|
||||
assert!(ratio > 0.4 && ratio < 0.6);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_normal_distribution() {
|
||||
let mut rng = Prng::new(7);
|
||||
let mut sum = 0.0;
|
||||
let mut sum_sq = 0.0;
|
||||
let mean = 5.0;
|
||||
let sd = 2.0;
|
||||
let n = 5000;
|
||||
for _ in 0..n {
|
||||
let val = rng.normal(mean, sd);
|
||||
sum += val;
|
||||
sum_sq += val * val;
|
||||
}
|
||||
let sample_mean = sum / n as f64;
|
||||
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
|
||||
assert!((sample_mean - mean).abs() < 0.1);
|
||||
assert!((sample_var - sd * sd).abs() < 0.2 * sd * sd);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prng_from_entropy_unique() {
|
||||
use std::{collections::HashSet, thread, time::Duration};
|
||||
let mut seen = HashSet::new();
|
||||
for _ in 0..5 {
|
||||
let mut rng = Prng::from_entropy();
|
||||
seen.insert(rng.next_u64());
|
||||
thread::sleep(Duration::from_micros(1));
|
||||
}
|
||||
assert!(seen.len() > 1, "Entropy seeds produced identical outputs");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prng_uniform_distribution() {
|
||||
let mut rng = Prng::new(12345);
|
||||
let mut counts = [0usize; 10];
|
||||
for _ in 0..10000 {
|
||||
let v = rng.random_range(0..10usize);
|
||||
counts[v] += 1;
|
||||
}
|
||||
for &c in &counts {
|
||||
// "PRNG counts far from uniform: {c}"
|
||||
assert!((c as isize - 1000).abs() < 150);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prng_different_seeds_different_output() {
|
||||
let mut a = Prng::new(1);
|
||||
let mut b = Prng::new(2);
|
||||
let va = a.next_u64();
|
||||
let vb = b.next_u64();
|
||||
assert_ne!(va, vb);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prng_gen_bool_varies() {
|
||||
let mut rng = Prng::new(99);
|
||||
let mut seen_true = false;
|
||||
let mut seen_false = false;
|
||||
for _ in 0..100 {
|
||||
if rng.gen_bool() {
|
||||
seen_true = true;
|
||||
} else {
|
||||
seen_false = true;
|
||||
}
|
||||
}
|
||||
assert!(seen_true && seen_false);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_random_range_single_usize() {
|
||||
let mut rng = Prng::new(42);
|
||||
for _ in 0..10 {
|
||||
let v = rng.random_range(5..6);
|
||||
assert_eq!(v, 5);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_random_range_single_f64() {
|
||||
let mut rng = Prng::new(42);
|
||||
for _ in 0..10 {
|
||||
let v = rng.random_range(1.234..1.235);
|
||||
assert!(v >= 1.234 && v < 1.235);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prng_normal_zero_sd() {
|
||||
let mut rng = Prng::new(7);
|
||||
for _ in 0..5 {
|
||||
let v = rng.normal(3.0, 0.0);
|
||||
assert_eq!(v, 3.0);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_random_range_extreme_usize() {
|
||||
let mut rng = Prng::new(5);
|
||||
for _ in 0..10 {
|
||||
let v = rng.random_range(0..usize::MAX);
|
||||
assert!(v < usize::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prng_chi_square_uniform() {
|
||||
let mut rng = Prng::new(12345);
|
||||
let mut counts = [0usize; 10];
|
||||
let samples = 10000;
|
||||
for _ in 0..samples {
|
||||
let v = rng.random_range(0..10usize);
|
||||
counts[v] += 1;
|
||||
}
|
||||
let expected = samples as f64 / 10.0;
|
||||
let chi2: f64 = counts
|
||||
.iter()
|
||||
.map(|&c| {
|
||||
let diff = c as f64 - expected;
|
||||
diff * diff / expected
|
||||
})
|
||||
.sum();
|
||||
// "chi-square statistic too high: {chi2}"
|
||||
assert!(chi2 < 20.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prng_monobit() {
|
||||
let mut rng = Prng::new(42);
|
||||
let mut ones = 0usize;
|
||||
let samples = 1000;
|
||||
for _ in 0..samples {
|
||||
ones += rng.next_u64().count_ones() as usize;
|
||||
}
|
||||
let total_bits = samples * 64;
|
||||
let ratio = ones as f64 / total_bits as f64;
|
||||
// "bit ratio far from 0.5: {ratio}"
|
||||
assert!((ratio - 0.5).abs() < 0.01);
|
||||
}
|
||||
}
|
@ -1,106 +0,0 @@
|
||||
//! Core traits for random number generators and sampling ranges.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{rng, Rng};
|
||||
//! let mut r = rng();
|
||||
//! let value: f64 = r.random_range(0.0..1.0);
|
||||
//! assert!(value >= 0.0 && value < 1.0);
|
||||
//! ```
|
||||
use std::f64::consts::PI;
|
||||
use std::ops::Range;
|
||||
|
||||
/// Trait implemented by random number generators.
|
||||
pub trait Rng {
|
||||
/// Generate the next random `u64` value.
|
||||
fn next_u64(&mut self) -> u64;
|
||||
|
||||
/// Generate a value uniformly in the given range.
|
||||
fn random_range<T>(&mut self, range: Range<T>) -> T
|
||||
where
|
||||
T: RangeSample,
|
||||
{
|
||||
T::from_u64(self.next_u64(), &range)
|
||||
}
|
||||
|
||||
/// Generate a boolean with probability 0.5 of being `true`.
|
||||
fn gen_bool(&mut self) -> bool {
|
||||
self.random_range(0..2usize) == 1
|
||||
}
|
||||
|
||||
/// Sample from a normal distribution using the Box-Muller transform.
|
||||
fn normal(&mut self, mean: f64, sd: f64) -> f64 {
|
||||
let u1 = self.random_range(0.0..1.0);
|
||||
let u2 = self.random_range(0.0..1.0);
|
||||
mean + sd * (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
|
||||
}
|
||||
}
|
||||
|
||||
/// Conversion from a raw `u64` into a type within a range.
|
||||
pub trait RangeSample: Sized {
|
||||
fn from_u64(value: u64, range: &Range<Self>) -> Self;
|
||||
}
|
||||
|
||||
impl RangeSample for usize {
|
||||
fn from_u64(value: u64, range: &Range<Self>) -> Self {
|
||||
let span = range.end - range.start;
|
||||
(value as usize % span) + range.start
|
||||
}
|
||||
}
|
||||
|
||||
impl RangeSample for f64 {
|
||||
fn from_u64(value: u64, range: &Range<Self>) -> Self {
|
||||
let span = range.end - range.start;
|
||||
range.start + (value as f64 / u64::MAX as f64) * span
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_range_sample_usize_boundary() {
|
||||
assert_eq!(<usize as RangeSample>::from_u64(0, &(0..1)), 0);
|
||||
assert_eq!(<usize as RangeSample>::from_u64(u64::MAX, &(0..1)), 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_sample_f64_boundary() {
|
||||
let v0 = <f64 as RangeSample>::from_u64(0, &(0.0..1.0));
|
||||
let vmax = <f64 as RangeSample>::from_u64(u64::MAX, &(0.0..1.0));
|
||||
assert!(v0 >= 0.0 && v0 < 1.0);
|
||||
assert!(vmax > 0.999999999999 && vmax <= 1.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_sample_usize_varied() {
|
||||
for i in 0..5 {
|
||||
let v = <usize as RangeSample>::from_u64(i, &(10..15));
|
||||
assert!(v >= 10 && v < 15);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_sample_f64_span() {
|
||||
for val in [0, u64::MAX / 2, u64::MAX] {
|
||||
let f = <f64 as RangeSample>::from_u64(val, &(2.0..4.0));
|
||||
assert!(f >= 2.0 && f <= 4.0);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_sample_usize_single_value() {
|
||||
for val in [0, 1, u64::MAX] {
|
||||
let n = <usize as RangeSample>::from_u64(val, &(5..6));
|
||||
assert_eq!(n, 5);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_sample_f64_negative_range() {
|
||||
for val in [0, u64::MAX / 3, u64::MAX] {
|
||||
let f = <f64 as RangeSample>::from_u64(val, &(-2.0..2.0));
|
||||
assert!(f >= -2.0 && f <= 2.0);
|
||||
}
|
||||
}
|
||||
}
|
@ -1,113 +0,0 @@
|
||||
//! Extensions for shuffling slices with a random number generator.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{rng, SliceRandom};
|
||||
//! let mut data = [1, 2, 3];
|
||||
//! data.shuffle(&mut rng());
|
||||
//! assert_eq!(data.len(), 3);
|
||||
//! ```
|
||||
use crate::random::Rng;
|
||||
|
||||
/// Trait for randomizing slices.
|
||||
pub trait SliceRandom {
|
||||
/// Shuffle the slice in place using the provided RNG.
|
||||
fn shuffle<R: Rng>(&mut self, rng: &mut R);
|
||||
}
|
||||
|
||||
impl<T> SliceRandom for [T] {
|
||||
fn shuffle<R: Rng>(&mut self, rng: &mut R) {
|
||||
for i in (1..self.len()).rev() {
|
||||
let j = rng.random_range(0..(i + 1));
|
||||
self.swap(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::random::{CryptoRng, Prng};
|
||||
|
||||
#[test]
|
||||
fn test_shuffle_slice() {
|
||||
let mut rng = Prng::new(3);
|
||||
let mut arr = [1, 2, 3, 4, 5];
|
||||
let orig = arr.clone();
|
||||
arr.shuffle(&mut rng);
|
||||
assert_eq!(arr.len(), orig.len());
|
||||
let mut sorted = arr.to_vec();
|
||||
sorted.sort();
|
||||
assert_eq!(sorted, orig.to_vec());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_shuffle_deterministic_with_prng() {
|
||||
let mut rng1 = Prng::new(11);
|
||||
let mut rng2 = Prng::new(11);
|
||||
let mut a = [1u8, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||
let mut b = a.clone();
|
||||
a.shuffle(&mut rng1);
|
||||
b.shuffle(&mut rng2);
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_shuffle_crypto_random_changes() {
|
||||
let mut rng1 = CryptoRng::new();
|
||||
let mut rng2 = CryptoRng::new();
|
||||
let orig = [1u8, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||
let mut a = orig.clone();
|
||||
let mut b = orig.clone();
|
||||
a.shuffle(&mut rng1);
|
||||
b.shuffle(&mut rng2);
|
||||
assert!(a != orig || b != orig, "Shuffles did not change order");
|
||||
assert_ne!(a, b, "Two Crypto RNG shuffles produced same order");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_shuffle_single_element_no_change() {
|
||||
let mut rng = Prng::new(1);
|
||||
let mut arr = [42];
|
||||
arr.shuffle(&mut rng);
|
||||
assert_eq!(arr, [42]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multiple_shuffles_different_results() {
|
||||
let mut rng = Prng::new(5);
|
||||
let mut arr1 = [1, 2, 3, 4];
|
||||
let mut arr2 = [1, 2, 3, 4];
|
||||
arr1.shuffle(&mut rng);
|
||||
arr2.shuffle(&mut rng);
|
||||
assert_ne!(arr1, arr2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_shuffle_empty_slice() {
|
||||
let mut rng = Prng::new(1);
|
||||
let mut arr: [i32; 0] = [];
|
||||
arr.shuffle(&mut rng);
|
||||
assert!(arr.is_empty());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_shuffle_three_uniform() {
|
||||
use std::collections::HashMap;
|
||||
let mut rng = Prng::new(123);
|
||||
let mut counts: HashMap<[u8; 3], usize> = HashMap::new();
|
||||
for _ in 0..6000 {
|
||||
let mut arr = [1u8, 2, 3];
|
||||
arr.shuffle(&mut rng);
|
||||
*counts.entry(arr).or_insert(0) += 1;
|
||||
}
|
||||
let expected = 1000.0;
|
||||
let chi2: f64 = counts
|
||||
.values()
|
||||
.map(|&c| {
|
||||
let diff = c as f64 - expected;
|
||||
diff * diff / expected
|
||||
})
|
||||
.sum();
|
||||
assert!(chi2 < 30.0, "shuffle chi-square too high: {chi2}");
|
||||
}
|
||||
}
|
@ -1,10 +1,3 @@
|
||||
//! Generation and manipulation of calendar date sequences.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::utils::dateutils::dates::{DateFreq, DatesList};
|
||||
//! let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
||||
//! assert_eq!(list.count().unwrap(), 3);
|
||||
//! ```
|
||||
use chrono::{Datelike, Duration, NaiveDate, Weekday};
|
||||
use std::collections::HashMap;
|
||||
use std::error::Error;
|
||||
|
@ -1,13 +1,3 @@
|
||||
//! Generators for sequences of calendar and business dates.
|
||||
//!
|
||||
//! See [`dates`] for all-day calendars and [`bdates`] for business-day aware
|
||||
//! variants.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::utils::dateutils::{DatesList, DateFreq};
|
||||
//! let list = DatesList::new("2024-01-01".into(), "2024-01-02".into(), DateFreq::Daily);
|
||||
//! assert_eq!(list.count().unwrap(), 2);
|
||||
//! ```
|
||||
pub mod bdates;
|
||||
pub mod dates;
|
||||
|
||||
|
@ -1,14 +1,3 @@
|
||||
//! Assorted helper utilities.
|
||||
//!
|
||||
//! Currently this module exposes date generation utilities in [`dateutils`](crate::utils::dateutils),
|
||||
//! including calendar and business date sequences.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::utils::DatesList;
|
||||
//! use rustframe::utils::DateFreq;
|
||||
//! let dates = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
||||
//! assert_eq!(dates.count().unwrap(), 3);
|
||||
//! ```
|
||||
pub mod dateutils;
|
||||
|
||||
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};
|
||||
|
Loading…
x
Reference in New Issue
Block a user