28 Commits

Author SHA1 Message Date
Palash Tyagi
e9e4c67dfe Merge 39a95e63d9 into 2926a8a6e8 2025-08-03 01:05:03 +01:00
39a95e63d9 Merge branch 'main' into dataframe 2025-07-16 01:54:37 +01:00
1de8ba4f2d Merge branch 'main' into dataframe 2025-07-06 11:35:08 +01:00
74bec4b69e Merge branch 'main' into dataframe 2025-07-06 11:05:14 +01:00
58b38311b5 Merge branch 'main' into dataframe 2025-07-06 01:04:19 +01:00
4ed23069fc Merge branch 'main' into dataframe 2025-07-06 00:47:15 +01:00
Palash Tyagi
7d7794627b Refactor DataFrame usage example in README.md for clarity and consistency 2025-07-04 20:15:47 +01:00
d9bdf8ee96 Merge branch 'main' into dataframe 2025-07-04 00:59:57 +01:00
a61ff8a4e1 Merge branch 'main' into dataframe 2025-07-04 00:55:16 +01:00
Palash Tyagi
26ee580710 Refactor README: update DataFrame usage example 2025-07-04 00:46:12 +01:00
Palash Tyagi
96934cd89f update DataFrame module exports 2025-07-04 00:45:45 +01:00
Palash Tyagi
27ab1ac129 reimplement dataframe functionality from scratch 2025-07-04 00:45:28 +01:00
Palash Tyagi
eb4fefe363 Enhance DataFrame display: implement column ellipsis for large datasets; improve row and column index calculations for better output formatting. 2025-07-02 23:45:43 +01:00
Palash Tyagi
60cc97e702 Enhance DataFrame display: implement row truncation with ellipsis for large datasets; improve column width calculations and formatting for better readability. 2025-07-02 23:33:34 +01:00
Palash Tyagi
7e2a5ec18d Enhance DataFrame display: update head and tail methods for improved row retrieval and formatting; refine display output for empty DataFrames and adjust column width calculations. 2025-07-02 22:18:09 +01:00
Palash Tyagi
4038d25b07 applied formatting 2025-07-02 00:25:45 +01:00
Palash Tyagi
aa15248b58 Rename variable for clarity in DataFrame display formatting 2025-07-02 00:25:31 +01:00
Palash Tyagi
fa392ec631 Add head_n and tail_n methods to DataFrame for row retrieval; enhance display formatting 2025-07-02 00:22:52 +01:00
Palash Tyagi
8b6f16236a Refactor TypedFrame methods using macros for common functionality and improve column accessors 2025-07-01 23:26:57 +01:00
Palash Tyagi
58acea8467 Add DataFrame usage examples to README.md 2025-06-22 21:16:06 +01:00
Palash Tyagi
2607d9c3b0 Add pub use statement for DataFrame, DataFrameColumn, and TypedFrame in mod.rs 2025-06-22 21:15:12 +01:00
Palash Tyagi
57ed06f79b Reimplemented dataframe class with TypedFrame interface 2025-06-22 19:47:12 +01:00
Palash Tyagi
01a132264f Remove unused imports and clean up test module in DataFrame implementation 2025-06-22 05:44:24 +01:00
Palash Tyagi
ff4535c56b Implement column renaming in DataFrame, updating both logical names and underlying Frame references. 2025-06-22 05:35:48 +01:00
9b480e8130 Merge branch 'main' into dataframe 2025-06-22 05:22:06 +01:00
Palash Tyagi
fe666a4ddb First draft: Implement DataFrame and DataFrameColumn structures 2025-06-22 05:01:19 +01:00
Palash Tyagi
b80d5ab381 Add documentation for the DataFrame module and include it in the library 2025-06-22 05:00:59 +01:00
Palash Tyagi
49f7558225 Enhance column access methods to clarify usage by name and physical index 2025-06-22 05:00:42 +01:00
48 changed files with 819 additions and 1688 deletions

View File

@@ -58,14 +58,6 @@
<h2>A lightweight dataframe & math toolkit for Rust</h2>
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
<p>
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a>
<br><br>
📖 <a href="https://magnus167.github.io/rustframe/user-guide">User Guide</a>
<br><br>
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
@@ -73,7 +65,8 @@
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
<br><br>
<!-- 🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a> -->
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a> |
🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a>
</p>
</main>
</body>

View File

@@ -153,6 +153,7 @@ jobs:
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
mkdir output
cp tarpaulin-report.html target/doc/docs/
cp tarpaulin-report.json target/doc/docs/
cp tarpaulin-badge.json target/doc/docs/
@@ -165,30 +166,16 @@ jobs:
# copy the benchmark report to the output directory
cp -r benchmark-report target/doc/
mkdir output
cp -r target/doc/* output/
- name: Build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh
- name: Copy user guide to output directory
run: |
mkdir output/user-guide
cp -r docs/book/* output/user-guide/
- name: Add index.html to output directory
run: |
cp .github/htmldocs/index.html output/index.html
cp .github/rustframe_logo.png output/rustframe_logo.png
cp .github/htmldocs/index.html target/doc/index.html
cp .github/rustframe_logo.png target/doc/rustframe_logo.png
- name: Upload Pages artifact
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
uses: actions/upload-pages-artifact@v3
with:
# path: target/doc/
path: output/
path: target/doc/
- name: Deploy to GitHub Pages
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'

View File

@@ -78,8 +78,3 @@ jobs:
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Test build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh

2
.gitignore vendored
View File

@@ -17,5 +17,3 @@ data/
tarpaulin-report.*
.github/htmldocs/rustframe_logo.png
docs/book/

View File

@@ -1,12 +1,11 @@
[package]
name = "rustframe"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
version = "0.0.1-a.20250805"
version = "0.0.1-a.20250716"
edition = "2021"
license = "GPL-3.0-or-later"
readme = "README.md"
description = "A simple dataframe and math toolkit"
documentation = "https://magnus167.github.io/rustframe/"
description = "A simple dataframe library"
[lib]
name = "rustframe"

145
README.md
View File

@@ -1,12 +1,11 @@
# rustframe
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🌐 [Gitea mirror](https://gitea.nulltech.uk/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
<!-- [![Last commit](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/rustframe/last-commit-date.json)](https://github.com/Magnus167/rustframe) -->
[![codecov](https://codecov.io/gh/Magnus167/rustframe/graph/badge.svg?token=J7ULJEFTVI)](https://codecov.io/gh/Magnus167/rustframe)
[![Coverage](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/docs/tarpaulin-badge.json)](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
[![gitea-mirror](https://img.shields.io/badge/git_mirror-blue)](https://gitea.nulltech.uk/Magnus167/rustframe)
---
@@ -153,7 +152,134 @@ let zipped_matrix = a.zip(&b, |x, y| x + y);
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
```
## More examples
---
## DataFrame Usage Example
```rust
use chrono::NaiveDate;
use rustframe::dataframe::DataFrame;
use rustframe::utils::{BDateFreq, BDatesList};
use std::any::TypeId;
use std::collections::HashMap;
// Helper for NaiveDate
fn d(y: i32, m: u32, d: u32) -> NaiveDate {
NaiveDate::from_ymd_opt(y, m, d).unwrap()
}
// Create a new DataFrame
let mut df = DataFrame::new();
// Add columns of different types
df.add_column("col_int1", vec![1, 2, 3, 4, 5]);
df.add_column("col_float1", vec![1.1, 2.2, 3.3, 4.4, 5.5]);
df.add_column(
"col_string",
vec![
"apple".to_string(),
"banana".to_string(),
"cherry".to_string(),
"date".to_string(),
"elderberry".to_string(),
],
);
df.add_column("col_bool", vec![true, false, true, false, true]);
// df.add_column("col_date", vec![d(2023,1,1), d(2023,1,2), d(2023,1,3), d(2023,1,4), d(2023,1,5)]);
df.add_column(
"col_date",
BDatesList::from_n_periods("2023-01-01".to_string(), BDateFreq::Daily, 5)
.unwrap()
.list()
.unwrap(),
);
println!("DataFrame after initial column additions:\n{}", df);
// Demonstrate frame re-use when adding columns of existing types
let initial_frames_count = df.num_internal_frames();
println!(
"\nInitial number of internal frames: {}",
initial_frames_count
);
df.add_column("col_int2", vec![6, 7, 8, 9, 10]);
df.add_column("col_float2", vec![6.6, 7.7, 8.8, 9.9, 10.0]);
let frames_after_reuse = df.num_internal_frames();
println!(
"Number of internal frames after adding more columns of existing types: {}",
frames_after_reuse
);
assert_eq!(initial_frames_count, frames_after_reuse); // Should be equal, demonstrating re-use
println!(
"\nDataFrame after adding more columns of existing types:\n{}",
df
);
// Get number of rows and columns
println!("Rows: {}", df.rows()); // Output: Rows: 5
println!("Columns: {}", df.cols()); // Output: Columns: 5
// Get column names
println!("Column names: {:?}", df.get_column_names());
// Output: Column names: ["col_int", "col_float", "col_string", "col_bool", "col_date"]
// Get a specific column by name and type
let int_col = df.get_column::<i32>("col_int1").unwrap();
// Output: Integer column: [1, 2, 3, 4, 5]
println!("Integer column (col_int1): {:?}", int_col);
let int_col2 = df.get_column::<i32>("col_int2").unwrap();
// Output: Integer column: [6, 7, 8, 9, 10]
println!("Integer column (col_int2): {:?}", int_col2);
let float_col = df.get_column::<f64>("col_float1").unwrap();
// Output: Float column: [1.1, 2.2, 3.3, 4.4, 5.5]
println!("Float column (col_float1): {:?}", float_col);
// Attempt to get a column with incorrect type (returns None)
let wrong_type_col = df.get_column::<bool>("col_int1");
// Output: Wrong type column: None
println!("Wrong type column: {:?}", wrong_type_col);
// Get a row by index
let row_0 = df.get_row(0).unwrap();
println!("Row 0: {:?}", row_0);
// Output: Row 0: {"col_int1": "1", "col_float1": "1.1", "col_string": "apple", "col_bool": "true", "col_date": "2023-01-01", "col_int2": "6", "col_float2": "6.6"}
let row_2 = df.get_row(2).unwrap();
println!("Row 2: {:?}", row_2);
// Output: Row 2: {"col_int1": "3", "col_float1": "3.3", "col_string": "cherry", "col_bool": "true", "col_date": "2023-01-03", "col_int2": "8", "col_float2": "8.8"}
// Attempt to get an out-of-bounds row (returns None)
let row_out_of_bounds = df.get_row(10);
// Output: Row out of bounds: None
println!("Row out of bounds: {:?}", row_out_of_bounds);
// Drop a column
df.drop_column("col_bool");
println!("\nDataFrame after dropping 'col_bool':\n{}", df);
println!("Columns after drop: {}", df.cols());
println!("Column names after drop: {:?}", df.get_column_names());
// Drop another column, ensuring the underlying Frame is removed if empty
df.drop_column("col_float1");
println!("\nDataFrame after dropping 'col_float1':\n{}", df);
println!("Columns after second drop: {}", df.cols());
println!(
"Column names after second drop: {:?}",
df.get_column_names()
);
// Attempt to drop a non-existent column (will panic)
// df.drop_column("non_existent_col"); // Uncomment to see panic
```
### More examples
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
@@ -192,21 +318,10 @@ cargo run --example
Each demo runs a couple of mini-scenarios showcasing the APIs.
## Running benchmarks
### Running benchmarks
To run the benchmarks, use:
```bash
cargo bench --features "bench"
```
## Building the user-guide
To build the user guide, use:
```bash
cargo binstall mdbook
bash docs/build.sh
```
This will generate the user guide in the `docs/book` directory.

View File

@@ -1,7 +0,0 @@
[book]
title = "Rustframe User Guide"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
description = "Guided journey through Rustframe capabilities."
[build]
build-dir = "book"

View File

@@ -1,7 +0,0 @@
#!/usr/bin/env sh
# Build and test the Rustframe user guide using mdBook.
set -e
cd docs
bash gen.sh "$@"
cd ..

View File

@@ -1,14 +0,0 @@
#!/usr/bin/env sh
set -e
cargo clean
cargo build --manifest-path ../Cargo.toml
mdbook test -L ../target/debug/deps "$@"
mdbook build "$@"
cargo build
# cargo build --release

View File

@@ -1,7 +0,0 @@
# Summary
- [Introduction](./introduction.md)
- [Data Manipulation](./data-manipulation.md)
- [Compute Features](./compute.md)
- [Machine Learning](./machine-learning.md)
- [Utilities](./utilities.md)

View File

@@ -1,222 +0,0 @@
# Compute Features
The `compute` module hosts numerical routines for exploratory data analysis.
It covers descriptive statistics, correlations, probability distributions and
some basic inferential tests.
## Basic Statistics
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
use rustframe::matrix::Matrix;
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
assert_eq!(mean(&m), 2.5);
assert_eq!(stddev(&m), 1.118033988749895);
assert_eq!(median(&m), 2.5);
assert_eq!(population_variance(&m), 1.25);
assert_eq!(percentile(&m, 50.0), 3.0);
// column averages returned as 1 x n matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.data(), &[2.0, 3.0]);
let col_means = mean_vertical(&m);
assert_eq!(col_means.data(), & [1.5, 3.5]);
```
### Axis-specific Operations
Operations can be applied along specific axes (rows or columns):
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
use rustframe::matrix::Matrix;
// 3x2 matrix
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Mean along columns (vertical) - returns 1 x cols matrix
let col_means = mean_vertical(&m);
assert_eq!(col_means.shape(), (1, 2));
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
// Mean along rows (horizontal) - returns rows x 1 matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.shape(), (3, 1));
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
// Standard deviation along columns
let col_stddev = stddev_vertical(&m);
assert_eq!(col_stddev.shape(), (1, 2));
// Standard deviation along rows
let row_stddev = stddev_horizontal(&m);
assert_eq!(row_stddev.shape(), (3, 1));
```
## Correlation
```rust
# extern crate rustframe;
use rustframe::compute::stats::{pearson, covariance};
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let corr = pearson(&x, &y);
let cov = covariance(&x, &y);
assert!((corr - 1.0).abs() < 1e-8);
assert!((cov - 2.5).abs() < 1e-8);
```
## Covariance
### `covariance`
Computes the population covariance between two equally sized matrices by flattening
their values.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let cov = covariance(&x, &y);
assert!((cov - 2.5).abs() < 1e-8);
```
### `covariance_vertical`
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
column pair covariances.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_vertical;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_vertical(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
```
### `covariance_horizontal`
Computes covariance between rows (i.e. across columns) returning a matrix that
describes how each pair of rows varies together.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_horizontal;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_horizontal(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
```
### `covariance_matrix`
Builds a covariance matrix either between columns (`Axis::Col`) or rows
(`Axis::Row`). Each entry represents how two series co-vary.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_matrix;
use rustframe::matrix::{Axis, Matrix};
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
// Covariance between columns
let cov_cols = covariance_matrix(&data, Axis::Col);
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
// Covariance between rows
let cov_rows = covariance_matrix(&data, Axis::Row);
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
```
## Distributions
Probability distribution helpers are available for common PDFs and CDFs.
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::normal_pdf;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let pdf = normal_pdf(x, 0.0, 1.0);
assert_eq!(pdf.data().len(), 2);
```
### Additional Distributions
Rustframe provides several other probability distributions:
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
use rustframe::matrix::Matrix;
// Normal distribution CDF
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let cdf = normal_cdf(x, 0.0, 1.0);
assert_eq!(cdf.data().len(), 2);
// Binomial distribution PMF
// Probability of k successes in n trials with probability p
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
let pmf = binomial_pmf(3, k.clone(), 0.5);
assert_eq!(pmf.data().len(), 4);
// Binomial distribution CDF
let cdf = binomial_cdf(3, k, 0.5);
assert_eq!(cdf.data().len(), 4);
// Poisson distribution PMF
// Probability of k events with rate parameter lambda
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = poisson_pmf(2.0, k);
assert_eq!(pmf.data().len(), 3);
```
### Inferential Statistics
Rustframe provides several inferential statistical tests:
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
// Two-sample t-test
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_statistic, p_value) = t_test(&sample1, &sample2);
assert!((t_statistic + 5.0).abs() < 1e-5);
assert!(p_value > 0.0 && p_value < 1.0);
// Chi-square test of independence
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2_statistic, p_value) = chi2_test(&observed);
assert!(chi2_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
// One-way ANOVA
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
let groups = vec![&group1, &group2, &group3];
let (f_statistic, p_value) = anova(groups);
assert!(f_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
```
With the basics covered, explore predictive models in the
[machine learning](./machine-learning.md) chapter.

View File

@@ -1,157 +0,0 @@
# Data Manipulation
Rustframe's `Frame` type couples tabular data with
column labels and a typed row index. Frames expose a familiar API for loading
data, selecting rows or columns and performing aggregations.
## Creating a Frame
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
assert_eq!(frame["A"], vec![1.0, 2.0]);
```
## Indexing Rows
Row labels can be integers, dates or a default range. Retrieving a row returns a
view that lets you inspect values by column name or position.
```rust
# extern crate rustframe;
# extern crate chrono;
use chrono::NaiveDate;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
// mutate by row key
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
```
## Column operations
Columns can be inserted, renamed, removed or reordered in place.
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
frame.add_column("Z", vec![5, 6]);
frame.rename("Y", "W");
let removed = frame.delete_column("X");
assert_eq!(removed, vec![1, 2]);
frame.sort_columns();
assert_eq!(frame.columns(), &["W", "Z"]);
```
## Aggregations
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
```rust
# extern crate rustframe;
use rustframe::frame::Frame;
use rustframe::matrix::{Matrix, SeriesOps};
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
```
## Matrix Operations
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let sum = data1.clone() + data2.clone();
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
let product = data1.clone() * data2.clone();
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
let scalar_product = data1.clone() * 2.0;
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
let equals = data1 == data1.clone();
assert_eq!(equals, true);
```
### Advanced Matrix Operations
Matrices support a variety of advanced operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
// Matrix multiplication (dot product)
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let product = a.matrix_mul(&b);
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
// Transpose
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let transposed = m.transpose();
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
// Map function over all elements
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let squared = m.map(|x| x * x);
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
// Zip two matrices with a function
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let zipped = a.zip(&b, |x, y| x + y);
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
```
### Matrix Reductions
Matrices support various reduction operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Sum along columns (vertical)
let col_sums = m.sum_vertical();
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
// Sum along rows (horizontal)
let row_sums = m.sum_horizontal();
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
// Cumulative sum along columns
let col_cumsum = m.cumsum_vertical();
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
// Cumulative sum along rows
let row_cumsum = m.cumsum_horizontal();
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
```
With the basics covered, continue to the [compute features](./compute.md)
chapter for statistics and analytics.

View File

@@ -1,40 +0,0 @@
# Introduction
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
API approachable while offering handy features for small analytical or
educational projects.
Rustframe bundles:
- columnlabelled frames built on a fast columnmajor matrix
- familiar elementwise math and aggregation routines
- a growing `compute` module for statistics and machine learning
- utilities for dates and random numbers
```rust
# extern crate rustframe;
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
// Perform column wise aggregation
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
```
## Resources
- [GitHub repository](https://github.com/Magnus167/rustframe)
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
This guide walks through the main building blocks of the library. Each chapter
contains runnable snippets so you can follow along:
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
2. [Compute features](./compute.md) for statistics and analytics
3. [Machine learning](./machine-learning.md) for predictive models
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules

View File

@@ -1,282 +0,0 @@
# Machine Learning
The `compute::models` module bundles several learning algorithms that operate on
`Matrix` structures. These examples highlight the basic training and prediction
APIs. For more endtoend walkthroughs see the examples directory in the
repository.
Currently implemented models include:
- Linear and logistic regression
- Kmeans clustering
- Principal component analysis (PCA)
- Gaussian Naive Bayes
- Dense neural networks
## Linear Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
let mut model = LinReg::new(1);
model.fit(&x, &y, 0.01, 100);
let preds = model.predict(&x);
assert_eq!(preds.rows(), 4);
```
## K-means Walkthrough
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
let cluster = model.predict(&new_point)[0];
```
## Logistic Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
let mut model = LogReg::new(1);
model.fit(&x, &y, 0.1, 200);
let preds = model.predict_proba(&x);
assert_eq!(preds.rows(), 4);
```
## Principal Component Analysis
```rust
# extern crate rustframe;
use rustframe::compute::models::pca::PCA;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let pca = PCA::fit(&data, 1, 0);
let transformed = pca.transform(&data);
assert_eq!(transformed.cols(), 1);
```
## Gaussian Naive Bayes
Gaussian Naive Bayes classifier for continuous features:
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
1.0, 2.0,
2.0, 3.0,
3.0, 4.0,
4.0, 5.0
], 4, 2);
// Class labels (0 or 1)
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
// Train the model
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Dense Neural Networks
Simple fully connected neural network:
```rust
# extern crate rustframe;
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
1.0, 1.0
], 4, 2);
// XOR target outputs
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
// Create a neural network with 2 hidden layers
let config = DenseNNConfig {
input_size: 2,
hidden_layers: vec![4, 4],
output_size: 1,
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
initializer: InitializerKind::Uniform(0.5),
loss: LossKind::MSE,
learning_rate: 0.1,
epochs: 1000,
};
let mut model = DenseNN::new(config);
// Train the model
model.train(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Real-world Examples
### Housing Price Prediction
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
// Features: square feet and bedrooms
let features = Matrix::from_rows_vec(vec![
2100.0, 3.0,
1600.0, 2.0,
2400.0, 4.0,
1400.0, 2.0,
], 4, 2);
// Sale prices
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
let mut model = LinReg::new(2);
model.fit(&features, &target, 1e-8, 10_000);
// Predict price of a new home
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
let predicted_price = model.predict(&new_home);
println!("Predicted price: ${}", predicted_price.data()[0]);
```
### Spam Detection
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
let x = Matrix::from_rows_vec(
vec![
// ─────────── spam examples ───────────
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
1.0, 0.0, 1.0, 0.0, 1.0, // ...
0.0, 1.0, 1.0, 1.0, 0.0, // ...
2.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 1.0, 0.0, 1.0, // ...
1.0, 1.0, 1.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 1.0, 1.0, // ...
// ─────────── ham examples ───────────
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
0.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0,
],
20,
5,
);
// Labels: 1 = spam, 0 = ham
let y = Matrix::from_vec(
vec![
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
],
20,
1,
);
// Train
let mut model = LogReg::new(5);
model.fit(&x, &y, 0.01, 5000);
// Predict
// e.g. "free money offer"
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
let email = Matrix::from_vec(email_data, 1, 5);
let prob_spam = model.predict_proba(&email);
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
```
### Iris Flower Classification
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Features: sepal length and petal length
let x = Matrix::from_rows_vec(vec![
5.1, 1.4, // setosa
4.9, 1.4, // setosa
6.2, 4.5, // versicolor
5.9, 5.1, // virginica
], 4, 2);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
let names = vec!["setosa", "versicolor", "virginica"];
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
let predicted_class = model.predict(&sample);
let class_name = names[predicted_class.data()[0] as usize];
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
```
### Customer Segmentation
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
// Each row: [age, annual_income]
let customers = Matrix::from_rows_vec(
vec![
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
],
4,
2,
);
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
let cluster = model.predict(&new_customer)[0];
println!("New customer belongs to cluster: {}", cluster);
println!("Cluster labels: {:?}", labels);
```
For helper functions and upcoming modules, visit the
[utilities](./utilities.md) section.

View File

@@ -1,63 +0,0 @@
# Utilities
Utilities provide handy helpers around the core library. Existing tools
include:
- Date utilities for generating calendar sequences and businessday sets
- Random number generators for simulations and testing
## Date Helpers
```rust
# extern crate rustframe;
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
// Calendar sequence
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
assert_eq!(list.count().unwrap(), 3);
// Business days starting from 20240102
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
assert_eq!(bdates.list().unwrap().len(), 3);
```
## Random Numbers
The `random` module offers deterministic and cryptographically secure RNGs.
```rust
# extern crate rustframe;
use rustframe::random::{Prng, Rng};
let mut rng = Prng::new(42);
let v1 = rng.next_u64();
let v2 = rng.next_u64();
assert_ne!(v1, v2);
```
## Stats Functions
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::descriptive::{mean, median, stddev};
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let mean_value = mean(&data);
assert_eq!(mean_value, 3.0);
let median_value = median(&data);
assert_eq!(median_value, 3.0);
let std_value = stddev(&data);
assert_eq!(std_value, 2.0_f64.sqrt());
```
Upcoming utilities will cover:
- Data import/export helpers
- Visualization adapters
- Streaming data interfaces
Contributions to these sections are welcome!

View File

@@ -1,16 +1,3 @@
//! Algorithms and statistical utilities built on top of the core matrices.
//!
//! This module groups together machinelearning models and statistical helper
//! functions. For quick access to basic statistics see [`stats`](crate::compute::stats), while
//! [`models`](crate::compute::models) contains small learning algorithms.
//!
//! ```
//! use rustframe::compute::stats;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0], 3, 1);
//! assert_eq!(stats::mean(&m), 2.0);
//! ```
pub mod models;
pub mod stats;

View File

@@ -1,15 +1,3 @@
//! Common activation functions used in neural networks.
//!
//! Functions operate element-wise on [`Matrix`] values.
//!
//! ```
//! use rustframe::compute::models::activations::sigmoid;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
//! let y = sigmoid(&x);
//! assert!((y.get(0,0) - 0.5).abs() < 1e-6);
//! ```
use crate::matrix::{Matrix, SeriesOps};
pub fn sigmoid(x: &Matrix<f64>) -> Matrix<f64> {

View File

@@ -1,30 +1,3 @@
//! A minimal dense neural network implementation for educational purposes.
//!
//! Layers operate on [`Matrix`] values and support ReLU and Sigmoid
//! activations. This is not meant to be a performant deeplearning framework
//! but rather a small example of how the surrounding matrix utilities can be
//! composed.
//!
//! ```
//! use rustframe::compute::models::dense_nn::{ActivationKind, DenseNN, DenseNNConfig, InitializerKind, LossKind};
//! use rustframe::matrix::Matrix;
//!
//! // Tiny network with one input and one output neuron.
//! let config = DenseNNConfig {
//! input_size: 1,
//! hidden_layers: vec![],
//! output_size: 1,
//! activations: vec![ActivationKind::Relu],
//! initializer: InitializerKind::Uniform(0.5),
//! loss: LossKind::MSE,
//! learning_rate: 0.1,
//! epochs: 1,
//! };
//! let mut nn = DenseNN::new(config);
//! let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0], 2, 1);
//! nn.train(&x, &y);
//! ```
use crate::compute::models::activations::{drelu, relu, sigmoid};
use crate::matrix::{Matrix, SeriesOps};
use crate::random::prelude::*;

View File

@@ -1,16 +1,3 @@
//! Gaussian Naive Bayes classifier for dense matrices.
//!
//! ```
//! use rustframe::compute::models::gaussian_nb::GaussianNB;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 1.0, 2.0], 2, 2); // two samples
//! let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
//! let mut model = GaussianNB::new(1e-9, false);
//! model.fit(&x, &y);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 2);
//! ```
use crate::matrix::Matrix;
use std::collections::HashMap;

View File

@@ -1,14 +1,3 @@
//! Simple k-means clustering working on [`Matrix`] data.
//!
//! ```
//! use rustframe::compute::models::k_means::KMeans;
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
//! let (model, labels) = KMeans::fit(&data, 2, 10, 1e-4);
//! assert_eq!(model.centroids.rows(), 2);
//! assert_eq!(labels.len(), 2);
//! ```
use crate::compute::stats::mean_vertical;
use crate::matrix::Matrix;
use crate::random::prelude::*;

View File

@@ -1,16 +1,3 @@
//! Ordinary least squares linear regression.
//!
//! ```
//! use rustframe::compute::models::linreg::LinReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
//! let mut model = LinReg::new(1);
//! model.fit(&x, &y, 0.01, 100);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 4);
//! ```
use crate::matrix::{Matrix, SeriesOps};
pub struct LinReg {

View File

@@ -1,16 +1,3 @@
//! Binary logistic regression classifier.
//!
//! ```
//! use rustframe::compute::models::logreg::LogReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
//! let mut model = LogReg::new(1);
//! model.fit(&x, &y, 0.1, 100);
//! let preds = model.predict(&x);
//! assert_eq!(preds[(0,0)], 0.0);
//! ```
use crate::compute::models::activations::sigmoid;
use crate::matrix::{Matrix, SeriesOps};

View File

@@ -1,19 +1,3 @@
//! Lightweight machinelearning models built on matrices.
//!
//! Models are intentionally minimal and operate on the [`Matrix`](crate::matrix::Matrix) type for
//! inputs and parameters.
//!
//! ```
//! use rustframe::compute::models::linreg::LinReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
//! let mut model = LinReg::new(1);
//! model.fit(&x, &y, 0.01, 1000);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 4);
//! ```
pub mod activations;
pub mod dense_nn;
pub mod gaussian_nb;

View File

@@ -1,14 +1,3 @@
//! Principal Component Analysis using covariance matrices.
//!
//! ```
//! use rustframe::compute::models::pca::PCA;
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0], 2, 2);
//! let pca = PCA::fit(&data, 1, 0);
//! let projected = pca.transform(&data);
//! assert_eq!(projected.cols(), 1);
//! ```
use crate::compute::stats::correlation::covariance_matrix;
use crate::compute::stats::descriptive::mean_vertical;
use crate::matrix::{Axis, Matrix, SeriesOps};

View File

@@ -1,16 +1,3 @@
//! Covariance and correlation helpers.
//!
//! This module provides routines for measuring the relationship between
//! columns or rows of matrices.
//!
//! ```
//! use rustframe::compute::stats::correlation;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! let cov = correlation::covariance(&x, &x);
//! assert!((cov - 1.25).abs() < 1e-8);
//! ```
use crate::compute::stats::{mean, mean_horizontal, mean_vertical, stddev};
use crate::matrix::{Axis, Matrix, SeriesOps};

View File

@@ -1,15 +1,3 @@
//! Descriptive statistics for matrices.
//!
//! Provides means, variances, medians and other aggregations computed either
//! across the whole matrix or along a specific axis.
//!
//! ```
//! use rustframe::compute::stats::descriptive;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! assert_eq!(descriptive::mean(&m), 2.5);
//! ```
use crate::matrix::{Axis, Matrix, SeriesOps};
pub fn mean(x: &Matrix<f64>) -> f64 {

View File

@@ -1,16 +1,3 @@
//! Probability distribution functions applied element-wise to matrices.
//!
//! Includes approximations for the normal, uniform and gamma distributions as
//! well as the error function.
//!
//! ```
//! use rustframe::compute::stats::distributions;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
//! let pdf = distributions::normal_pdf(x.clone(), 0.0, 1.0);
//! assert!((pdf.get(0,0) - 0.3989).abs() < 1e-3);
//! ```
use crate::matrix::{Matrix, SeriesOps};
use std::f64::consts::PI;

View File

@@ -1,14 +1,3 @@
//! Basic inferential statistics such as ttests and chisquare tests.
//!
//! ```
//! use rustframe::compute::stats::inferential;
//! use rustframe::matrix::Matrix;
//!
//! let a = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
//! let b = Matrix::from_vec(vec![1.1, 1.9], 2, 1);
//! let (t, _p) = inferential::t_test(&a, &b);
//! assert!(t.abs() < 1.0);
//! ```
use crate::matrix::{Matrix, SeriesOps};
use crate::compute::stats::{gamma_cdf, mean, sample_variance};

View File

@@ -1,16 +1,3 @@
//! Statistical routines for matrices.
//!
//! Functions are grouped into submodules for descriptive statistics,
//! correlations, probability distributions and basic inferential tests.
//!
//! ```
//! use rustframe::compute::stats;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! let cov = stats::covariance(&m, &m);
//! assert!((cov - 1.25).abs() < 1e-8);
//! ```
pub mod correlation;
pub mod descriptive;
pub mod distributions;

View File

@@ -1,411 +0,0 @@
use chrono::{NaiveDate, NaiveDateTime};
use std::collections::HashMap;
use std::fs::File;
use std::io::{self, BufRead, BufReader};
use std::path::Path;
/// Represents the target type for a CSV column.
#[derive(Debug, Clone)]
pub enum DataType {
Int,
Float,
Bool,
UInt,
String,
Date,
DateTime,
}
/// Represents a value parsed from the CSV.
#[derive(Debug, Clone, PartialEq)]
pub enum Value {
Int(i64),
Float(f64),
Bool(bool),
UInt(u64),
String(String),
Date(NaiveDate),
DateTime(NaiveDateTime),
}
/// Convenience alias for a parsed CSV record.
pub type Record = HashMap<String, Value>;
/// A simple CSV reader that reads records line by line.
pub struct CsvReader<R: BufRead> {
reader: R,
separators: Vec<char>,
headers: Vec<String>,
types: Option<HashMap<String, DataType>>,
}
/// Builder for [`CsvReader`] allowing chained configuration of headers, types, and separators.
pub struct CsvReaderBuilder<R: BufRead> {
reader: R,
separators: Vec<char>,
headers: Vec<String>,
types: Option<HashMap<String, DataType>>,
}
impl<R: BufRead> CsvReader<R> {
/// Create a new CSV reader from a [`BufRead`] source.
/// The first line is expected to contain headers.
/// `separators` is a list of characters considered as field separators.
/// `types` optionally maps column names to target data types.
pub fn new(
mut reader: R,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<Self> {
let mut first_line = String::new();
reader.read_line(&mut first_line)?;
let headers = parse_line(&first_line, &separators);
Ok(Self {
reader,
separators,
headers,
types,
})
}
/// Create a reader with default settings (comma separator, automatic typing).
pub fn new_default(reader: R) -> io::Result<Self> {
Self::new(reader, vec![','], None)
}
/// Create a reader with default separators and explicit type mapping.
pub fn new_with_types(reader: R, types: HashMap<String, DataType>) -> io::Result<Self> {
Self::new(reader, vec![','], Some(types))
}
/// Start building a reader from a source that lacks headers.
pub fn new_with_headers(reader: R, headers: Vec<String>) -> CsvReaderBuilder<R> {
CsvReaderBuilder {
reader,
separators: vec![','],
headers,
types: None,
}
}
/// Return the headers of the CSV file.
pub fn headers(&self) -> &[String] {
&self.headers
}
/// Read the next record. Returns `Ok(None)` on EOF.
pub fn read_record(&mut self) -> io::Result<Option<Record>> {
let mut line = String::new();
if self.reader.read_line(&mut line)? == 0 {
return Ok(None);
}
let fields = parse_line(&line, &self.separators);
let mut record = HashMap::new();
for (i, header) in self.headers.iter().enumerate() {
let field = fields.get(i).cloned().unwrap_or_default();
let value = match &self.types {
Some(map) => {
if let Some(dt) = map.get(header) {
parse_with_type(&field, dt)
} else {
Value::String(field)
}
}
None => parse_auto(&field),
};
record.insert(header.clone(), value);
}
Ok(Some(record))
}
}
impl<R: BufRead> Iterator for CsvReader<R> {
type Item = io::Result<Record>;
fn next(&mut self) -> Option<Self::Item> {
match self.read_record() {
Ok(Some(rec)) => Some(Ok(rec)),
Ok(None) => None,
Err(e) => Some(Err(e)),
}
}
}
impl<R: BufRead> CsvReaderBuilder<R> {
/// Override field separators for the upcoming reader.
pub fn separators(mut self, separators: Vec<char>) -> Self {
self.separators = separators;
self
}
/// Finalize the builder with an explicit type mapping.
pub fn new_with_types(mut self, types: HashMap<String, DataType>) -> CsvReader<R> {
self.types = Some(types);
self.build()
}
/// Finalize the builder without specifying types.
pub fn build(self) -> CsvReader<R> {
CsvReader {
reader: self.reader,
separators: self.separators,
headers: self.headers,
types: self.types,
}
}
}
impl<R: BufRead> CsvReader<R> {
/// Read all remaining records into a vector.
pub fn read_all(&mut self) -> io::Result<Vec<Record>> {
let mut records = Vec::new();
while let Some(rec) = self.read_record()? {
records.push(rec);
}
Ok(records)
}
}
impl CsvReader<BufReader<File>> {
/// Create a [`CsvReader`] from a file path using comma separators and
/// automatic type detection.
///
/// # Examples
///
/// ```
/// use rustframe::csv::{CsvReader, Value};
/// # let path = std::env::temp_dir().join("from_path_auto.csv");
/// # std::fs::write(&path, "a,b\n1,true\n").unwrap();
/// let mut reader = CsvReader::from_path_auto(&path).unwrap();
/// let rec = reader.next().unwrap().unwrap();
/// assert_eq!(rec.get("a"), Some(&Value::Int(1)));
/// assert_eq!(rec.get("b"), Some(&Value::Bool(true)));
/// # std::fs::remove_file(path).unwrap();
/// ```
pub fn from_path_auto<P: AsRef<Path>>(path: P) -> io::Result<Self> {
let file = File::open(path)?;
let reader = BufReader::new(file);
CsvReader::new_default(reader)
}
}
/// Create an iterator over records from a file path using default settings.
pub fn reader<P: AsRef<Path>>(path: P) -> io::Result<CsvReader<BufReader<File>>> {
reader_with(path, vec![','], None)
}
/// Create an iterator over records from a file path with custom separators and type mapping.
pub fn reader_with<P: AsRef<Path>>(
path: P,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<CsvReader<BufReader<File>>> {
let file = File::open(path)?;
let reader = BufReader::new(file);
CsvReader::new(reader, separators, types)
}
/// Read an entire CSV file into memory using default settings.
pub fn read_file<P: AsRef<Path>>(path: P) -> io::Result<Vec<Record>> {
read_file_with(path, vec![','], None)
}
/// Read an entire CSV file into memory with custom separators and type mapping.
pub fn read_file_with<P: AsRef<Path>>(
path: P,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<Vec<Record>> {
let mut reader = reader_with(path, separators, types)?;
reader.read_all()
}
fn parse_with_type(s: &str, ty: &DataType) -> Value {
match ty {
DataType::Int => s
.parse::<i64>()
.map(Value::Int)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::Float => s
.parse::<f64>()
.map(Value::Float)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::Bool => s
.parse::<bool>()
.map(Value::Bool)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::UInt => s
.parse::<u64>()
.map(Value::UInt)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::String => Value::String(s.to_string()),
DataType::Date => s
.parse::<NaiveDate>()
.map(Value::Date)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::DateTime => NaiveDateTime::parse_from_str(s, "%Y-%m-%d %H:%M:%S")
.map(Value::DateTime)
.unwrap_or_else(|_| Value::String(s.to_string())),
}
}
fn parse_auto(s: &str) -> Value {
if let Ok(i) = s.parse::<i64>() {
Value::Int(i)
} else if let Ok(f) = s.parse::<f64>() {
Value::Float(f)
} else if let Ok(b) = s.parse::<bool>() {
Value::Bool(b)
} else if let Ok(dt) = NaiveDateTime::parse_from_str(s, "%Y-%m-%d %H:%M:%S") {
Value::DateTime(dt)
} else if let Ok(d) = NaiveDate::parse_from_str(s, "%Y-%m-%d") {
Value::Date(d)
} else {
Value::String(s.to_string())
}
}
fn parse_line(line: &str, separators: &[char]) -> Vec<String> {
let mut fields = Vec::new();
let mut current = String::new();
let mut in_quotes: Option<char> = None;
let chars: Vec<char> = line.chars().collect();
let mut i = 0;
while i < chars.len() {
let c = chars[i];
if let Some(q) = in_quotes {
if c == q {
if i + 1 < chars.len() && chars[i + 1] == q {
current.push(q);
i += 1; // skip escaped quote
} else {
in_quotes = None;
}
} else {
current.push(c);
}
} else if c == '"' || c == '\'' {
in_quotes = Some(c);
} else if separators.contains(&c) {
fields.push(current.clone());
current.clear();
} else if c == '\r' {
// Ignore carriage returns
} else if c == '\n' {
break;
} else {
current.push(c);
}
i += 1;
}
fields.push(current);
fields
}
#[cfg(test)]
mod tests {
use super::*;
use chrono::{NaiveDate, NaiveDateTime};
use std::io::Cursor;
#[test]
fn test_parse_line() {
let line = "a,'b,c',\"d\"\"e\",f";
let fields = parse_line(line, &[',']);
assert_eq!(fields, vec!["a", "b,c", "d\"e", "f"]);
}
#[test]
fn test_reader_auto() {
let data = "a,b,c\n1,2.5,true\n4,5.0,false\n";
let cursor = Cursor::new(data);
let mut reader = CsvReader::new_default(cursor).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(1)));
assert_eq!(rec.get("b"), Some(&Value::Float(2.5)));
assert_eq!(rec.get("c"), Some(&Value::Bool(true)));
}
#[test]
fn test_reader_with_types() {
let data = "a,b,c\n1,2,3\n";
let cursor = Cursor::new(data);
let mut types = HashMap::new();
types.insert("a".to_string(), DataType::Int);
types.insert("b".to_string(), DataType::Int);
types.insert("c".to_string(), DataType::String);
let mut reader = CsvReader::new_with_types(cursor, types).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(1)));
assert_eq!(rec.get("b"), Some(&Value::Int(2)));
assert_eq!(rec.get("c"), Some(&Value::String("3".to_string())));
}
#[test]
fn test_chain_headers_and_types() {
let data = "1,2\n3,4\n";
let cursor = Cursor::new(data);
let headers = vec!["x".to_string(), "y".to_string()];
let mut types = HashMap::new();
types.insert("x".to_string(), DataType::Int);
types.insert("y".to_string(), DataType::UInt);
let mut reader = CsvReader::new_with_headers(cursor, headers).new_with_types(types);
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("x"), Some(&Value::Int(1)));
assert_eq!(rec.get("y"), Some(&Value::UInt(2)));
}
#[test]
fn test_date_types() {
let data = "d,dt\n2024-01-01,2024-01-01 12:00:00\n";
let cursor = Cursor::new(data);
let mut types = HashMap::new();
types.insert("d".to_string(), DataType::Date);
types.insert("dt".to_string(), DataType::DateTime);
let mut reader = CsvReader::new_with_types(cursor, types).unwrap();
let rec = reader.next().unwrap().unwrap();
let date = NaiveDate::from_ymd_opt(2024, 1, 1).unwrap();
let datetime: NaiveDateTime = NaiveDate::from_ymd_opt(2024, 1, 1)
.unwrap()
.and_hms_opt(12, 0, 0)
.unwrap();
assert_eq!(rec.get("d"), Some(&Value::Date(date)));
assert_eq!(rec.get("dt"), Some(&Value::DateTime(datetime)));
}
#[test]
fn test_read_file_all() {
let path = std::env::temp_dir().join("csv_full_test.csv");
std::fs::write(&path, "a,b\n1,2\n3,4\n").unwrap();
let records = read_file(&path).unwrap();
assert_eq!(records.len(), 2);
assert_eq!(records[1].get("b"), Some(&Value::Int(4)));
std::fs::remove_file(path).unwrap();
}
#[test]
fn test_reader_from_path() {
let path = std::env::temp_dir().join("csv_iter_test.csv");
std::fs::write(&path, "a,b\n5,6\n").unwrap();
let mut iter = reader(&path).unwrap();
let rec = iter.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(5)));
assert_eq!(rec.get("b"), Some(&Value::Int(6)));
std::fs::remove_file(path).unwrap();
}
#[test]
fn test_from_path_auto_method() {
let path = std::env::temp_dir().join("csv_method_auto.csv");
std::fs::write(&path, "a,b\n7,true\n").unwrap();
let mut reader = CsvReader::from_path_auto(&path).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(7)));
assert_eq!(rec.get("b"), Some(&Value::Bool(true)));
std::fs::remove_file(path).unwrap();
}
}

View File

@@ -1,69 +0,0 @@
//! CSV handling utilities.
//!
//! The [`csv`] module offers a flexible [`CsvReader`] with automatic type
//! detection and optional builders for custom headers and types.
//!
//! # Examples
//!
//! Read from a file with auto type detection:
//!
//! ```
//! use rustframe::csv::CsvReader;
//! # let path = std::env::temp_dir().join("docs_auto.csv");
//! # std::fs::write(&path, "a,b\n1,true\n").unwrap();
//! let mut reader = CsvReader::from_path_auto(&path).unwrap();
//! for rec in reader {
//! let rec = rec.unwrap();
//! println!("{:?}", rec);
//! }
//! # std::fs::remove_file(path).unwrap();
//! ```
//!
//! Specify column types explicitly:
//!
//! ```
//! use rustframe::csv::{CsvReader, DataType, Value};
//! use std::collections::HashMap;
//! use std::io::Cursor;
//! let data = "a,b\n1,2\n";
//! let mut types = HashMap::new();
//! types.insert("a".into(), DataType::Int);
//! types.insert("b".into(), DataType::Float);
//! let mut reader = CsvReader::new_with_types(Cursor::new(data), types).unwrap();
//! let rec = reader.next().unwrap().unwrap();
//! assert_eq!(rec.get("b"), Some(&Value::Float(2.0)));
//! ```
//!
//! Building from custom headers and types:
//!
//! ```
//! use rustframe::csv::{CsvReader, DataType, Value};
//! use std::collections::HashMap;
//! use std::io::Cursor;
//! let data = "1,2\n";
//! let headers = vec!["x".to_string(), "y".to_string()];
//! let mut types = HashMap::new();
//! types.insert("x".into(), DataType::Int);
//! types.insert("y".into(), DataType::UInt);
//! let mut reader = CsvReader::new_with_headers(Cursor::new(data), headers).new_with_types(types);
//! let rec = reader.next().unwrap().unwrap();
//! assert_eq!(rec.get("y"), Some(&Value::UInt(2)));
//! ```
//!
//! Reading an entire file into memory:
//!
//! ```
//! use rustframe::csv::read_file;
//! # let path = std::env::temp_dir().join("docs_full.csv");
//! # std::fs::write(&path, "a,b\n1,2\n3,4\n").unwrap();
//! let records = read_file(&path).unwrap();
//! assert_eq!(records.len(), 2);
//! # std::fs::remove_file(path).unwrap();
//! ```
pub mod csv_core;
pub use csv_core::{
CsvReader, CsvReaderBuilder, DataType, Record, Value, reader, reader_with,
read_file, read_file_with,
};

659
src/dataframe/df.rs Normal file
View File

@@ -0,0 +1,659 @@
use crate::frame::{Frame, RowIndex};
use std::any::{Any, TypeId};
use std::collections::HashMap;
use std::fmt; // Import TypeId
const DEFAULT_DISPLAY_ROWS: usize = 5;
const DEFAULT_DISPLAY_COLS: usize = 10;
// Trait to enable type-agnostic operations on Frame objects within DataFrame
pub trait SubFrame: Send + Sync + fmt::Debug + Any {
fn rows(&self) -> usize;
fn get_value_as_string(&self, physical_row_idx: usize, col_name: &str) -> String;
fn clone_box(&self) -> Box<dyn SubFrame>;
fn delete_column_from_frame(&mut self, col_name: &str);
fn get_frame_cols(&self) -> usize; // Add a method to get the number of columns in the underlying frame
// Methods for downcasting to concrete types
fn as_any(&self) -> &dyn Any;
fn as_any_mut(&mut self) -> &mut dyn Any;
}
// Implement SubFrame for any Frame<T> that meets the requirements
impl<T> SubFrame for Frame<T>
where
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
{
fn rows(&self) -> usize {
self.rows()
}
fn get_value_as_string(&self, physical_row_idx: usize, col_name: &str) -> String {
self.get_row(physical_row_idx).get(col_name).to_string()
}
fn clone_box(&self) -> Box<dyn SubFrame> {
Box::new(self.clone())
}
fn delete_column_from_frame(&mut self, col_name: &str) {
self.delete_column(col_name);
}
fn get_frame_cols(&self) -> usize {
self.cols()
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
}
pub struct DataFrame {
frames_by_type: HashMap<TypeId, Box<dyn SubFrame>>, // Maps TypeId to the Frame holding columns of that type
column_to_type: HashMap<String, TypeId>, // Maps column name to its TypeId
column_names: Vec<String>,
index: RowIndex,
}
impl DataFrame {
pub fn new() -> Self {
DataFrame {
frames_by_type: HashMap::new(),
column_to_type: HashMap::new(),
column_names: Vec::new(),
index: RowIndex::Range(0..0), // Initialize with an empty range index
}
}
/// Returns the number of rows in the DataFrame.
pub fn rows(&self) -> usize {
self.index.len()
}
/// Returns the number of columns in the DataFrame.
pub fn cols(&self) -> usize {
self.column_names.len()
}
/// Returns a reference to the vector of column names.
pub fn get_column_names(&self) -> &Vec<String> {
&self.column_names
}
/// Returns the number of internal Frame objects (one per unique data type).
pub fn num_internal_frames(&self) -> usize {
self.frames_by_type.len()
}
/// Returns a reference to a column of a specific type, if it exists.
pub fn get_column<T>(&self, col_name: &str) -> Option<&[T]>
where
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
{
let expected_type_id = TypeId::of::<T>();
if let Some(actual_type_id) = self.column_to_type.get(col_name) {
if *actual_type_id == expected_type_id {
if let Some(sub_frame_box) = self.frames_by_type.get(actual_type_id) {
if let Some(frame) = sub_frame_box.as_any().downcast_ref::<Frame<T>>() {
return Some(frame.column(col_name));
}
}
}
}
None
}
/// Returns a HashMap representing a row, mapping column names to their string values.
pub fn get_row(&self, row_idx: usize) -> Option<HashMap<String, String>> {
if row_idx >= self.rows() {
return None;
}
let mut row_data = HashMap::new();
for col_name in &self.column_names {
if let Some(type_id) = self.column_to_type.get(col_name) {
if let Some(sub_frame_box) = self.frames_by_type.get(type_id) {
let value = sub_frame_box.get_value_as_string(row_idx, col_name);
row_data.insert(col_name.clone(), value);
}
}
}
Some(row_data)
}
pub fn add_column<T>(&mut self, col_name: &str, data: Vec<T>)
where
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
{
let type_id = TypeId::of::<T>();
let col_name_string = col_name.to_string();
// Check for duplicate column name across the entire DataFrame
if self.column_to_type.contains_key(&col_name_string) {
panic!(
"DataFrame::add_column: duplicate column name: '{}'",
col_name_string
);
}
// If this is the first column being added, set the DataFrame's index
if self.column_names.is_empty() {
self.index = RowIndex::Range(0..data.len());
} else {
// Ensure new column has the same number of rows as existing columns
if data.len() != self.index.len() {
panic!(
"DataFrame::add_column: new column '{}' has {} rows, but existing columns have {} rows",
col_name_string,
data.len(),
self.index.len()
);
}
}
// Check if a Frame of this type already exists
if let Some(sub_frame_box) = self.frames_by_type.get_mut(&type_id) {
// Downcast to the concrete Frame<T> and add the column
if let Some(frame) = sub_frame_box.as_any_mut().downcast_mut::<Frame<T>>() {
frame.add_column(col_name_string.clone(), data);
} else {
// This should ideally not happen if TypeId matches, but good for safety
panic!(
"Type mismatch when downcasting existing SubFrame for TypeId {:?}",
type_id
);
}
} else {
// No Frame of this type exists, create a new one
// The Frame::new constructor expects a Matrix and column names.
// We create a Matrix from a single column vector.
let new_frame = Frame::new(
crate::matrix::Matrix::from_cols(vec![data]),
vec![col_name_string.clone()],
Some(self.index.clone()), // Pass the DataFrame's index to the new Frame
);
self.frames_by_type.insert(type_id, Box::new(new_frame));
}
// Update column mappings and names
self.column_to_type.insert(col_name_string.clone(), type_id);
self.column_names.push(col_name_string);
}
/// Drops a column from the DataFrame.
/// Panics if the column does not exist.
pub fn drop_column(&mut self, col_name: &str) {
let col_name_string = col_name.to_string();
// 1. Get the TypeId associated with the column
let type_id = self
.column_to_type
.remove(&col_name_string)
.unwrap_or_else(|| {
panic!(
"DataFrame::drop_column: column '{}' not found",
col_name_string
);
});
// 2. Remove the column name from the ordered list
self.column_names.retain(|name| name != &col_name_string);
// 3. Find the Frame object and delete the column from it
if let Some(sub_frame_box) = self.frames_by_type.get_mut(&type_id) {
sub_frame_box.delete_column_from_frame(&col_name_string);
// 4. If the Frame object for this type becomes empty, remove it from frames_by_type
if sub_frame_box.get_frame_cols() == 0 {
self.frames_by_type.remove(&type_id);
}
} else {
// This should not happen if column_to_type was consistent
panic!(
"DataFrame::drop_column: internal error, no frame found for type_id {:?}",
type_id
);
}
}
}
impl fmt::Display for DataFrame {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Display column headers
for col_name in self.column_names.iter().take(DEFAULT_DISPLAY_COLS) {
write!(f, "{:<15}", col_name)?;
}
if self.column_names.len() > DEFAULT_DISPLAY_COLS {
write!(f, "...")?;
}
writeln!(f)?;
// Display data rows
let mut displayed_rows = 0;
for i in 0..self.index.len() {
if displayed_rows >= DEFAULT_DISPLAY_ROWS {
writeln!(f, "...")?;
break;
}
for col_name in self.column_names.iter().take(DEFAULT_DISPLAY_COLS) {
if let Some(type_id) = self.column_to_type.get(col_name) {
if let Some(sub_frame_box) = self.frames_by_type.get(type_id) {
write!(f, "{:<15}", sub_frame_box.get_value_as_string(i, col_name))?;
} else {
// This case indicates an inconsistency: column_to_type has an entry,
// but frames_by_type doesn't have the corresponding Frame.
write!(f, "{:<15}", "[ERROR]")?;
}
} else {
// This case indicates an inconsistency: column_names has an entry,
// but column_to_type doesn't have the corresponding column.
write!(f, "{:<15}", "[ERROR]")?;
}
}
if self.column_names.len() > DEFAULT_DISPLAY_COLS {
write!(f, "...")?;
}
writeln!(f)?;
displayed_rows += 1;
}
Ok(())
}
}
impl fmt::Debug for DataFrame {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("DataFrame")
.field("column_names", &self.column_names)
.field("index", &self.index)
.field("column_to_type", &self.column_to_type)
.field("frames_by_type", &self.frames_by_type)
.finish()
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#[cfg(test)]
mod tests {
use super::*;
use crate::frame::Frame;
use crate::matrix::Matrix;
#[test]
fn test_dataframe_new() {
let df = DataFrame::new();
assert_eq!(df.rows(), 0);
assert_eq!(df.cols(), 0);
assert!(df.get_column_names().is_empty());
assert!(df.frames_by_type.is_empty());
assert!(df.column_to_type.is_empty());
}
#[test]
fn test_dataframe_add_column_initial() {
let mut df = DataFrame::new();
let data = vec![1, 2, 3];
df.add_column("col_int", data.clone());
assert_eq!(df.rows(), 3);
assert_eq!(df.cols(), 1);
assert_eq!(df.get_column_names(), &vec!["col_int".to_string()]);
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert_eq!(df.column_to_type.get("col_int"), Some(&TypeId::of::<i32>()));
// Verify the underlying frame
let sub_frame_box = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap();
let frame = sub_frame_box.as_any().downcast_ref::<Frame<i32>>().unwrap();
assert_eq!(frame.rows(), 3);
assert_eq!(frame.cols(), 1);
assert_eq!(frame.columns(), &vec!["col_int".to_string()]);
}
#[test]
fn test_dataframe_add_column_same_type() {
let mut df = DataFrame::new();
df.add_column("col_int1", vec![1, 2, 3]);
df.add_column("col_int2", vec![4, 5, 6]);
assert_eq!(df.rows(), 3);
assert_eq!(df.cols(), 2);
assert_eq!(
df.get_column_names(),
&vec!["col_int1".to_string(), "col_int2".to_string()]
);
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert_eq!(
df.column_to_type.get("col_int1"),
Some(&TypeId::of::<i32>())
);
assert_eq!(
df.column_to_type.get("col_int2"),
Some(&TypeId::of::<i32>())
);
// Verify the underlying frame
let sub_frame_box = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap();
let frame = sub_frame_box.as_any().downcast_ref::<Frame<i32>>().unwrap();
assert_eq!(frame.rows(), 3);
assert_eq!(frame.cols(), 2);
assert_eq!(
frame.columns(),
&vec!["col_int1".to_string(), "col_int2".to_string()]
);
}
#[test]
fn test_dataframe_add_column_different_type() {
let mut df = DataFrame::new();
df.add_column("col_int", vec![1, 2, 3]);
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
df.add_column(
"col_string",
vec!["a".to_string(), "b".to_string(), "c".to_string()],
);
assert_eq!(df.rows(), 3);
assert_eq!(df.cols(), 3);
assert_eq!(
df.get_column_names(),
&vec![
"col_int".to_string(),
"col_float".to_string(),
"col_string".to_string()
]
);
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
assert_eq!(df.column_to_type.get("col_int"), Some(&TypeId::of::<i32>()));
assert_eq!(
df.column_to_type.get("col_float"),
Some(&TypeId::of::<f64>())
);
assert_eq!(
df.column_to_type.get("col_string"),
Some(&TypeId::of::<String>())
);
// Verify underlying frames
let int_frame = df
.frames_by_type
.get(&TypeId::of::<i32>())
.unwrap()
.as_any()
.downcast_ref::<Frame<i32>>()
.unwrap();
assert_eq!(int_frame.columns(), &vec!["col_int".to_string()]);
let float_frame = df
.frames_by_type
.get(&TypeId::of::<f64>())
.unwrap()
.as_any()
.downcast_ref::<Frame<f64>>()
.unwrap();
assert_eq!(float_frame.columns(), &vec!["col_float".to_string()]);
let string_frame = df
.frames_by_type
.get(&TypeId::of::<String>())
.unwrap()
.as_any()
.downcast_ref::<Frame<String>>()
.unwrap();
assert_eq!(string_frame.columns(), &vec!["col_string".to_string()]);
}
#[test]
fn test_dataframe_get_column() {
let mut df = DataFrame::new();
df.add_column("col_int", vec![1, 2, 3]);
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
df.add_column(
"col_string",
vec!["a".to_string(), "b".to_string(), "c".to_string()],
);
// Test getting existing columns with correct type
assert_eq!(
df.get_column::<i32>("col_int").unwrap(),
vec![1, 2, 3].as_slice()
);
assert_eq!(
df.get_column::<f64>("col_float").unwrap(),
vec![1.1, 2.2, 3.3].as_slice()
);
assert_eq!(
df.get_column::<String>("col_string").unwrap(),
vec!["a".to_string(), "b".to_string(), "c".to_string()].as_slice()
);
// Test getting non-existent column
assert_eq!(df.get_column::<i32>("non_existent"), None);
// Test getting existing column with incorrect type
assert_eq!(df.get_column::<f64>("col_int"), None);
assert_eq!(df.get_column::<i32>("col_float"), None);
}
#[test]
fn test_dataframe_get_row() {
let mut df = DataFrame::new();
df.add_column("col_int", vec![1, 2, 3]);
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
df.add_column(
"col_string",
vec!["a".to_string(), "b".to_string(), "c".to_string()],
);
// Test getting an existing row
let row0 = df.get_row(0).unwrap();
assert_eq!(row0.get("col_int"), Some(&"1".to_string()));
assert_eq!(row0.get("col_float"), Some(&"1.1".to_string()));
assert_eq!(row0.get("col_string"), Some(&"a".to_string()));
let row1 = df.get_row(1).unwrap();
assert_eq!(row1.get("col_int"), Some(&"2".to_string()));
assert_eq!(row1.get("col_float"), Some(&"2.2".to_string()));
assert_eq!(row1.get("col_string"), Some(&"b".to_string()));
// Test getting an out-of-bounds row
assert_eq!(df.get_row(3), None);
}
#[test]
#[should_panic(expected = "DataFrame::add_column: duplicate column name: 'col_int'")]
fn test_dataframe_add_column_duplicate_name() {
let mut df = DataFrame::new();
df.add_column("col_int", vec![1, 2, 3]);
df.add_column("col_int", vec![4, 5, 6]);
}
#[test]
#[should_panic(
expected = "DataFrame::add_column: new column 'col_int2' has 2 rows, but existing columns have 3 rows"
)]
fn test_dataframe_add_column_mismatched_rows() {
let mut df = DataFrame::new();
df.add_column("col_int1", vec![1, 2, 3]);
df.add_column("col_int2", vec![4, 5]);
}
#[test]
fn test_dataframe_display() {
let mut df = DataFrame::new();
df.add_column("col_int", vec![1, 2, 3, 4, 5, 6]);
df.add_column("col_float", vec![1.1, 2.2, 3.3, 4.4, 5.5, 6.6]);
df.add_column(
"col_string",
vec![
"a".to_string(),
"b".to_string(),
"c".to_string(),
"d".to_string(),
"e".to_string(),
"f".to_string(),
],
);
let expected_output = "\
col_int col_float col_string
1 1.1 a
2 2.2 b
3 3.3 c
4 4.4 d
5 5.5 e
...
";
assert_eq!(format!("{}", df), expected_output);
}
#[test]
fn test_dataframe_debug() {
let mut df = DataFrame::new();
df.add_column("col_int", vec![1, 2, 3]);
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
let debug_output = format!("{:?}", df);
assert!(debug_output.contains("DataFrame {"));
assert!(debug_output.contains("column_names: [\"col_int\", \"col_float\"]"));
assert!(debug_output.contains("index: Range(0..3)"));
assert!(debug_output.contains("column_to_type: {"));
assert!(debug_output.contains("frames_by_type: {"));
}
#[test]
fn test_dataframe_drop_column_single_type() {
let mut df = DataFrame::new();
df.add_column("col_int1", vec![1, 2, 3]);
df.add_column("col_int2", vec![4, 5, 6]);
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
assert_eq!(df.cols(), 3);
assert_eq!(
df.get_column_names(),
&vec![
"col_int1".to_string(),
"col_int2".to_string(),
"col_float".to_string()
]
);
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
df.drop_column("col_int1");
assert_eq!(df.cols(), 2);
assert_eq!(
df.get_column_names(),
&vec!["col_int2".to_string(), "col_float".to_string()]
);
assert!(df.column_to_type.get("col_int1").is_none());
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>())); // Frame<i32> should still exist
let int_frame = df
.frames_by_type
.get(&TypeId::of::<i32>())
.unwrap()
.as_any()
.downcast_ref::<Frame<i32>>()
.unwrap();
assert_eq!(int_frame.columns(), &vec!["col_int2".to_string()]);
df.drop_column("col_int2");
assert_eq!(df.cols(), 1);
assert_eq!(df.get_column_names(), &vec!["col_float".to_string()]);
assert!(df.column_to_type.get("col_int2").is_none());
assert!(!df.frames_by_type.contains_key(&TypeId::of::<i32>())); // Frame<i32> should be removed
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
}
#[test]
fn test_dataframe_drop_column_mixed_types() {
let mut df = DataFrame::new();
df.add_column("col_int", vec![1, 2, 3]);
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
df.add_column(
"col_string",
vec!["a".to_string(), "b".to_string(), "c".to_string()],
);
assert_eq!(df.cols(), 3);
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
df.drop_column("col_float");
assert_eq!(df.cols(), 2);
assert_eq!(
df.get_column_names(),
&vec!["col_int".to_string(), "col_string".to_string()]
);
assert!(df.column_to_type.get("col_float").is_none());
assert!(!df.frames_by_type.contains_key(&TypeId::of::<f64>())); // Frame<f64> should be removed
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
df.drop_column("col_int");
df.drop_column("col_string");
assert_eq!(df.cols(), 0);
assert!(df.get_column_names().is_empty());
assert!(df.frames_by_type.is_empty());
assert!(df.column_to_type.is_empty());
}
#[test]
#[should_panic(expected = "DataFrame::drop_column: column 'non_existent' not found")]
fn test_dataframe_drop_column_non_existent() {
let mut df = DataFrame::new();
df.add_column("col_int", vec![1, 2, 3]);
df.drop_column("non_existent");
}
#[test]
fn test_dataframe_add_column_reuses_existing_frame() {
let mut df = DataFrame::new();
df.add_column("col_int1", vec![1, 2, 3]);
df.add_column("col_float1", vec![1.1, 2.2, 3.3]);
// Initially, there should be two frames (one for i32, one for f64)
assert_eq!(df.frames_by_type.len(), 2);
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
// Add another integer column
df.add_column("col_int2", vec![4, 5, 6]);
// The number of frames should still be 2, as the existing i32 frame should be reused
assert_eq!(df.frames_by_type.len(), 2);
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
// Verify the i32 frame now contains both integer columns
let int_frame = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap().as_any().downcast_ref::<Frame<i32>>().unwrap();
assert_eq!(int_frame.columns(), &vec!["col_int1".to_string(), "col_int2".to_string()]);
assert_eq!(int_frame.cols(), 2);
// Add another float column
df.add_column("col_float2", vec![4.4, 5.5, 6.6]);
// The number of frames should still be 2, as the existing f64 frame should be reused
assert_eq!(df.frames_by_type.len(), 2);
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
// Verify the f64 frame now contains both float columns
let float_frame = df.frames_by_type.get(&TypeId::of::<f64>()).unwrap().as_any().downcast_ref::<Frame<f64>>().unwrap();
assert_eq!(float_frame.columns(), &vec!["col_float1".to_string(), "col_float2".to_string()]);
assert_eq!(float_frame.cols(), 2);
}
}

4
src/dataframe/mod.rs Normal file
View File

@@ -0,0 +1,4 @@
//! This module provides the DataFrame structure for handling tabular data with mixed types.
pub mod df;
pub use df::{DataFrame, SubFrame};

View File

@@ -1,19 +1,3 @@
//! Core data-frame structures such as [`Frame`] and [`RowIndex`].
//!
//! The [`Frame`] type stores column-labelled data with an optional row index
//! and builds upon the [`crate::matrix::Matrix`] type.
//!
//! # Examples
//!
//! ```
//! use rustframe::frame::{Frame, RowIndex};
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
//! let frame = Frame::new(data, vec!["L", "R"], Some(RowIndex::Int(vec![10, 20])));
//! assert_eq!(frame.columns(), &["L", "R"]);
//! assert_eq!(frame.index(), &RowIndex::Int(vec![10, 20]));
//! ```
use crate::matrix::Matrix;
use chrono::NaiveDate;
use std::collections::HashMap;
@@ -332,7 +316,7 @@ impl<T: Clone + PartialEq> Frame<T> {
)
}
/// Returns an immutable slice of the specified column's data.
/// Returns an immutable slice of the specified column's data by name.
/// Panics if the column name is not found.
pub fn column(&self, name: &str) -> &[T] {
let idx = self
@@ -341,7 +325,13 @@ impl<T: Clone + PartialEq> Frame<T> {
self.matrix.column(idx)
}
/// Returns a mutable slice of the specified column's data.
/// Returns an immutable slice of the specified column's data by its physical index.
/// Panics if the index is out of bounds.
pub fn column_by_physical_idx(&self, idx: usize) -> &[T] {
self.matrix.column(idx)
}
/// Returns a mutable slice of the specified column's data by name.
/// Panics if the column name is not found.
pub fn column_mut(&mut self, name: &str) -> &mut [T] {
let idx = self
@@ -350,6 +340,12 @@ impl<T: Clone + PartialEq> Frame<T> {
self.matrix.column_mut(idx)
}
/// Returns a mutable slice of the specified column's data by its physical index.
/// Panics if the index is out of bounds.
pub fn column_mut_by_physical_idx(&mut self, idx: usize) -> &mut [T] {
self.matrix.column_mut(idx)
}
// Row access methods
/// Returns an immutable view of the row for the given integer key.

View File

@@ -1,21 +1,3 @@
//! High-level interface for working with columnar data and row indices.
//!
//! The [`Frame`](crate::frame::Frame) type combines a matrix with column labels and a typed row
//! index, similar to data frames in other data-analysis libraries.
//!
//! # Examples
//!
//! ```
//! use rustframe::frame::{Frame, RowIndex};
//! use rustframe::matrix::Matrix;
//!
//! // Build a frame from two columns labelled "A" and "B".
//! let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
//! let frame = Frame::new(data, vec!["A", "B"], None);
//!
//! assert_eq!(frame["A"], vec![1.0, 2.0]);
//! assert_eq!(frame.index(), &RowIndex::Range(0..2));
//! ```
pub mod base;
pub mod ops;

View File

@@ -1,16 +1,3 @@
//! Trait implementations that allow [`Frame`] to reuse matrix operations.
//!
//! These modules forward numeric and boolean aggregation methods from the
//! underlying [`Matrix`](crate::matrix::Matrix) type so that they can be called
//! directly on a [`Frame`].
//!
//! ```
//! use rustframe::frame::Frame;
//! use rustframe::matrix::{Matrix, SeriesOps};
//!
//! let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
//! assert_eq!(frame.sum_vertical(), vec![3.0]);
//! ```
use crate::frame::Frame;
use crate::matrix::{Axis, BoolMatrix, BoolOps, FloatMatrix, SeriesOps};

View File

@@ -1,5 +1,8 @@
#![doc = include_str!("../README.md")]
/// Documentation for the [`crate::dataframe`] module.
pub mod dataframe;
/// Documentation for the [`crate::matrix`] module.
pub mod matrix;
@@ -14,6 +17,3 @@ pub mod compute;
/// Documentation for the [`crate::random`] module.
pub mod random;
/// Documentation for the [`crate::csv`] module.
pub mod csv;

View File

@@ -1,14 +1,3 @@
//! Logical reductions for boolean matrices.
//!
//! The [`BoolOps`] trait mirrors common boolean aggregations such as `any` and
//! `all` over rows or columns of a [`BoolMatrix`].
//!
//! ```
//! use rustframe::matrix::{BoolMatrix, BoolOps};
//!
//! let m = BoolMatrix::from_vec(vec![true, false], 2, 1);
//! assert!(m.any());
//! ```
use crate::matrix::{Axis, BoolMatrix};
/// Boolean operations on `Matrix<bool>`

View File

@@ -1,18 +1,3 @@
//! Core matrix types and operations.
//!
//! The [`Matrix`](crate::matrix::Matrix) struct provides a simple columnmajor 2D array with a
//! suite of numeric helpers. Additional traits like [`SeriesOps`](crate::matrix::SeriesOps) and
//! [`BoolOps`](crate::matrix::BoolOps) extend functionality for common statistics and logical reductions.
//!
//! # Examples
//!
//! ```
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
//! assert_eq!(m.shape(), (2, 2));
//! assert_eq!(m[(0,1)], 3);
//! ```
pub mod boolops;
pub mod mat;
pub mod seriesops;

View File

@@ -1,14 +1,3 @@
//! Numeric reductions and transformations over matrix axes.
//!
//! [`SeriesOps`] provides methods like [`SeriesOps::sum_vertical`] or
//! [`SeriesOps::map`] that operate on [`FloatMatrix`] values.
//!
//! ```
//! use rustframe::matrix::{Matrix, SeriesOps};
//!
//! let m = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
//! assert_eq!(m.sum_horizontal(), vec![4.0, 6.0]);
//! ```
use crate::matrix::{Axis, BoolMatrix, FloatMatrix};
/// "Series-like" helpers that work along a single axis.

View File

@@ -1,13 +1,3 @@
//! Cryptographically secure random number generator.
//!
//! On Unix systems this reads from `/dev/urandom`; on Windows it uses the
//! system's preferred CNG provider.
//!
//! ```
//! use rustframe::random::{crypto_rng, Rng};
//! let mut rng = crypto_rng();
//! let _v = rng.next_u64();
//! ```
#[cfg(unix)]
use std::{fs::File, io::Read};

View File

@@ -1,18 +1,3 @@
//! Random number generation utilities.
//!
//! Provides both a simple pseudo-random generator [`Prng`](crate::random::Prng) and a
//! cryptographically secure alternative [`CryptoRng`](crate::random::CryptoRng). The
//! [`SliceRandom`](crate::random::SliceRandom) trait offers shuffling of slices using any RNG
//! implementing [`Rng`](crate::random::Rng).
//!
//! ```
//! use rustframe::random::{rng, SliceRandom};
//!
//! let mut rng = rng();
//! let mut data = [1, 2, 3, 4];
//! data.shuffle(&mut rng);
//! assert_eq!(data.len(), 4);
//! ```
pub mod crypto;
pub mod prng;
pub mod random_core;

View File

@@ -1,11 +1,3 @@
//! A tiny XorShift64-based pseudo random number generator.
//!
//! ```
//! use rustframe::random::{rng, Rng};
//! let mut rng = rng();
//! let x = rng.next_u64();
//! assert!(x >= 0);
//! ```
use std::time::{SystemTime, UNIX_EPOCH};
use crate::random::Rng;

View File

@@ -1,11 +1,3 @@
//! Core traits for random number generators and sampling ranges.
//!
//! ```
//! use rustframe::random::{rng, Rng};
//! let mut r = rng();
//! let value: f64 = r.random_range(0.0..1.0);
//! assert!(value >= 0.0 && value < 1.0);
//! ```
use std::f64::consts::PI;
use std::ops::Range;

View File

@@ -1,11 +1,3 @@
//! Extensions for shuffling slices with a random number generator.
//!
//! ```
//! use rustframe::random::{rng, SliceRandom};
//! let mut data = [1, 2, 3];
//! data.shuffle(&mut rng());
//! assert_eq!(data.len(), 3);
//! ```
use crate::random::Rng;
/// Trait for randomizing slices.

View File

@@ -1,10 +1,3 @@
//! Generation and manipulation of calendar date sequences.
//!
//! ```
//! use rustframe::utils::dateutils::dates::{DateFreq, DatesList};
//! let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
//! assert_eq!(list.count().unwrap(), 3);
//! ```
use chrono::{Datelike, Duration, NaiveDate, Weekday};
use std::collections::HashMap;
use std::error::Error;

View File

@@ -1,13 +1,3 @@
//! Generators for sequences of calendar and business dates.
//!
//! See [`dates`] for all-day calendars and [`bdates`] for business-day aware
//! variants.
//!
//! ```
//! use rustframe::utils::dateutils::{DatesList, DateFreq};
//! let list = DatesList::new("2024-01-01".into(), "2024-01-02".into(), DateFreq::Daily);
//! assert_eq!(list.count().unwrap(), 2);
//! ```
pub mod bdates;
pub mod dates;

View File

@@ -1,14 +1,3 @@
//! Assorted helper utilities.
//!
//! Currently this module exposes date generation utilities in [`dateutils`](crate::utils::dateutils),
//! including calendar and business date sequences.
//!
//! ```
//! use rustframe::utils::DatesList;
//! use rustframe::utils::DateFreq;
//! let dates = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
//! assert_eq!(dates.count().unwrap(), 3);
//! ```
pub mod dateutils;
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};