mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00

rustframe
📚 Docs | 🐙 GitHub | 🌐 Gitea mirror | 🦀 Crates.io | 🔖 docs.rs
Rustframe: A lightweight dataframe & math toolkit for Rust
Rustframe provides intuitive dataframe, matrix, and series operations small-to-mid scale data analysis and manipulation.
Rustframe keeps things simple, safe, and readable. It is handy for quick numeric experiments and small analytical tasks, but it is not meant to compete with powerhouse crates like polars
or ndarray
.
What it offers
- Math that reads like math - element‑wise
+
,−
,×
,÷
on entire frames or scalars. - Broadcast & reduce - sum, product, any/all across rows or columns without boilerplate.
- Boolean masks made simple - chain comparisons, combine with
&
/|
, get a tidyBoolMatrix
back. - Date‑centric row index - business‑day ranges and calendar slicing built in.
- Pure safe Rust - 100 % safe, zero
unsafe
.
Heads up
- Not memory‑efficient (yet) - footprint needs work.
- Feature set still small - expect missing pieces.
On the horizon
- Optional GPU help (Vulkan or similar) for heavier workloads.
- Straightforward Python bindings using
pyo3
.
Quick start
use chrono::NaiveDate;
use rustframe::{
frame::{Frame, RowIndex},
matrix::{BoolOps, Matrix, SeriesOps},
utils::{DateFreq, BDatesList},
};
let n_periods = 4;
// Four business days starting 2024‑01‑02
let dates: Vec<NaiveDate> =
BDatesList::from_n_periods("2024-01-02".to_string(), DateFreq::Daily, n_periods)
.unwrap()
.list().unwrap();
let col_names: Vec<String> = vec!["a".to_string(), "b".to_string()];
let ma: Matrix<f64> =
Matrix::from_cols(vec![vec![1.0, 2.0, 3.0, 4.0], vec![5.0, 6.0, 7.0, 8.0]]);
let mb: Matrix<f64> =
Matrix::from_cols(vec![vec![4.0, 3.0, 2.0, 1.0], vec![8.0, 7.0, 6.0, 5.0]]);
let fa: Frame<f64> = Frame::new(
ma.clone(),
col_names.clone(),
Some(RowIndex::Date(dates.clone())),
);
let fb: Frame<f64> = Frame::new(mb, col_names, Some(RowIndex::Date(dates)));
// Math that reads like math
let result: Frame<f64> = &fa * &fb; // element‑wise multiply
let total: f64 = result.sum_vertical().iter().sum::<f64>();
assert_eq!(total, 184.0);
// broadcast & reduce
let result: Matrix<f64> = ma.clone() + 1.0; // add scalar
let result: Matrix<f64> = result + &ma - &ma; // add matrix
let result: Matrix<f64> = result - 1.0; // subtract scalar
let result: Matrix<f64> = result * 2.0; // multiply by scalar
let result: Matrix<f64> = result / 2.0; // divide by scalar
let check: bool = result.eq_elem(ma.clone()).all();
assert!(check);
// The above math can also be written as:
let check: bool = (&(&(&(&ma + 1.0) - 1.0) * 2.0) / 2.0)
.eq_elem(ma.clone())
.all();
assert!(check);
// The above math can also be written as:
let check: bool = ((((ma.clone() + 1.0) - 1.0) * 2.0) / 2.0)
.eq_elem(ma)
.all();
assert!(check);
DataFrame Usage Example
use rustframe::{
dataframe::{DataFrame, TypedFrame, DataFrameColumn},
frame::{Frame, RowIndex},
matrix::Matrix,
};
// Helper to create a simple f64 TypedFrame (similar to test helpers)
fn create_f64_typed_frame(name: &str, data: Vec<f64>, index: Option<RowIndex>) -> TypedFrame {
let rows = data.len();
let matrix = Matrix::from_cols(vec![data]);
let frame_index = index.unwrap_or(RowIndex::Range(0..rows));
TypedFrame::F64(Frame::new(
matrix,
vec![name.to_string()],
Some(frame_index),
))
}
// Helper to create a simple i64 TypedFrame
fn create_i64_typed_frame(name: &str, data: Vec<i64>, index: Option<RowIndex>) -> TypedFrame {
let rows = data.len();
let matrix = Matrix::from_cols(vec![data]);
let frame_index = index.unwrap_or(RowIndex::Range(0..rows));
TypedFrame::I64(Frame::new(
matrix,
vec![name.to_string()],
Some(frame_index),
))
}
// Helper to create a simple String TypedFrame
fn create_string_typed_frame(
name: &str,
data: Vec<String>,
index: Option<RowIndex>,
) -> TypedFrame {
let rows = data.len();
let matrix = Matrix::from_cols(vec![data]);
let frame_index = index.unwrap_or(RowIndex::Range(0..rows));
TypedFrame::String(Frame::new(
matrix,
vec![name.to_string()],
Some(frame_index),
))
}
fn main() {
// 1. Create a DataFrame with different data types
let col_a = create_f64_typed_frame("A", vec![1.0, 2.0, 3.0], None);
let col_b = create_i64_typed_frame("B", vec![10, 20, 30], None);
let col_c = create_string_typed_frame(
"C",
vec!["apple".to_string(), "banana".to_string(), "cherry".to_string()],
None,
);
let mut df = DataFrame::new(
vec![col_a, col_b, col_c],
vec!["A".to_string(), "B".to_string(), "C".to_string()],
None,
);
println!("Initial DataFrame:\n{:?}", df);
println!("Columns: {:?}", df.columns());
println!("Rows: {}", df.rows());
// 2. Accessing columns
if let DataFrameColumn::F64(col_a_data) = df.column("A") {
println!("Column 'A' (f64): {:?}", col_a_data);
}
if let DataFrameColumn::String(col_c_data) = df.column("C") {
println!("Column 'C' (String): {:?}", col_c_data);
}
// 3. Add a new column
let new_col_d = create_f64_typed_frame("D", vec![100.0, 200.0, 300.0], None);
df.add_column("D".to_string(), new_col_d);
println!("\nDataFrame after adding column 'D':\n{:?}", df);
println!("Columns after add: {:?}", df.columns());
// 4. Rename a column
df.rename_column("A", "Alpha".to_string());
println!("\nDataFrame after renaming 'A' to 'Alpha':\n{:?}", df);
println!("Columns after rename: {:?}", df.columns());
// 5. Delete a column
let _deleted_col_b = df.delete_column("B");
println!("\nDataFrame after deleting column 'B':\n{:?}", df);
println!("Columns after delete: {:?}", df.columns());
}
Description
Languages
Rust
100%