Rustframe rustframe

📚 Docs | 🐙 GitHub | 🌐 Gitea mirror | 🦀 Crates.io | 🔖 docs.rs

codecov Coverage


Rustframe: A lightweight dataframe & math toolkit for Rust

Rustframe provides intuitive dataframe, matrix, and series operations small-to-mid scale data analysis and manipulation.

Rustframe keeps things simple, safe, and readable. It is handy for quick numeric experiments and small analytical tasks, but it is not meant to compete with powerhouse crates like polars or ndarray.

What it offers

  • Math that reads like math - elementwise +, , ×, ÷ on entire frames or scalars.
  • Broadcast & reduce - sum, product, any/all across rows or columns without boilerplate.
  • Boolean masks made simple - chain comparisons, combine with &/|, get a tidy BoolMatrix back.
  • Datecentric row index - businessday ranges and calendar slicing built in.
  • Pure safe Rust - 100% safe, zero unsafe.

Heads up

  • Not memoryefficient (yet) - footprint needs work.
  • Feature set still small - expect missing pieces.

On the horizon

  • Optional GPU help (Vulkan or similar) for heavier workloads.
  • Straightforward Python bindings using pyo3.

Quick start

use chrono::NaiveDate;
use rustframe::{
    frame::{Frame, RowIndex},
    matrix::{BoolOps, Matrix, SeriesOps},
    utils::{DateFreq, BDatesList},
};

let n_periods = 4;

// Four business days starting 20240102
let dates: Vec<NaiveDate> =
    BDatesList::from_n_periods("2024-01-02".to_string(), DateFreq::Daily, n_periods)
        .unwrap()
        .list().unwrap();

let col_names: Vec<String> = vec!["a".to_string(), "b".to_string()];

let ma: Matrix<f64> =
    Matrix::from_cols(vec![vec![1.0, 2.0, 3.0, 4.0], vec![5.0, 6.0, 7.0, 8.0]]);
let mb: Matrix<f64> =
    Matrix::from_cols(vec![vec![4.0, 3.0, 2.0, 1.0], vec![8.0, 7.0, 6.0, 5.0]]);

let fa: Frame<f64> = Frame::new(
    ma.clone(),
    col_names.clone(),
    Some(RowIndex::Date(dates.clone())),
);
let fb: Frame<f64> = Frame::new(mb, col_names, Some(RowIndex::Date(dates)));

// Math that reads like math
let result: Frame<f64> = &fa * &fb; // elementwise multiply
let total: f64 = result.sum_vertical().iter().sum::<f64>();
assert_eq!(total, 184.0);

// broadcast & reduce
let result: Matrix<f64> = ma.clone() + 1.0; // add scalar
let result: Matrix<f64> = result + &ma - &ma; // add matrix
let result: Matrix<f64> = result - 1.0; // subtract scalar
let result: Matrix<f64> = result * 2.0; // multiply by scalar
let result: Matrix<f64> = result / 2.0; // divide by scalar

let check: bool = result.eq_elem(ma.clone()).all();
assert!(check);

// The above math can also be written as:
let check: bool = (&(&(&(&ma + 1.0) - 1.0) * 2.0) / 2.0)
    .eq_elem(ma.clone())
    .all();
assert!(check);

// The above math can also be written as:
let check: bool = ((((ma.clone() + 1.0) - 1.0) * 2.0) / 2.0)
    .eq_elem(ma)
    .all();
assert!(check);


Languages
Rust 100%