67 Commits

Author SHA1 Message Date
Palash Tyagi
ef25e77f04 Update documentation for CSV module with detailed usage examples 2025-08-24 19:51:53 +01:00
Palash Tyagi
4ba5cfea18 Enhance CSV reader with support for UInt, Date, and DateTime types; add builder methods for easier configuration 2025-08-24 19:51:47 +01:00
Palash Tyagi
23367c7ca3 Add csv module and core functionality for CSV reading 2025-08-07 22:38:18 +01:00
Palash Tyagi
df8c1d2a12 Implement CSV reader with support for custom separators and data types 2025-08-07 22:38:11 +01:00
Palash Tyagi
1381c77eaf Revert "Update README to include upcoming features for CSV I/O, Date Utils, and more math functions"
This reverts commit 623303cf72.
2025-08-05 23:25:56 +01:00
c56574f0f3 Merge branch 'main' into csv 2025-08-05 23:20:10 +01:00
c53693fa7b Merge pull request #72 from Magnus167/release/a20250805
Bump version to 0.0.1-a.20250805 in Cargo.toml
2025-08-05 00:11:57 +01:00
109d39b248 Merge branch 'main' into release/a20250805 2025-08-05 00:08:27 +01:00
Palash Tyagi
18ad6c689a Bump version to 0.0.1-a.20250805 in Cargo.toml 2025-08-05 00:06:49 +01:00
1fead78b69 Merge pull request #71 from Magnus167/prep-release-20250804
Update package version and enhance description in Cargo.toml
2025-08-04 23:27:12 +01:00
Palash Tyagi
6fb32e743c Update package version and enhance description in Cargo.toml 2025-08-04 23:15:24 +01:00
2cb4e46217 Merge pull request #69 from Magnus167/user-guide
Add user guide mdbook
2025-08-04 22:22:55 +01:00
Palash Tyagi
a53ba63f30 Rearrange links in the introduction for improved visibility 2025-08-04 22:20:58 +01:00
Palash Tyagi
dae60ea1bd Rearrange links in the README for improved visibility 2025-08-04 22:15:42 +01:00
Palash Tyagi
755dee58e7 Refactor machine learning user-guide 2025-08-04 22:14:17 +01:00
Palash Tyagi
9e6e22fc37 Add covariance functions and examples to documentation 2025-08-04 20:37:27 +01:00
Palash Tyagi
b687fd4e6b Add advanced matrix operations and Gaussian Naive Bayes examples to documentation 2025-08-04 19:21:36 +01:00
Palash Tyagi
68a01ab528 Enhance documentation with additional compute examples and stats functions 2025-08-04 15:52:57 +01:00
Palash Tyagi
23a01dab07 Update documentation links 2025-08-04 00:29:13 +01:00
Palash Tyagi
f4ebd78234 Comment out the release build command in gen.sh for clarity 2025-08-04 00:06:59 +01:00
Palash Tyagi
1475156855 Fix casing in user guide title for consistency 2025-08-04 00:05:31 +01:00
Palash Tyagi
080680d095 Update book metadata: correct author field and ensure consistent title casing 2025-08-04 00:05:13 +01:00
Palash Tyagi
2845f357b7 Revise introduction for clarity and detail, enhancing the overview of RustFrame's features and capabilities 2025-08-04 00:04:41 +01:00
Palash Tyagi
3d11226d57 Update machine learning documentation for clarity and completeness 2025-08-04 00:04:36 +01:00
Palash Tyagi
039fb1a98e Enhance utilities documentation with additional date and random number examples 2025-08-04 00:04:07 +01:00
Palash Tyagi
31a5ba2460 Improve data manipulation examples 2025-08-04 00:02:46 +01:00
Palash Tyagi
1a9f397702 Add more statistical routines and examples 2025-08-04 00:02:17 +01:00
Palash Tyagi
ecd06eb352 update format in README 2025-08-03 23:28:19 +01:00
Palash Tyagi
ae327b6060 Update user guide build script path in CI workflows 2025-08-03 23:28:03 +01:00
Palash Tyagi
83ac9d4821 Remove local build instructions from the introduction of the user guide 2025-08-03 23:25:17 +01:00
Palash Tyagi
ae27ed9373 Add instructions for building the user guide 2025-08-03 23:25:13 +01:00
Palash Tyagi
c7552f2264 Simplify user guide build steps in CI workflows 2025-08-03 23:24:54 +01:00
Palash Tyagi
3654c7053c Refactor build process 2025-08-03 23:23:10 +01:00
Palash Tyagi
1dcd9727b4 Update output directory structure for user guide and index files 2025-08-03 23:15:54 +01:00
Palash Tyagi
b62152b4f0 Update output directory for user guide and artifact upload in CI workflow 2025-08-03 23:01:54 +01:00
Palash Tyagi
a6a901d6ab Add step to install mdBook for user guide build in CI workflows 2025-08-03 22:16:53 +01:00
Palash Tyagi
676af850ef Add step to test user guide build in CI workflow 2025-08-03 22:13:25 +01:00
Palash Tyagi
ca2ca2a738 Add link to User Guide in the main index page 2025-08-03 22:11:15 +01:00
Palash Tyagi
4876a74e01 Add user guide build and output steps to CI workflow 2025-08-03 22:11:10 +01:00
Palash Tyagi
b78dd75e77 Add build script for RustFrame user guide using mdBook 2025-08-03 22:07:38 +01:00
Palash Tyagi
9db8853d75 Add user guide configuration and update .gitignore 2025-08-03 22:07:32 +01:00
Palash Tyagi
9738154dac Add user guide examples 2025-08-03 22:07:18 +01:00
7d0978e5fb Merge pull request #68 from Magnus167/update-docs
Enhance documentation with usage examples
2025-08-03 17:45:29 +01:00
Palash Tyagi
ed01c4b8f2 Enhance documentation with usage examples for crate::compute::models 2025-08-03 16:48:37 +01:00
Palash Tyagi
e6964795e3 Enhance documentation with usage examples for statistical routines and utilities 2025-08-03 16:48:02 +01:00
Palash Tyagi
d1dd7ea6d2 Enhance documentation with usage examples for core data-frame structures and operations 2025-08-03 16:46:20 +01:00
Palash Tyagi
676f78bb1e Enhance documentation with usage examples for boolean and series operations 2025-08-03 16:45:30 +01:00
Palash Tyagi
f7325a9558 Enhance documentation with usage examples for date generation utilities 2025-08-03 16:45:15 +01:00
Palash Tyagi
18b9eef063 Enhance documentation with usage examples for random number generation utilities 2025-08-03 16:45:00 +01:00
Palash Tyagi
f99f78d508 Update section headers in README.md for consistency 2025-08-03 16:44:34 +01:00
cd3aa84e60 Merge branch 'main' into csv 2025-07-06 11:35:13 +01:00
27275e2479 Merge branch 'main' into csv 2025-07-06 11:05:20 +01:00
9ef719316a Merge branch 'main' into csv 2025-07-06 01:04:10 +01:00
960fd345c2 Merge branch 'main' into csv 2025-07-04 00:59:25 +01:00
325e75419c Merge branch 'main' into csv 2025-06-07 13:38:30 +01:00
b1dc18d05b Merge branch 'main' into csv 2025-05-15 18:35:46 +01:00
8cbb957764 Merge branch 'main' into csv 2025-05-13 00:08:38 +01:00
b937ed1cdf Merge branch 'main' into csv 2025-05-11 02:00:25 +01:00
2e071a6974 Merge branch 'main' into csv 2025-05-05 02:13:15 +01:00
689169bab2 Merge branch 'main' into csv 2025-05-05 02:01:45 +01:00
a45a5ecf4e Merge branch 'main' into csv 2025-05-04 02:29:12 +01:00
84e1b423f4 Merge branch 'main' into csv 2025-05-04 02:10:55 +01:00
197739bc2f Merge branch 'main' into csv 2025-05-04 01:07:58 +01:00
d2c2ebca0f Merge branch 'main' into csv 2025-05-03 01:32:05 +01:00
f5f3f2c100 Merge branch 'main' into csv 2025-05-02 23:38:37 +01:00
9fcb1ea2cf Merge branch 'main' into csv 2025-05-01 01:14:09 +01:00
Palash Tyagi
623303cf72 Update README to include upcoming features for CSV I/O, Date Utils, and more math functions 2025-05-01 01:13:34 +01:00
46 changed files with 1686 additions and 12 deletions

View File

@@ -58,6 +58,14 @@
<h2>A lightweight dataframe & math toolkit for Rust</h2>
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
<p>
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a>
<br><br>
📖 <a href="https://magnus167.github.io/rustframe/user-guide">User Guide</a>
<br><br>
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
@@ -65,8 +73,7 @@
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
<br><br>
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a> |
🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a>
<!-- 🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a> -->
</p>
</main>
</body>

View File

@@ -153,7 +153,6 @@ jobs:
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
mkdir output
cp tarpaulin-report.html target/doc/docs/
cp tarpaulin-report.json target/doc/docs/
cp tarpaulin-badge.json target/doc/docs/
@@ -166,16 +165,30 @@ jobs:
# copy the benchmark report to the output directory
cp -r benchmark-report target/doc/
mkdir output
cp -r target/doc/* output/
- name: Build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh
- name: Copy user guide to output directory
run: |
mkdir output/user-guide
cp -r docs/book/* output/user-guide/
- name: Add index.html to output directory
run: |
cp .github/htmldocs/index.html target/doc/index.html
cp .github/rustframe_logo.png target/doc/rustframe_logo.png
cp .github/htmldocs/index.html output/index.html
cp .github/rustframe_logo.png output/rustframe_logo.png
- name: Upload Pages artifact
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
uses: actions/upload-pages-artifact@v3
with:
path: target/doc/
# path: target/doc/
path: output/
- name: Deploy to GitHub Pages
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'

View File

@@ -78,3 +78,8 @@ jobs:
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Test build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh

4
.gitignore vendored
View File

@@ -16,4 +16,6 @@ data/
tarpaulin-report.*
.github/htmldocs/rustframe_logo.png
.github/htmldocs/rustframe_logo.png
docs/book/

View File

@@ -1,11 +1,12 @@
[package]
name = "rustframe"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
version = "0.0.1-a.20250716"
version = "0.0.1-a.20250805"
edition = "2021"
license = "GPL-3.0-or-later"
readme = "README.md"
description = "A simple dataframe library"
description = "A simple dataframe and math toolkit"
documentation = "https://magnus167.github.io/rustframe/"
[lib]
name = "rustframe"

View File

@@ -1,11 +1,12 @@
# rustframe
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🌐 [Gitea mirror](https://gitea.nulltech.uk/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
<!-- [![Last commit](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/rustframe/last-commit-date.json)](https://github.com/Magnus167/rustframe) -->
[![codecov](https://codecov.io/gh/Magnus167/rustframe/graph/badge.svg?token=J7ULJEFTVI)](https://codecov.io/gh/Magnus167/rustframe)
[![Coverage](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/docs/tarpaulin-badge.json)](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
[![gitea-mirror](https://img.shields.io/badge/git_mirror-blue)](https://gitea.nulltech.uk/Magnus167/rustframe)
---
@@ -152,7 +153,7 @@ let zipped_matrix = a.zip(&b, |x, y| x + y);
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
```
### More examples
## More examples
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
@@ -191,10 +192,21 @@ cargo run --example
Each demo runs a couple of mini-scenarios showcasing the APIs.
### Running benchmarks
## Running benchmarks
To run the benchmarks, use:
```bash
cargo bench --features "bench"
```
## Building the user-guide
To build the user guide, use:
```bash
cargo binstall mdbook
bash docs/build.sh
```
This will generate the user guide in the `docs/book` directory.

7
docs/book.toml Normal file
View File

@@ -0,0 +1,7 @@
[book]
title = "Rustframe User Guide"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
description = "Guided journey through Rustframe capabilities."
[build]
build-dir = "book"

7
docs/build.sh Executable file
View File

@@ -0,0 +1,7 @@
#!/usr/bin/env sh
# Build and test the Rustframe user guide using mdBook.
set -e
cd docs
bash gen.sh "$@"
cd ..

14
docs/gen.sh Normal file
View File

@@ -0,0 +1,14 @@
#!/usr/bin/env sh
set -e
cargo clean
cargo build --manifest-path ../Cargo.toml
mdbook test -L ../target/debug/deps "$@"
mdbook build "$@"
cargo build
# cargo build --release

7
docs/src/SUMMARY.md Normal file
View File

@@ -0,0 +1,7 @@
# Summary
- [Introduction](./introduction.md)
- [Data Manipulation](./data-manipulation.md)
- [Compute Features](./compute.md)
- [Machine Learning](./machine-learning.md)
- [Utilities](./utilities.md)

222
docs/src/compute.md Normal file
View File

@@ -0,0 +1,222 @@
# Compute Features
The `compute` module hosts numerical routines for exploratory data analysis.
It covers descriptive statistics, correlations, probability distributions and
some basic inferential tests.
## Basic Statistics
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
use rustframe::matrix::Matrix;
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
assert_eq!(mean(&m), 2.5);
assert_eq!(stddev(&m), 1.118033988749895);
assert_eq!(median(&m), 2.5);
assert_eq!(population_variance(&m), 1.25);
assert_eq!(percentile(&m, 50.0), 3.0);
// column averages returned as 1 x n matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.data(), &[2.0, 3.0]);
let col_means = mean_vertical(&m);
assert_eq!(col_means.data(), & [1.5, 3.5]);
```
### Axis-specific Operations
Operations can be applied along specific axes (rows or columns):
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
use rustframe::matrix::Matrix;
// 3x2 matrix
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Mean along columns (vertical) - returns 1 x cols matrix
let col_means = mean_vertical(&m);
assert_eq!(col_means.shape(), (1, 2));
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
// Mean along rows (horizontal) - returns rows x 1 matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.shape(), (3, 1));
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
// Standard deviation along columns
let col_stddev = stddev_vertical(&m);
assert_eq!(col_stddev.shape(), (1, 2));
// Standard deviation along rows
let row_stddev = stddev_horizontal(&m);
assert_eq!(row_stddev.shape(), (3, 1));
```
## Correlation
```rust
# extern crate rustframe;
use rustframe::compute::stats::{pearson, covariance};
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let corr = pearson(&x, &y);
let cov = covariance(&x, &y);
assert!((corr - 1.0).abs() < 1e-8);
assert!((cov - 2.5).abs() < 1e-8);
```
## Covariance
### `covariance`
Computes the population covariance between two equally sized matrices by flattening
their values.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let cov = covariance(&x, &y);
assert!((cov - 2.5).abs() < 1e-8);
```
### `covariance_vertical`
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
column pair covariances.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_vertical;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_vertical(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
```
### `covariance_horizontal`
Computes covariance between rows (i.e. across columns) returning a matrix that
describes how each pair of rows varies together.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_horizontal;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_horizontal(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
```
### `covariance_matrix`
Builds a covariance matrix either between columns (`Axis::Col`) or rows
(`Axis::Row`). Each entry represents how two series co-vary.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_matrix;
use rustframe::matrix::{Axis, Matrix};
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
// Covariance between columns
let cov_cols = covariance_matrix(&data, Axis::Col);
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
// Covariance between rows
let cov_rows = covariance_matrix(&data, Axis::Row);
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
```
## Distributions
Probability distribution helpers are available for common PDFs and CDFs.
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::normal_pdf;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let pdf = normal_pdf(x, 0.0, 1.0);
assert_eq!(pdf.data().len(), 2);
```
### Additional Distributions
Rustframe provides several other probability distributions:
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
use rustframe::matrix::Matrix;
// Normal distribution CDF
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let cdf = normal_cdf(x, 0.0, 1.0);
assert_eq!(cdf.data().len(), 2);
// Binomial distribution PMF
// Probability of k successes in n trials with probability p
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
let pmf = binomial_pmf(3, k.clone(), 0.5);
assert_eq!(pmf.data().len(), 4);
// Binomial distribution CDF
let cdf = binomial_cdf(3, k, 0.5);
assert_eq!(cdf.data().len(), 4);
// Poisson distribution PMF
// Probability of k events with rate parameter lambda
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = poisson_pmf(2.0, k);
assert_eq!(pmf.data().len(), 3);
```
### Inferential Statistics
Rustframe provides several inferential statistical tests:
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
// Two-sample t-test
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_statistic, p_value) = t_test(&sample1, &sample2);
assert!((t_statistic + 5.0).abs() < 1e-5);
assert!(p_value > 0.0 && p_value < 1.0);
// Chi-square test of independence
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2_statistic, p_value) = chi2_test(&observed);
assert!(chi2_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
// One-way ANOVA
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
let groups = vec![&group1, &group2, &group3];
let (f_statistic, p_value) = anova(groups);
assert!(f_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
```
With the basics covered, explore predictive models in the
[machine learning](./machine-learning.md) chapter.

View File

@@ -0,0 +1,157 @@
# Data Manipulation
Rustframe's `Frame` type couples tabular data with
column labels and a typed row index. Frames expose a familiar API for loading
data, selecting rows or columns and performing aggregations.
## Creating a Frame
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
assert_eq!(frame["A"], vec![1.0, 2.0]);
```
## Indexing Rows
Row labels can be integers, dates or a default range. Retrieving a row returns a
view that lets you inspect values by column name or position.
```rust
# extern crate rustframe;
# extern crate chrono;
use chrono::NaiveDate;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
// mutate by row key
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
```
## Column operations
Columns can be inserted, renamed, removed or reordered in place.
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
frame.add_column("Z", vec![5, 6]);
frame.rename("Y", "W");
let removed = frame.delete_column("X");
assert_eq!(removed, vec![1, 2]);
frame.sort_columns();
assert_eq!(frame.columns(), &["W", "Z"]);
```
## Aggregations
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
```rust
# extern crate rustframe;
use rustframe::frame::Frame;
use rustframe::matrix::{Matrix, SeriesOps};
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
```
## Matrix Operations
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let sum = data1.clone() + data2.clone();
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
let product = data1.clone() * data2.clone();
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
let scalar_product = data1.clone() * 2.0;
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
let equals = data1 == data1.clone();
assert_eq!(equals, true);
```
### Advanced Matrix Operations
Matrices support a variety of advanced operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
// Matrix multiplication (dot product)
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let product = a.matrix_mul(&b);
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
// Transpose
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let transposed = m.transpose();
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
// Map function over all elements
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let squared = m.map(|x| x * x);
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
// Zip two matrices with a function
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let zipped = a.zip(&b, |x, y| x + y);
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
```
### Matrix Reductions
Matrices support various reduction operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Sum along columns (vertical)
let col_sums = m.sum_vertical();
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
// Sum along rows (horizontal)
let row_sums = m.sum_horizontal();
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
// Cumulative sum along columns
let col_cumsum = m.cumsum_vertical();
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
// Cumulative sum along rows
let row_cumsum = m.cumsum_horizontal();
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
```
With the basics covered, continue to the [compute features](./compute.md)
chapter for statistics and analytics.

40
docs/src/introduction.md Normal file
View File

@@ -0,0 +1,40 @@
# Introduction
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
API approachable while offering handy features for small analytical or
educational projects.
Rustframe bundles:
- columnlabelled frames built on a fast columnmajor matrix
- familiar elementwise math and aggregation routines
- a growing `compute` module for statistics and machine learning
- utilities for dates and random numbers
```rust
# extern crate rustframe;
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
// Perform column wise aggregation
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
```
## Resources
- [GitHub repository](https://github.com/Magnus167/rustframe)
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
This guide walks through the main building blocks of the library. Each chapter
contains runnable snippets so you can follow along:
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
2. [Compute features](./compute.md) for statistics and analytics
3. [Machine learning](./machine-learning.md) for predictive models
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules

View File

@@ -0,0 +1,282 @@
# Machine Learning
The `compute::models` module bundles several learning algorithms that operate on
`Matrix` structures. These examples highlight the basic training and prediction
APIs. For more endtoend walkthroughs see the examples directory in the
repository.
Currently implemented models include:
- Linear and logistic regression
- Kmeans clustering
- Principal component analysis (PCA)
- Gaussian Naive Bayes
- Dense neural networks
## Linear Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
let mut model = LinReg::new(1);
model.fit(&x, &y, 0.01, 100);
let preds = model.predict(&x);
assert_eq!(preds.rows(), 4);
```
## K-means Walkthrough
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
let cluster = model.predict(&new_point)[0];
```
## Logistic Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
let mut model = LogReg::new(1);
model.fit(&x, &y, 0.1, 200);
let preds = model.predict_proba(&x);
assert_eq!(preds.rows(), 4);
```
## Principal Component Analysis
```rust
# extern crate rustframe;
use rustframe::compute::models::pca::PCA;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let pca = PCA::fit(&data, 1, 0);
let transformed = pca.transform(&data);
assert_eq!(transformed.cols(), 1);
```
## Gaussian Naive Bayes
Gaussian Naive Bayes classifier for continuous features:
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
1.0, 2.0,
2.0, 3.0,
3.0, 4.0,
4.0, 5.0
], 4, 2);
// Class labels (0 or 1)
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
// Train the model
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Dense Neural Networks
Simple fully connected neural network:
```rust
# extern crate rustframe;
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
1.0, 1.0
], 4, 2);
// XOR target outputs
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
// Create a neural network with 2 hidden layers
let config = DenseNNConfig {
input_size: 2,
hidden_layers: vec![4, 4],
output_size: 1,
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
initializer: InitializerKind::Uniform(0.5),
loss: LossKind::MSE,
learning_rate: 0.1,
epochs: 1000,
};
let mut model = DenseNN::new(config);
// Train the model
model.train(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Real-world Examples
### Housing Price Prediction
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
// Features: square feet and bedrooms
let features = Matrix::from_rows_vec(vec![
2100.0, 3.0,
1600.0, 2.0,
2400.0, 4.0,
1400.0, 2.0,
], 4, 2);
// Sale prices
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
let mut model = LinReg::new(2);
model.fit(&features, &target, 1e-8, 10_000);
// Predict price of a new home
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
let predicted_price = model.predict(&new_home);
println!("Predicted price: ${}", predicted_price.data()[0]);
```
### Spam Detection
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
let x = Matrix::from_rows_vec(
vec![
// ─────────── spam examples ───────────
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
1.0, 0.0, 1.0, 0.0, 1.0, // ...
0.0, 1.0, 1.0, 1.0, 0.0, // ...
2.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 1.0, 0.0, 1.0, // ...
1.0, 1.0, 1.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 1.0, 1.0, // ...
// ─────────── ham examples ───────────
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
0.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0,
],
20,
5,
);
// Labels: 1 = spam, 0 = ham
let y = Matrix::from_vec(
vec![
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
],
20,
1,
);
// Train
let mut model = LogReg::new(5);
model.fit(&x, &y, 0.01, 5000);
// Predict
// e.g. "free money offer"
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
let email = Matrix::from_vec(email_data, 1, 5);
let prob_spam = model.predict_proba(&email);
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
```
### Iris Flower Classification
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Features: sepal length and petal length
let x = Matrix::from_rows_vec(vec![
5.1, 1.4, // setosa
4.9, 1.4, // setosa
6.2, 4.5, // versicolor
5.9, 5.1, // virginica
], 4, 2);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
let names = vec!["setosa", "versicolor", "virginica"];
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
let predicted_class = model.predict(&sample);
let class_name = names[predicted_class.data()[0] as usize];
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
```
### Customer Segmentation
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
// Each row: [age, annual_income]
let customers = Matrix::from_rows_vec(
vec![
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
],
4,
2,
);
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
let cluster = model.predict(&new_customer)[0];
println!("New customer belongs to cluster: {}", cluster);
println!("Cluster labels: {:?}", labels);
```
For helper functions and upcoming modules, visit the
[utilities](./utilities.md) section.

63
docs/src/utilities.md Normal file
View File

@@ -0,0 +1,63 @@
# Utilities
Utilities provide handy helpers around the core library. Existing tools
include:
- Date utilities for generating calendar sequences and businessday sets
- Random number generators for simulations and testing
## Date Helpers
```rust
# extern crate rustframe;
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
// Calendar sequence
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
assert_eq!(list.count().unwrap(), 3);
// Business days starting from 20240102
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
assert_eq!(bdates.list().unwrap().len(), 3);
```
## Random Numbers
The `random` module offers deterministic and cryptographically secure RNGs.
```rust
# extern crate rustframe;
use rustframe::random::{Prng, Rng};
let mut rng = Prng::new(42);
let v1 = rng.next_u64();
let v2 = rng.next_u64();
assert_ne!(v1, v2);
```
## Stats Functions
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::descriptive::{mean, median, stddev};
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let mean_value = mean(&data);
assert_eq!(mean_value, 3.0);
let median_value = median(&data);
assert_eq!(median_value, 3.0);
let std_value = stddev(&data);
assert_eq!(std_value, 2.0_f64.sqrt());
```
Upcoming utilities will cover:
- Data import/export helpers
- Visualization adapters
- Streaming data interfaces
Contributions to these sections are welcome!

View File

@@ -1,3 +1,16 @@
//! Algorithms and statistical utilities built on top of the core matrices.
//!
//! This module groups together machinelearning models and statistical helper
//! functions. For quick access to basic statistics see [`stats`](crate::compute::stats), while
//! [`models`](crate::compute::models) contains small learning algorithms.
//!
//! ```
//! use rustframe::compute::stats;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0], 3, 1);
//! assert_eq!(stats::mean(&m), 2.0);
//! ```
pub mod models;
pub mod stats;

View File

@@ -1,3 +1,15 @@
//! Common activation functions used in neural networks.
//!
//! Functions operate element-wise on [`Matrix`] values.
//!
//! ```
//! use rustframe::compute::models::activations::sigmoid;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
//! let y = sigmoid(&x);
//! assert!((y.get(0,0) - 0.5).abs() < 1e-6);
//! ```
use crate::matrix::{Matrix, SeriesOps};
pub fn sigmoid(x: &Matrix<f64>) -> Matrix<f64> {

View File

@@ -1,3 +1,30 @@
//! A minimal dense neural network implementation for educational purposes.
//!
//! Layers operate on [`Matrix`] values and support ReLU and Sigmoid
//! activations. This is not meant to be a performant deeplearning framework
//! but rather a small example of how the surrounding matrix utilities can be
//! composed.
//!
//! ```
//! use rustframe::compute::models::dense_nn::{ActivationKind, DenseNN, DenseNNConfig, InitializerKind, LossKind};
//! use rustframe::matrix::Matrix;
//!
//! // Tiny network with one input and one output neuron.
//! let config = DenseNNConfig {
//! input_size: 1,
//! hidden_layers: vec![],
//! output_size: 1,
//! activations: vec![ActivationKind::Relu],
//! initializer: InitializerKind::Uniform(0.5),
//! loss: LossKind::MSE,
//! learning_rate: 0.1,
//! epochs: 1,
//! };
//! let mut nn = DenseNN::new(config);
//! let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0], 2, 1);
//! nn.train(&x, &y);
//! ```
use crate::compute::models::activations::{drelu, relu, sigmoid};
use crate::matrix::{Matrix, SeriesOps};
use crate::random::prelude::*;

View File

@@ -1,3 +1,16 @@
//! Gaussian Naive Bayes classifier for dense matrices.
//!
//! ```
//! use rustframe::compute::models::gaussian_nb::GaussianNB;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 1.0, 2.0], 2, 2); // two samples
//! let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
//! let mut model = GaussianNB::new(1e-9, false);
//! model.fit(&x, &y);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 2);
//! ```
use crate::matrix::Matrix;
use std::collections::HashMap;

View File

@@ -1,3 +1,14 @@
//! Simple k-means clustering working on [`Matrix`] data.
//!
//! ```
//! use rustframe::compute::models::k_means::KMeans;
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
//! let (model, labels) = KMeans::fit(&data, 2, 10, 1e-4);
//! assert_eq!(model.centroids.rows(), 2);
//! assert_eq!(labels.len(), 2);
//! ```
use crate::compute::stats::mean_vertical;
use crate::matrix::Matrix;
use crate::random::prelude::*;

View File

@@ -1,3 +1,16 @@
//! Ordinary least squares linear regression.
//!
//! ```
//! use rustframe::compute::models::linreg::LinReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
//! let mut model = LinReg::new(1);
//! model.fit(&x, &y, 0.01, 100);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 4);
//! ```
use crate::matrix::{Matrix, SeriesOps};
pub struct LinReg {

View File

@@ -1,3 +1,16 @@
//! Binary logistic regression classifier.
//!
//! ```
//! use rustframe::compute::models::logreg::LogReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
//! let mut model = LogReg::new(1);
//! model.fit(&x, &y, 0.1, 100);
//! let preds = model.predict(&x);
//! assert_eq!(preds[(0,0)], 0.0);
//! ```
use crate::compute::models::activations::sigmoid;
use crate::matrix::{Matrix, SeriesOps};

View File

@@ -1,3 +1,19 @@
//! Lightweight machinelearning models built on matrices.
//!
//! Models are intentionally minimal and operate on the [`Matrix`](crate::matrix::Matrix) type for
//! inputs and parameters.
//!
//! ```
//! use rustframe::compute::models::linreg::LinReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
//! let mut model = LinReg::new(1);
//! model.fit(&x, &y, 0.01, 1000);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 4);
//! ```
pub mod activations;
pub mod dense_nn;
pub mod gaussian_nb;

View File

@@ -1,3 +1,14 @@
//! Principal Component Analysis using covariance matrices.
//!
//! ```
//! use rustframe::compute::models::pca::PCA;
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0], 2, 2);
//! let pca = PCA::fit(&data, 1, 0);
//! let projected = pca.transform(&data);
//! assert_eq!(projected.cols(), 1);
//! ```
use crate::compute::stats::correlation::covariance_matrix;
use crate::compute::stats::descriptive::mean_vertical;
use crate::matrix::{Axis, Matrix, SeriesOps};

View File

@@ -1,3 +1,16 @@
//! Covariance and correlation helpers.
//!
//! This module provides routines for measuring the relationship between
//! columns or rows of matrices.
//!
//! ```
//! use rustframe::compute::stats::correlation;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! let cov = correlation::covariance(&x, &x);
//! assert!((cov - 1.25).abs() < 1e-8);
//! ```
use crate::compute::stats::{mean, mean_horizontal, mean_vertical, stddev};
use crate::matrix::{Axis, Matrix, SeriesOps};

View File

@@ -1,3 +1,15 @@
//! Descriptive statistics for matrices.
//!
//! Provides means, variances, medians and other aggregations computed either
//! across the whole matrix or along a specific axis.
//!
//! ```
//! use rustframe::compute::stats::descriptive;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! assert_eq!(descriptive::mean(&m), 2.5);
//! ```
use crate::matrix::{Axis, Matrix, SeriesOps};
pub fn mean(x: &Matrix<f64>) -> f64 {

View File

@@ -1,3 +1,16 @@
//! Probability distribution functions applied element-wise to matrices.
//!
//! Includes approximations for the normal, uniform and gamma distributions as
//! well as the error function.
//!
//! ```
//! use rustframe::compute::stats::distributions;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
//! let pdf = distributions::normal_pdf(x.clone(), 0.0, 1.0);
//! assert!((pdf.get(0,0) - 0.3989).abs() < 1e-3);
//! ```
use crate::matrix::{Matrix, SeriesOps};
use std::f64::consts::PI;

View File

@@ -1,3 +1,14 @@
//! Basic inferential statistics such as ttests and chisquare tests.
//!
//! ```
//! use rustframe::compute::stats::inferential;
//! use rustframe::matrix::Matrix;
//!
//! let a = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
//! let b = Matrix::from_vec(vec![1.1, 1.9], 2, 1);
//! let (t, _p) = inferential::t_test(&a, &b);
//! assert!(t.abs() < 1.0);
//! ```
use crate::matrix::{Matrix, SeriesOps};
use crate::compute::stats::{gamma_cdf, mean, sample_variance};

View File

@@ -1,3 +1,16 @@
//! Statistical routines for matrices.
//!
//! Functions are grouped into submodules for descriptive statistics,
//! correlations, probability distributions and basic inferential tests.
//!
//! ```
//! use rustframe::compute::stats;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! let cov = stats::covariance(&m, &m);
//! assert!((cov - 1.25).abs() < 1e-8);
//! ```
pub mod correlation;
pub mod descriptive;
pub mod distributions;

411
src/csv/csv_core.rs Normal file
View File

@@ -0,0 +1,411 @@
use chrono::{NaiveDate, NaiveDateTime};
use std::collections::HashMap;
use std::fs::File;
use std::io::{self, BufRead, BufReader};
use std::path::Path;
/// Represents the target type for a CSV column.
#[derive(Debug, Clone)]
pub enum DataType {
Int,
Float,
Bool,
UInt,
String,
Date,
DateTime,
}
/// Represents a value parsed from the CSV.
#[derive(Debug, Clone, PartialEq)]
pub enum Value {
Int(i64),
Float(f64),
Bool(bool),
UInt(u64),
String(String),
Date(NaiveDate),
DateTime(NaiveDateTime),
}
/// Convenience alias for a parsed CSV record.
pub type Record = HashMap<String, Value>;
/// A simple CSV reader that reads records line by line.
pub struct CsvReader<R: BufRead> {
reader: R,
separators: Vec<char>,
headers: Vec<String>,
types: Option<HashMap<String, DataType>>,
}
/// Builder for [`CsvReader`] allowing chained configuration of headers, types, and separators.
pub struct CsvReaderBuilder<R: BufRead> {
reader: R,
separators: Vec<char>,
headers: Vec<String>,
types: Option<HashMap<String, DataType>>,
}
impl<R: BufRead> CsvReader<R> {
/// Create a new CSV reader from a [`BufRead`] source.
/// The first line is expected to contain headers.
/// `separators` is a list of characters considered as field separators.
/// `types` optionally maps column names to target data types.
pub fn new(
mut reader: R,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<Self> {
let mut first_line = String::new();
reader.read_line(&mut first_line)?;
let headers = parse_line(&first_line, &separators);
Ok(Self {
reader,
separators,
headers,
types,
})
}
/// Create a reader with default settings (comma separator, automatic typing).
pub fn new_default(reader: R) -> io::Result<Self> {
Self::new(reader, vec![','], None)
}
/// Create a reader with default separators and explicit type mapping.
pub fn new_with_types(reader: R, types: HashMap<String, DataType>) -> io::Result<Self> {
Self::new(reader, vec![','], Some(types))
}
/// Start building a reader from a source that lacks headers.
pub fn new_with_headers(reader: R, headers: Vec<String>) -> CsvReaderBuilder<R> {
CsvReaderBuilder {
reader,
separators: vec![','],
headers,
types: None,
}
}
/// Return the headers of the CSV file.
pub fn headers(&self) -> &[String] {
&self.headers
}
/// Read the next record. Returns `Ok(None)` on EOF.
pub fn read_record(&mut self) -> io::Result<Option<Record>> {
let mut line = String::new();
if self.reader.read_line(&mut line)? == 0 {
return Ok(None);
}
let fields = parse_line(&line, &self.separators);
let mut record = HashMap::new();
for (i, header) in self.headers.iter().enumerate() {
let field = fields.get(i).cloned().unwrap_or_default();
let value = match &self.types {
Some(map) => {
if let Some(dt) = map.get(header) {
parse_with_type(&field, dt)
} else {
Value::String(field)
}
}
None => parse_auto(&field),
};
record.insert(header.clone(), value);
}
Ok(Some(record))
}
}
impl<R: BufRead> Iterator for CsvReader<R> {
type Item = io::Result<Record>;
fn next(&mut self) -> Option<Self::Item> {
match self.read_record() {
Ok(Some(rec)) => Some(Ok(rec)),
Ok(None) => None,
Err(e) => Some(Err(e)),
}
}
}
impl<R: BufRead> CsvReaderBuilder<R> {
/// Override field separators for the upcoming reader.
pub fn separators(mut self, separators: Vec<char>) -> Self {
self.separators = separators;
self
}
/// Finalize the builder with an explicit type mapping.
pub fn new_with_types(mut self, types: HashMap<String, DataType>) -> CsvReader<R> {
self.types = Some(types);
self.build()
}
/// Finalize the builder without specifying types.
pub fn build(self) -> CsvReader<R> {
CsvReader {
reader: self.reader,
separators: self.separators,
headers: self.headers,
types: self.types,
}
}
}
impl<R: BufRead> CsvReader<R> {
/// Read all remaining records into a vector.
pub fn read_all(&mut self) -> io::Result<Vec<Record>> {
let mut records = Vec::new();
while let Some(rec) = self.read_record()? {
records.push(rec);
}
Ok(records)
}
}
impl CsvReader<BufReader<File>> {
/// Create a [`CsvReader`] from a file path using comma separators and
/// automatic type detection.
///
/// # Examples
///
/// ```
/// use rustframe::csv::{CsvReader, Value};
/// # let path = std::env::temp_dir().join("from_path_auto.csv");
/// # std::fs::write(&path, "a,b\n1,true\n").unwrap();
/// let mut reader = CsvReader::from_path_auto(&path).unwrap();
/// let rec = reader.next().unwrap().unwrap();
/// assert_eq!(rec.get("a"), Some(&Value::Int(1)));
/// assert_eq!(rec.get("b"), Some(&Value::Bool(true)));
/// # std::fs::remove_file(path).unwrap();
/// ```
pub fn from_path_auto<P: AsRef<Path>>(path: P) -> io::Result<Self> {
let file = File::open(path)?;
let reader = BufReader::new(file);
CsvReader::new_default(reader)
}
}
/// Create an iterator over records from a file path using default settings.
pub fn reader<P: AsRef<Path>>(path: P) -> io::Result<CsvReader<BufReader<File>>> {
reader_with(path, vec![','], None)
}
/// Create an iterator over records from a file path with custom separators and type mapping.
pub fn reader_with<P: AsRef<Path>>(
path: P,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<CsvReader<BufReader<File>>> {
let file = File::open(path)?;
let reader = BufReader::new(file);
CsvReader::new(reader, separators, types)
}
/// Read an entire CSV file into memory using default settings.
pub fn read_file<P: AsRef<Path>>(path: P) -> io::Result<Vec<Record>> {
read_file_with(path, vec![','], None)
}
/// Read an entire CSV file into memory with custom separators and type mapping.
pub fn read_file_with<P: AsRef<Path>>(
path: P,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<Vec<Record>> {
let mut reader = reader_with(path, separators, types)?;
reader.read_all()
}
fn parse_with_type(s: &str, ty: &DataType) -> Value {
match ty {
DataType::Int => s
.parse::<i64>()
.map(Value::Int)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::Float => s
.parse::<f64>()
.map(Value::Float)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::Bool => s
.parse::<bool>()
.map(Value::Bool)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::UInt => s
.parse::<u64>()
.map(Value::UInt)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::String => Value::String(s.to_string()),
DataType::Date => s
.parse::<NaiveDate>()
.map(Value::Date)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::DateTime => NaiveDateTime::parse_from_str(s, "%Y-%m-%d %H:%M:%S")
.map(Value::DateTime)
.unwrap_or_else(|_| Value::String(s.to_string())),
}
}
fn parse_auto(s: &str) -> Value {
if let Ok(i) = s.parse::<i64>() {
Value::Int(i)
} else if let Ok(f) = s.parse::<f64>() {
Value::Float(f)
} else if let Ok(b) = s.parse::<bool>() {
Value::Bool(b)
} else if let Ok(dt) = NaiveDateTime::parse_from_str(s, "%Y-%m-%d %H:%M:%S") {
Value::DateTime(dt)
} else if let Ok(d) = NaiveDate::parse_from_str(s, "%Y-%m-%d") {
Value::Date(d)
} else {
Value::String(s.to_string())
}
}
fn parse_line(line: &str, separators: &[char]) -> Vec<String> {
let mut fields = Vec::new();
let mut current = String::new();
let mut in_quotes: Option<char> = None;
let chars: Vec<char> = line.chars().collect();
let mut i = 0;
while i < chars.len() {
let c = chars[i];
if let Some(q) = in_quotes {
if c == q {
if i + 1 < chars.len() && chars[i + 1] == q {
current.push(q);
i += 1; // skip escaped quote
} else {
in_quotes = None;
}
} else {
current.push(c);
}
} else if c == '"' || c == '\'' {
in_quotes = Some(c);
} else if separators.contains(&c) {
fields.push(current.clone());
current.clear();
} else if c == '\r' {
// Ignore carriage returns
} else if c == '\n' {
break;
} else {
current.push(c);
}
i += 1;
}
fields.push(current);
fields
}
#[cfg(test)]
mod tests {
use super::*;
use chrono::{NaiveDate, NaiveDateTime};
use std::io::Cursor;
#[test]
fn test_parse_line() {
let line = "a,'b,c',\"d\"\"e\",f";
let fields = parse_line(line, &[',']);
assert_eq!(fields, vec!["a", "b,c", "d\"e", "f"]);
}
#[test]
fn test_reader_auto() {
let data = "a,b,c\n1,2.5,true\n4,5.0,false\n";
let cursor = Cursor::new(data);
let mut reader = CsvReader::new_default(cursor).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(1)));
assert_eq!(rec.get("b"), Some(&Value::Float(2.5)));
assert_eq!(rec.get("c"), Some(&Value::Bool(true)));
}
#[test]
fn test_reader_with_types() {
let data = "a,b,c\n1,2,3\n";
let cursor = Cursor::new(data);
let mut types = HashMap::new();
types.insert("a".to_string(), DataType::Int);
types.insert("b".to_string(), DataType::Int);
types.insert("c".to_string(), DataType::String);
let mut reader = CsvReader::new_with_types(cursor, types).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(1)));
assert_eq!(rec.get("b"), Some(&Value::Int(2)));
assert_eq!(rec.get("c"), Some(&Value::String("3".to_string())));
}
#[test]
fn test_chain_headers_and_types() {
let data = "1,2\n3,4\n";
let cursor = Cursor::new(data);
let headers = vec!["x".to_string(), "y".to_string()];
let mut types = HashMap::new();
types.insert("x".to_string(), DataType::Int);
types.insert("y".to_string(), DataType::UInt);
let mut reader = CsvReader::new_with_headers(cursor, headers).new_with_types(types);
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("x"), Some(&Value::Int(1)));
assert_eq!(rec.get("y"), Some(&Value::UInt(2)));
}
#[test]
fn test_date_types() {
let data = "d,dt\n2024-01-01,2024-01-01 12:00:00\n";
let cursor = Cursor::new(data);
let mut types = HashMap::new();
types.insert("d".to_string(), DataType::Date);
types.insert("dt".to_string(), DataType::DateTime);
let mut reader = CsvReader::new_with_types(cursor, types).unwrap();
let rec = reader.next().unwrap().unwrap();
let date = NaiveDate::from_ymd_opt(2024, 1, 1).unwrap();
let datetime: NaiveDateTime = NaiveDate::from_ymd_opt(2024, 1, 1)
.unwrap()
.and_hms_opt(12, 0, 0)
.unwrap();
assert_eq!(rec.get("d"), Some(&Value::Date(date)));
assert_eq!(rec.get("dt"), Some(&Value::DateTime(datetime)));
}
#[test]
fn test_read_file_all() {
let path = std::env::temp_dir().join("csv_full_test.csv");
std::fs::write(&path, "a,b\n1,2\n3,4\n").unwrap();
let records = read_file(&path).unwrap();
assert_eq!(records.len(), 2);
assert_eq!(records[1].get("b"), Some(&Value::Int(4)));
std::fs::remove_file(path).unwrap();
}
#[test]
fn test_reader_from_path() {
let path = std::env::temp_dir().join("csv_iter_test.csv");
std::fs::write(&path, "a,b\n5,6\n").unwrap();
let mut iter = reader(&path).unwrap();
let rec = iter.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(5)));
assert_eq!(rec.get("b"), Some(&Value::Int(6)));
std::fs::remove_file(path).unwrap();
}
#[test]
fn test_from_path_auto_method() {
let path = std::env::temp_dir().join("csv_method_auto.csv");
std::fs::write(&path, "a,b\n7,true\n").unwrap();
let mut reader = CsvReader::from_path_auto(&path).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(7)));
assert_eq!(rec.get("b"), Some(&Value::Bool(true)));
std::fs::remove_file(path).unwrap();
}
}

69
src/csv/mod.rs Normal file
View File

@@ -0,0 +1,69 @@
//! CSV handling utilities.
//!
//! The [`csv`] module offers a flexible [`CsvReader`] with automatic type
//! detection and optional builders for custom headers and types.
//!
//! # Examples
//!
//! Read from a file with auto type detection:
//!
//! ```
//! use rustframe::csv::CsvReader;
//! # let path = std::env::temp_dir().join("docs_auto.csv");
//! # std::fs::write(&path, "a,b\n1,true\n").unwrap();
//! let mut reader = CsvReader::from_path_auto(&path).unwrap();
//! for rec in reader {
//! let rec = rec.unwrap();
//! println!("{:?}", rec);
//! }
//! # std::fs::remove_file(path).unwrap();
//! ```
//!
//! Specify column types explicitly:
//!
//! ```
//! use rustframe::csv::{CsvReader, DataType, Value};
//! use std::collections::HashMap;
//! use std::io::Cursor;
//! let data = "a,b\n1,2\n";
//! let mut types = HashMap::new();
//! types.insert("a".into(), DataType::Int);
//! types.insert("b".into(), DataType::Float);
//! let mut reader = CsvReader::new_with_types(Cursor::new(data), types).unwrap();
//! let rec = reader.next().unwrap().unwrap();
//! assert_eq!(rec.get("b"), Some(&Value::Float(2.0)));
//! ```
//!
//! Building from custom headers and types:
//!
//! ```
//! use rustframe::csv::{CsvReader, DataType, Value};
//! use std::collections::HashMap;
//! use std::io::Cursor;
//! let data = "1,2\n";
//! let headers = vec!["x".to_string(), "y".to_string()];
//! let mut types = HashMap::new();
//! types.insert("x".into(), DataType::Int);
//! types.insert("y".into(), DataType::UInt);
//! let mut reader = CsvReader::new_with_headers(Cursor::new(data), headers).new_with_types(types);
//! let rec = reader.next().unwrap().unwrap();
//! assert_eq!(rec.get("y"), Some(&Value::UInt(2)));
//! ```
//!
//! Reading an entire file into memory:
//!
//! ```
//! use rustframe::csv::read_file;
//! # let path = std::env::temp_dir().join("docs_full.csv");
//! # std::fs::write(&path, "a,b\n1,2\n3,4\n").unwrap();
//! let records = read_file(&path).unwrap();
//! assert_eq!(records.len(), 2);
//! # std::fs::remove_file(path).unwrap();
//! ```
pub mod csv_core;
pub use csv_core::{
CsvReader, CsvReaderBuilder, DataType, Record, Value, reader, reader_with,
read_file, read_file_with,
};

View File

@@ -1,3 +1,19 @@
//! Core data-frame structures such as [`Frame`] and [`RowIndex`].
//!
//! The [`Frame`] type stores column-labelled data with an optional row index
//! and builds upon the [`crate::matrix::Matrix`] type.
//!
//! # Examples
//!
//! ```
//! use rustframe::frame::{Frame, RowIndex};
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
//! let frame = Frame::new(data, vec!["L", "R"], Some(RowIndex::Int(vec![10, 20])));
//! assert_eq!(frame.columns(), &["L", "R"]);
//! assert_eq!(frame.index(), &RowIndex::Int(vec![10, 20]));
//! ```
use crate::matrix::Matrix;
use chrono::NaiveDate;
use std::collections::HashMap;

View File

@@ -1,3 +1,21 @@
//! High-level interface for working with columnar data and row indices.
//!
//! The [`Frame`](crate::frame::Frame) type combines a matrix with column labels and a typed row
//! index, similar to data frames in other data-analysis libraries.
//!
//! # Examples
//!
//! ```
//! use rustframe::frame::{Frame, RowIndex};
//! use rustframe::matrix::Matrix;
//!
//! // Build a frame from two columns labelled "A" and "B".
//! let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
//! let frame = Frame::new(data, vec!["A", "B"], None);
//!
//! assert_eq!(frame["A"], vec![1.0, 2.0]);
//! assert_eq!(frame.index(), &RowIndex::Range(0..2));
//! ```
pub mod base;
pub mod ops;

View File

@@ -1,3 +1,16 @@
//! Trait implementations that allow [`Frame`] to reuse matrix operations.
//!
//! These modules forward numeric and boolean aggregation methods from the
//! underlying [`Matrix`](crate::matrix::Matrix) type so that they can be called
//! directly on a [`Frame`].
//!
//! ```
//! use rustframe::frame::Frame;
//! use rustframe::matrix::{Matrix, SeriesOps};
//!
//! let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
//! assert_eq!(frame.sum_vertical(), vec![3.0]);
//! ```
use crate::frame::Frame;
use crate::matrix::{Axis, BoolMatrix, BoolOps, FloatMatrix, SeriesOps};

View File

@@ -14,3 +14,6 @@ pub mod compute;
/// Documentation for the [`crate::random`] module.
pub mod random;
/// Documentation for the [`crate::csv`] module.
pub mod csv;

View File

@@ -1,3 +1,14 @@
//! Logical reductions for boolean matrices.
//!
//! The [`BoolOps`] trait mirrors common boolean aggregations such as `any` and
//! `all` over rows or columns of a [`BoolMatrix`].
//!
//! ```
//! use rustframe::matrix::{BoolMatrix, BoolOps};
//!
//! let m = BoolMatrix::from_vec(vec![true, false], 2, 1);
//! assert!(m.any());
//! ```
use crate::matrix::{Axis, BoolMatrix};
/// Boolean operations on `Matrix<bool>`

View File

@@ -1,3 +1,18 @@
//! Core matrix types and operations.
//!
//! The [`Matrix`](crate::matrix::Matrix) struct provides a simple columnmajor 2D array with a
//! suite of numeric helpers. Additional traits like [`SeriesOps`](crate::matrix::SeriesOps) and
//! [`BoolOps`](crate::matrix::BoolOps) extend functionality for common statistics and logical reductions.
//!
//! # Examples
//!
//! ```
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
//! assert_eq!(m.shape(), (2, 2));
//! assert_eq!(m[(0,1)], 3);
//! ```
pub mod boolops;
pub mod mat;
pub mod seriesops;

View File

@@ -1,3 +1,14 @@
//! Numeric reductions and transformations over matrix axes.
//!
//! [`SeriesOps`] provides methods like [`SeriesOps::sum_vertical`] or
//! [`SeriesOps::map`] that operate on [`FloatMatrix`] values.
//!
//! ```
//! use rustframe::matrix::{Matrix, SeriesOps};
//!
//! let m = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
//! assert_eq!(m.sum_horizontal(), vec![4.0, 6.0]);
//! ```
use crate::matrix::{Axis, BoolMatrix, FloatMatrix};
/// "Series-like" helpers that work along a single axis.

View File

@@ -1,3 +1,13 @@
//! Cryptographically secure random number generator.
//!
//! On Unix systems this reads from `/dev/urandom`; on Windows it uses the
//! system's preferred CNG provider.
//!
//! ```
//! use rustframe::random::{crypto_rng, Rng};
//! let mut rng = crypto_rng();
//! let _v = rng.next_u64();
//! ```
#[cfg(unix)]
use std::{fs::File, io::Read};

View File

@@ -1,3 +1,18 @@
//! Random number generation utilities.
//!
//! Provides both a simple pseudo-random generator [`Prng`](crate::random::Prng) and a
//! cryptographically secure alternative [`CryptoRng`](crate::random::CryptoRng). The
//! [`SliceRandom`](crate::random::SliceRandom) trait offers shuffling of slices using any RNG
//! implementing [`Rng`](crate::random::Rng).
//!
//! ```
//! use rustframe::random::{rng, SliceRandom};
//!
//! let mut rng = rng();
//! let mut data = [1, 2, 3, 4];
//! data.shuffle(&mut rng);
//! assert_eq!(data.len(), 4);
//! ```
pub mod crypto;
pub mod prng;
pub mod random_core;

View File

@@ -1,3 +1,11 @@
//! A tiny XorShift64-based pseudo random number generator.
//!
//! ```
//! use rustframe::random::{rng, Rng};
//! let mut rng = rng();
//! let x = rng.next_u64();
//! assert!(x >= 0);
//! ```
use std::time::{SystemTime, UNIX_EPOCH};
use crate::random::Rng;

View File

@@ -1,3 +1,11 @@
//! Core traits for random number generators and sampling ranges.
//!
//! ```
//! use rustframe::random::{rng, Rng};
//! let mut r = rng();
//! let value: f64 = r.random_range(0.0..1.0);
//! assert!(value >= 0.0 && value < 1.0);
//! ```
use std::f64::consts::PI;
use std::ops::Range;

View File

@@ -1,3 +1,11 @@
//! Extensions for shuffling slices with a random number generator.
//!
//! ```
//! use rustframe::random::{rng, SliceRandom};
//! let mut data = [1, 2, 3];
//! data.shuffle(&mut rng());
//! assert_eq!(data.len(), 3);
//! ```
use crate::random::Rng;
/// Trait for randomizing slices.

View File

@@ -1,3 +1,10 @@
//! Generation and manipulation of calendar date sequences.
//!
//! ```
//! use rustframe::utils::dateutils::dates::{DateFreq, DatesList};
//! let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
//! assert_eq!(list.count().unwrap(), 3);
//! ```
use chrono::{Datelike, Duration, NaiveDate, Weekday};
use std::collections::HashMap;
use std::error::Error;

View File

@@ -1,3 +1,13 @@
//! Generators for sequences of calendar and business dates.
//!
//! See [`dates`] for all-day calendars and [`bdates`] for business-day aware
//! variants.
//!
//! ```
//! use rustframe::utils::dateutils::{DatesList, DateFreq};
//! let list = DatesList::new("2024-01-01".into(), "2024-01-02".into(), DateFreq::Daily);
//! assert_eq!(list.count().unwrap(), 2);
//! ```
pub mod bdates;
pub mod dates;

View File

@@ -1,3 +1,14 @@
//! Assorted helper utilities.
//!
//! Currently this module exposes date generation utilities in [`dateutils`](crate::utils::dateutils),
//! including calendar and business date sequences.
//!
//! ```
//! use rustframe::utils::DatesList;
//! use rustframe::utils::DateFreq;
//! let dates = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
//! assert_eq!(dates.count().unwrap(), 3);
//! ```
pub mod dateutils;
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};