mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 07:20:01 +00:00
Compare commits
76 Commits
28cb700224
...
d8afef049d
Author | SHA1 | Date | |
---|---|---|---|
![]() |
d8afef049d | ||
af70f9ffd7 | |||
![]() |
7f33223496 | ||
![]() |
73dbb25242 | ||
4061ebf8ae | |||
![]() |
ef322fc6a2 | ||
![]() |
750adc72e9 | ||
![]() |
3207254564 | ||
![]() |
2ea83727a1 | ||
![]() |
3f56b378b2 | ||
![]() |
afcb29e716 | ||
![]() |
113831dc8c | ||
![]() |
289c70d9e9 | ||
![]() |
cd13d98110 | ||
![]() |
b4520b0d30 | ||
![]() |
5934b163f5 | ||
![]() |
4a1843183a | ||
![]() |
252c8a3d29 | ||
![]() |
5a5baf9716 | ||
![]() |
28793e5b07 | ||
![]() |
d75bd7a08f | ||
![]() |
6fd796cceb | ||
![]() |
d0b0f295b1 | ||
556b08216f | |||
![]() |
17201b4d29 | ||
![]() |
2a99d8930c | ||
![]() |
38213c73c7 | ||
![]() |
c004bd8334 | ||
![]() |
dccbba9d1b | ||
![]() |
ab3509fef4 | ||
f5c56d02e2 | |||
069ef25ef4 | |||
![]() |
f9a60608df | ||
526e22b1b7 | |||
![]() |
845667c60a | ||
![]() |
3935e80be6 | ||
![]() |
0ce970308b | ||
![]() |
72d02e2336 | ||
![]() |
26213b28d6 | ||
![]() |
44ff16a0bb | ||
![]() |
1192a78955 | ||
![]() |
d0f9e80dfc | ||
![]() |
b0d8050b11 | ||
![]() |
45ec754d47 | ||
![]() |
733a4da383 | ||
![]() |
ded5f1aa29 | ||
![]() |
fe9498963d | ||
![]() |
6b580ec5eb | ||
![]() |
45f147e651 | ||
39a95e63d9 | |||
1de8ba4f2d | |||
74bec4b69e | |||
58b38311b5 | |||
4ed23069fc | |||
![]() |
7d7794627b | ||
d9bdf8ee96 | |||
a61ff8a4e1 | |||
![]() |
26ee580710 | ||
![]() |
96934cd89f | ||
![]() |
27ab1ac129 | ||
![]() |
eb4fefe363 | ||
![]() |
60cc97e702 | ||
![]() |
7e2a5ec18d | ||
![]() |
4038d25b07 | ||
![]() |
aa15248b58 | ||
![]() |
fa392ec631 | ||
![]() |
8b6f16236a | ||
![]() |
58acea8467 | ||
![]() |
2607d9c3b0 | ||
![]() |
57ed06f79b | ||
![]() |
01a132264f | ||
![]() |
ff4535c56b | ||
9b480e8130 | |||
![]() |
fe666a4ddb | ||
![]() |
b80d5ab381 | ||
![]() |
49f7558225 |
2
.github/runners/runner-x64/Dockerfile
vendored
2
.github/runners/runner-x64/Dockerfile
vendored
@ -7,7 +7,7 @@ ARG DEBIAN_FRONTEND=noninteractive
|
|||||||
|
|
||||||
RUN apt update -y && apt upgrade -y && useradd -m docker
|
RUN apt update -y && apt upgrade -y && useradd -m docker
|
||||||
RUN apt install -y --no-install-recommends \
|
RUN apt install -y --no-install-recommends \
|
||||||
curl jq git unzip \
|
curl jq git zip unzip \
|
||||||
# dev dependencies
|
# dev dependencies
|
||||||
build-essential libssl-dev libffi-dev python3 python3-venv python3-dev python3-pip \
|
build-essential libssl-dev libffi-dev python3 python3-venv python3-dev python3-pip \
|
||||||
# dot net core dependencies
|
# dot net core dependencies
|
||||||
|
16
.github/scripts/run_examples.sh
vendored
Normal file
16
.github/scripts/run_examples.sh
vendored
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
cargo build --release --examples
|
||||||
|
|
||||||
|
for ex in examples/*.rs; do
|
||||||
|
name=$(basename "$ex" .rs)
|
||||||
|
echo
|
||||||
|
echo "🟡 Running example: $name"
|
||||||
|
|
||||||
|
if ! cargo run --release --example "$name" -- --debug; then
|
||||||
|
echo
|
||||||
|
echo "❌ Example '$name' failed. Aborting."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
|
||||||
|
echo
|
||||||
|
echo "✅ All examples ran successfully."
|
17
.github/workflows/run-unit-tests.yml
vendored
17
.github/workflows/run-unit-tests.yml
vendored
@ -12,14 +12,12 @@ concurrency:
|
|||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
pick-runner:
|
pick-runner:
|
||||||
|
|
||||||
if: github.event.pull_request.draft == false
|
if: github.event.pull_request.draft == false
|
||||||
|
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
outputs:
|
outputs:
|
||||||
runner: ${{ steps.choose.outputs.use-runner }}
|
runner: ${{ steps.choose.outputs.use-runner }}
|
||||||
steps:
|
steps:
|
||||||
|
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- id: choose
|
- id: choose
|
||||||
uses: ./.github/actions/runner-fallback
|
uses: ./.github/actions/runner-fallback
|
||||||
@ -27,7 +25,6 @@ jobs:
|
|||||||
primary-runner: "self-hosted"
|
primary-runner: "self-hosted"
|
||||||
fallback-runner: "ubuntu-latest"
|
fallback-runner: "ubuntu-latest"
|
||||||
github-token: ${{ secrets.CUSTOM_GH_TOKEN }}
|
github-token: ${{ secrets.CUSTOM_GH_TOKEN }}
|
||||||
|
|
||||||
|
|
||||||
run-unit-tests:
|
run-unit-tests:
|
||||||
needs: pick-runner
|
needs: pick-runner
|
||||||
@ -56,6 +53,20 @@ jobs:
|
|||||||
- name: Test docs generation
|
- name: Test docs generation
|
||||||
run: cargo doc --no-deps --release
|
run: cargo doc --no-deps --release
|
||||||
|
|
||||||
|
- name: Test examples
|
||||||
|
run: cargo test --examples --release
|
||||||
|
|
||||||
|
- name: Run all examples
|
||||||
|
run: |
|
||||||
|
for example in examples/*.rs; do
|
||||||
|
name=$(basename "$example" .rs)
|
||||||
|
echo "Running example: $name"
|
||||||
|
cargo run --release --example "$name" -- --debug || exit 1
|
||||||
|
done
|
||||||
|
|
||||||
|
- name: Cargo test all targets
|
||||||
|
run: cargo test --all-targets --release
|
||||||
|
|
||||||
- name: Upload coverage to Codecov
|
- name: Upload coverage to Codecov
|
||||||
uses: codecov/codecov-action@v3
|
uses: codecov/codecov-action@v3
|
||||||
with:
|
with:
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "rustframe"
|
name = "rustframe"
|
||||||
|
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
||||||
version = "0.0.1-a.20250716"
|
version = "0.0.1-a.20250716"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
license = "GPL-3.0-or-later"
|
license = "GPL-3.0-or-later"
|
||||||
@ -14,7 +15,6 @@ crate-type = ["cdylib", "lib"]
|
|||||||
[dependencies]
|
[dependencies]
|
||||||
chrono = "^0.4.10"
|
chrono = "^0.4.10"
|
||||||
criterion = { version = "0.5", features = ["html_reports"], optional = true }
|
criterion = { version = "0.5", features = ["html_reports"], optional = true }
|
||||||
rand = "^0.9.1"
|
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
bench = ["dep:criterion"]
|
bench = ["dep:criterion"]
|
||||||
|
152
README.md
152
README.md
@ -30,7 +30,7 @@ Rustframe is an educational project, and is not intended for production use. It
|
|||||||
|
|
||||||
- **[Coming Soon]** _DataFrame_ - Multi-type data structure for heterogeneous data, with labeled columns and typed row indices.
|
- **[Coming Soon]** _DataFrame_ - Multi-type data structure for heterogeneous data, with labeled columns and typed row indices.
|
||||||
|
|
||||||
- **[Coming Soon]** _Random number utils_ - Random number generation utilities for statistical sampling and simulations. (Currently using the [`rand`](https://crates.io/crates/rand) crate.)
|
- **Random number utils** - Built-in pseudo and cryptographically secure generators for simulations.
|
||||||
|
|
||||||
#### Matrix and Frame functionality
|
#### Matrix and Frame functionality
|
||||||
|
|
||||||
@ -176,6 +176,133 @@ let zipped_matrix = a.zip(&b, |x, y| x + y);
|
|||||||
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## DataFrame Usage Example
|
||||||
|
|
||||||
|
```rust
|
||||||
|
use chrono::NaiveDate;
|
||||||
|
use rustframe::dataframe::DataFrame;
|
||||||
|
use rustframe::utils::{BDateFreq, BDatesList};
|
||||||
|
use std::any::TypeId;
|
||||||
|
use std::collections::HashMap;
|
||||||
|
|
||||||
|
// Helper for NaiveDate
|
||||||
|
fn d(y: i32, m: u32, d: u32) -> NaiveDate {
|
||||||
|
NaiveDate::from_ymd_opt(y, m, d).unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create a new DataFrame
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
|
||||||
|
// Add columns of different types
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3, 4, 5]);
|
||||||
|
df.add_column("col_float1", vec![1.1, 2.2, 3.3, 4.4, 5.5]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec![
|
||||||
|
"apple".to_string(),
|
||||||
|
"banana".to_string(),
|
||||||
|
"cherry".to_string(),
|
||||||
|
"date".to_string(),
|
||||||
|
"elderberry".to_string(),
|
||||||
|
],
|
||||||
|
);
|
||||||
|
df.add_column("col_bool", vec![true, false, true, false, true]);
|
||||||
|
// df.add_column("col_date", vec![d(2023,1,1), d(2023,1,2), d(2023,1,3), d(2023,1,4), d(2023,1,5)]);
|
||||||
|
df.add_column(
|
||||||
|
"col_date",
|
||||||
|
BDatesList::from_n_periods("2023-01-01".to_string(), BDateFreq::Daily, 5)
|
||||||
|
.unwrap()
|
||||||
|
.list()
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
|
||||||
|
println!("DataFrame after initial column additions:\n{}", df);
|
||||||
|
|
||||||
|
// Demonstrate frame re-use when adding columns of existing types
|
||||||
|
let initial_frames_count = df.num_internal_frames();
|
||||||
|
println!(
|
||||||
|
"\nInitial number of internal frames: {}",
|
||||||
|
initial_frames_count
|
||||||
|
);
|
||||||
|
|
||||||
|
df.add_column("col_int2", vec![6, 7, 8, 9, 10]);
|
||||||
|
df.add_column("col_float2", vec![6.6, 7.7, 8.8, 9.9, 10.0]);
|
||||||
|
|
||||||
|
let frames_after_reuse = df.num_internal_frames();
|
||||||
|
println!(
|
||||||
|
"Number of internal frames after adding more columns of existing types: {}",
|
||||||
|
frames_after_reuse
|
||||||
|
);
|
||||||
|
assert_eq!(initial_frames_count, frames_after_reuse); // Should be equal, demonstrating re-use
|
||||||
|
|
||||||
|
println!(
|
||||||
|
"\nDataFrame after adding more columns of existing types:\n{}",
|
||||||
|
df
|
||||||
|
);
|
||||||
|
|
||||||
|
// Get number of rows and columns
|
||||||
|
println!("Rows: {}", df.rows()); // Output: Rows: 5
|
||||||
|
println!("Columns: {}", df.cols()); // Output: Columns: 5
|
||||||
|
|
||||||
|
// Get column names
|
||||||
|
println!("Column names: {:?}", df.get_column_names());
|
||||||
|
// Output: Column names: ["col_int", "col_float", "col_string", "col_bool", "col_date"]
|
||||||
|
|
||||||
|
// Get a specific column by name and type
|
||||||
|
let int_col = df.get_column::<i32>("col_int1").unwrap();
|
||||||
|
// Output: Integer column: [1, 2, 3, 4, 5]
|
||||||
|
println!("Integer column (col_int1): {:?}", int_col);
|
||||||
|
|
||||||
|
let int_col2 = df.get_column::<i32>("col_int2").unwrap();
|
||||||
|
// Output: Integer column: [6, 7, 8, 9, 10]
|
||||||
|
println!("Integer column (col_int2): {:?}", int_col2);
|
||||||
|
|
||||||
|
let float_col = df.get_column::<f64>("col_float1").unwrap();
|
||||||
|
// Output: Float column: [1.1, 2.2, 3.3, 4.4, 5.5]
|
||||||
|
println!("Float column (col_float1): {:?}", float_col);
|
||||||
|
|
||||||
|
// Attempt to get a column with incorrect type (returns None)
|
||||||
|
let wrong_type_col = df.get_column::<bool>("col_int1");
|
||||||
|
// Output: Wrong type column: None
|
||||||
|
println!("Wrong type column: {:?}", wrong_type_col);
|
||||||
|
|
||||||
|
// Get a row by index
|
||||||
|
let row_0 = df.get_row(0).unwrap();
|
||||||
|
println!("Row 0: {:?}", row_0);
|
||||||
|
// Output: Row 0: {"col_int1": "1", "col_float1": "1.1", "col_string": "apple", "col_bool": "true", "col_date": "2023-01-01", "col_int2": "6", "col_float2": "6.6"}
|
||||||
|
|
||||||
|
let row_2 = df.get_row(2).unwrap();
|
||||||
|
println!("Row 2: {:?}", row_2);
|
||||||
|
// Output: Row 2: {"col_int1": "3", "col_float1": "3.3", "col_string": "cherry", "col_bool": "true", "col_date": "2023-01-03", "col_int2": "8", "col_float2": "8.8"}
|
||||||
|
|
||||||
|
// Attempt to get an out-of-bounds row (returns None)
|
||||||
|
let row_out_of_bounds = df.get_row(10);
|
||||||
|
// Output: Row out of bounds: None
|
||||||
|
println!("Row out of bounds: {:?}", row_out_of_bounds);
|
||||||
|
|
||||||
|
// Drop a column
|
||||||
|
df.drop_column("col_bool");
|
||||||
|
println!("\nDataFrame after dropping 'col_bool':\n{}", df);
|
||||||
|
|
||||||
|
println!("Columns after drop: {}", df.cols());
|
||||||
|
println!("Column names after drop: {:?}", df.get_column_names());
|
||||||
|
|
||||||
|
// Drop another column, ensuring the underlying Frame is removed if empty
|
||||||
|
df.drop_column("col_float1");
|
||||||
|
println!("\nDataFrame after dropping 'col_float1':\n{}", df);
|
||||||
|
|
||||||
|
println!("Columns after second drop: {}", df.cols());
|
||||||
|
println!(
|
||||||
|
"Column names after second drop: {:?}",
|
||||||
|
df.get_column_names()
|
||||||
|
);
|
||||||
|
|
||||||
|
// Attempt to drop a non-existent column (will panic)
|
||||||
|
// df.drop_column("non_existent_col"); // Uncomment to see panic
|
||||||
|
```
|
||||||
|
|
||||||
### More examples
|
### More examples
|
||||||
|
|
||||||
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
||||||
@ -192,6 +319,29 @@ E.g. to run the `game_of_life` example:
|
|||||||
cargo run --example game_of_life
|
cargo run --example game_of_life
|
||||||
```
|
```
|
||||||
|
|
||||||
|
More demos:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cargo run --example linear_regression
|
||||||
|
cargo run --example logistic_regression
|
||||||
|
cargo run --example k_means
|
||||||
|
cargo run --example pca
|
||||||
|
cargo run --example stats_overview
|
||||||
|
cargo run --example descriptive_stats
|
||||||
|
cargo run --example correlation
|
||||||
|
cargo run --example inferential_stats
|
||||||
|
cargo run --example distributions
|
||||||
|
```
|
||||||
|
|
||||||
|
To simply list all available examples, you can run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# this technically raises an error, but it will list all examples
|
||||||
|
cargo run --example
|
||||||
|
```
|
||||||
|
|
||||||
|
Each demo runs a couple of mini-scenarios showcasing the APIs.
|
||||||
|
|
||||||
### Running benchmarks
|
### Running benchmarks
|
||||||
|
|
||||||
To run the benchmarks, use:
|
To run the benchmarks, use:
|
||||||
|
45
examples/correlation.rs
Normal file
45
examples/correlation.rs
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
use rustframe::compute::stats::{covariance, covariance_matrix, pearson};
|
||||||
|
use rustframe::matrix::{Axis, Matrix};
|
||||||
|
|
||||||
|
/// Demonstrates covariance and correlation utilities.
|
||||||
|
fn main() {
|
||||||
|
pairwise_cov();
|
||||||
|
println!("\n-----\n");
|
||||||
|
matrix_cov();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn pairwise_cov() {
|
||||||
|
println!("Covariance & Pearson r\n----------------------");
|
||||||
|
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
||||||
|
println!("covariance : {:.2}", covariance(&x, &y));
|
||||||
|
println!("pearson r : {:.3}", pearson(&x, &y));
|
||||||
|
}
|
||||||
|
|
||||||
|
fn matrix_cov() {
|
||||||
|
println!("Covariance matrix\n-----------------");
|
||||||
|
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let cov = covariance_matrix(&data, Axis::Col);
|
||||||
|
println!("cov matrix : {:?}", cov.data());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
const EPS: f64 = 1e-8;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_pairwise_cov() {
|
||||||
|
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
||||||
|
assert!((covariance(&x, &y) - 1.625).abs() < EPS);
|
||||||
|
assert!((pearson(&x, &y) - 0.9827076298239908).abs() < 1e-5,);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_matrix_cov() {
|
||||||
|
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let cov = covariance_matrix(&data, Axis::Col);
|
||||||
|
assert_eq!(cov.data(), &[2.0, 2.0, 2.0, 2.0]);
|
||||||
|
}
|
||||||
|
}
|
56
examples/descriptive_stats.rs
Normal file
56
examples/descriptive_stats.rs
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, median, percentile, stddev};
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
/// Demonstrates descriptive statistics utilities.
|
||||||
|
///
|
||||||
|
/// Part 1: simple mean/stddev/median/percentile on a vector.
|
||||||
|
/// Part 2: mean across rows and columns.
|
||||||
|
fn main() {
|
||||||
|
simple_stats();
|
||||||
|
println!("\n-----\n");
|
||||||
|
axis_stats();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn simple_stats() {
|
||||||
|
println!("Basic stats\n-----------");
|
||||||
|
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
println!("mean : {:.2}", mean(&data));
|
||||||
|
println!("stddev : {:.2}", stddev(&data));
|
||||||
|
println!("median : {:.2}", median(&data));
|
||||||
|
println!("90th pct. : {:.2}", percentile(&data, 90.0));
|
||||||
|
}
|
||||||
|
|
||||||
|
fn axis_stats() {
|
||||||
|
println!("Row/column means\n----------------");
|
||||||
|
// 2x3 matrix
|
||||||
|
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 2, 3);
|
||||||
|
let v = mean_vertical(&data); // 1x3
|
||||||
|
let h = mean_horizontal(&data); // 2x1
|
||||||
|
println!("vertical means : {:?}", v.data());
|
||||||
|
println!("horizontal means: {:?}", h.data());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
const EPS: f64 = 1e-8;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_simple_stats() {
|
||||||
|
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
assert!((mean(&data) - 3.0).abs() < EPS);
|
||||||
|
assert!((stddev(&data) - 1.4142135623730951).abs() < EPS);
|
||||||
|
assert!((median(&data) - 3.0).abs() < EPS);
|
||||||
|
assert!((percentile(&data, 90.0) - 5.0).abs() < EPS);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_axis_stats() {
|
||||||
|
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 2, 3);
|
||||||
|
let v = mean_vertical(&data);
|
||||||
|
assert_eq!(v.data(), &[2.5, 3.5, 4.5]);
|
||||||
|
let h = mean_horizontal(&data);
|
||||||
|
assert_eq!(h.data(), &[2.0, 5.0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
66
examples/distributions.rs
Normal file
66
examples/distributions.rs
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
use rustframe::compute::stats::{binomial_cdf, binomial_pmf, normal_cdf, normal_pdf, poisson_pmf};
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
/// Demonstrates some probability distribution helpers.
|
||||||
|
fn main() {
|
||||||
|
normal_example();
|
||||||
|
println!("\n-----\n");
|
||||||
|
binomial_example();
|
||||||
|
println!("\n-----\n");
|
||||||
|
poisson_example();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn normal_example() {
|
||||||
|
println!("Normal distribution\n-------------------");
|
||||||
|
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||||
|
let pdf = normal_pdf(x.clone(), 0.0, 1.0);
|
||||||
|
let cdf = normal_cdf(x, 0.0, 1.0);
|
||||||
|
println!("pdf : {:?}", pdf.data());
|
||||||
|
println!("cdf : {:?}", cdf.data());
|
||||||
|
}
|
||||||
|
|
||||||
|
fn binomial_example() {
|
||||||
|
println!("Binomial distribution\n---------------------");
|
||||||
|
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||||
|
let pmf = binomial_pmf(4, k.clone(), 0.5);
|
||||||
|
let cdf = binomial_cdf(4, k, 0.5);
|
||||||
|
println!("pmf : {:?}", pmf.data());
|
||||||
|
println!("cdf : {:?}", cdf.data());
|
||||||
|
}
|
||||||
|
|
||||||
|
fn poisson_example() {
|
||||||
|
println!("Poisson distribution\n--------------------");
|
||||||
|
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||||
|
let pmf = poisson_pmf(3.0, k);
|
||||||
|
println!("pmf : {:?}", pmf.data());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_normal_example() {
|
||||||
|
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||||
|
let pdf = normal_pdf(x.clone(), 0.0, 1.0);
|
||||||
|
let cdf = normal_cdf(x, 0.0, 1.0);
|
||||||
|
assert!((pdf.get(0, 0) - 0.39894228).abs() < 1e-6);
|
||||||
|
assert!((cdf.get(0, 1) - 0.8413447).abs() < 1e-6);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_binomial_example() {
|
||||||
|
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||||
|
let pmf = binomial_pmf(4, k.clone(), 0.5);
|
||||||
|
let cdf = binomial_cdf(4, k, 0.5);
|
||||||
|
assert!((pmf.get(0, 2) - 0.375).abs() < 1e-6);
|
||||||
|
assert!((cdf.get(0, 2) - 0.6875).abs() < 1e-6);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_poisson_example() {
|
||||||
|
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||||
|
let pmf = poisson_pmf(3.0, k);
|
||||||
|
assert!((pmf.get(0, 1) - 3.0_f64 * (-3.0_f64).exp()).abs() < 1e-6);
|
||||||
|
}
|
||||||
|
}
|
@ -1,11 +1,26 @@
|
|||||||
use rand::{self, Rng};
|
//! Conway's Game of Life Example
|
||||||
|
//! This example implements Conway's Game of Life using a `BoolMatrix` to represent the game board.
|
||||||
|
//! It demonstrates matrix operations like shifting, counting neighbors, and applying game rules.
|
||||||
|
//! The game runs in a loop, updating the board state and printing it to the console.
|
||||||
|
//! To modify the behaviour of the example, please change the constants at the top of this file.
|
||||||
|
//! By default,
|
||||||
|
|
||||||
use rustframe::matrix::{BoolMatrix, BoolOps, IntMatrix, Matrix};
|
use rustframe::matrix::{BoolMatrix, BoolOps, IntMatrix, Matrix};
|
||||||
|
use rustframe::random::{rng, Rng};
|
||||||
use std::{thread, time};
|
use std::{thread, time};
|
||||||
|
|
||||||
const BOARD_SIZE: usize = 50; // Size of the board (50x50)
|
const BOARD_SIZE: usize = 20; // Size of the board (50x50)
|
||||||
const TICK_DURATION_MS: u64 = 10; // Milliseconds per frame
|
const MAX_FRAMES: u32 = 1000;
|
||||||
|
|
||||||
|
const TICK_DURATION_MS: u64 = 0; // Milliseconds per frame
|
||||||
|
const SKIP_FRAMES: u32 = 1;
|
||||||
|
const PRINT_BOARD: bool = true; // Set to false to disable printing the board
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
|
let args = std::env::args().collect::<Vec<String>>();
|
||||||
|
let debug_mode = args.contains(&"--debug".to_string());
|
||||||
|
let print_mode = if debug_mode { false } else { PRINT_BOARD };
|
||||||
|
|
||||||
// Initialize the game board.
|
// Initialize the game board.
|
||||||
// This demonstrates `BoolMatrix::from_vec`.
|
// This demonstrates `BoolMatrix::from_vec`.
|
||||||
let mut current_board =
|
let mut current_board =
|
||||||
@ -24,20 +39,12 @@ fn main() {
|
|||||||
let mut print_bool_int = 0;
|
let mut print_bool_int = 0;
|
||||||
|
|
||||||
loop {
|
loop {
|
||||||
// print!("{}[2J", 27 as char); // Clear screen and move cursor to top-left
|
|
||||||
|
|
||||||
// if print_board_bool {
|
// if print_board_bool {
|
||||||
if print_bool_int % 10 == 0 {
|
if print_bool_int % SKIP_FRAMES == 0 {
|
||||||
print!("{}[2J", 27 as char);
|
print_board(¤t_board, generation_count, print_mode);
|
||||||
println!("Conway's Game of Life - Generation: {}", generation_count);
|
|
||||||
|
|
||||||
print_board(¤t_board);
|
|
||||||
println!("Alive cells: {}", ¤t_board.count());
|
|
||||||
|
|
||||||
// print_board_bool = false;
|
|
||||||
print_bool_int = 0;
|
print_bool_int = 0;
|
||||||
} else {
|
} else {
|
||||||
// print_board_bool = true;
|
|
||||||
print_bool_int += 1;
|
print_bool_int += 1;
|
||||||
}
|
}
|
||||||
// `current_board.count()` demonstrates a method from `BoolOps`.
|
// `current_board.count()` demonstrates a method from `BoolOps`.
|
||||||
@ -71,10 +78,10 @@ fn main() {
|
|||||||
generation_count += 1;
|
generation_count += 1;
|
||||||
thread::sleep(time::Duration::from_millis(TICK_DURATION_MS));
|
thread::sleep(time::Duration::from_millis(TICK_DURATION_MS));
|
||||||
|
|
||||||
// if generation_count > 500 { // Optional limit
|
if (MAX_FRAMES > 0) && (generation_count > MAX_FRAMES) {
|
||||||
// println!("\nReached generation limit.");
|
println!("\nReached generation limit.");
|
||||||
// break;
|
break;
|
||||||
// }
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -82,7 +89,13 @@ fn main() {
|
|||||||
///
|
///
|
||||||
/// - `board`: A reference to the `BoolMatrix` representing the current game state.
|
/// - `board`: A reference to the `BoolMatrix` representing the current game state.
|
||||||
/// This function demonstrates `board.rows()`, `board.cols()`, and `board[(r, c)]` (Index trait).
|
/// This function demonstrates `board.rows()`, `board.cols()`, and `board[(r, c)]` (Index trait).
|
||||||
fn print_board(board: &BoolMatrix) {
|
fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
|
||||||
|
if !print_mode {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
print!("{}[2J", 27 as char);
|
||||||
|
println!("Conway's Game of Life - Generation: {}", generation_count);
|
||||||
let mut print_str = String::new();
|
let mut print_str = String::new();
|
||||||
print_str.push_str("+");
|
print_str.push_str("+");
|
||||||
for _ in 0..board.cols() {
|
for _ in 0..board.cols() {
|
||||||
@ -107,6 +120,8 @@ fn print_board(board: &BoolMatrix) {
|
|||||||
}
|
}
|
||||||
print_str.push_str("+\n\n");
|
print_str.push_str("+\n\n");
|
||||||
print!("{}", print_str);
|
print!("{}", print_str);
|
||||||
|
|
||||||
|
println!("Alive cells: {}", board.count());
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Helper function to create a shifted version of the game board.
|
/// Helper function to create a shifted version of the game board.
|
||||||
@ -250,7 +265,7 @@ pub fn generate_glider(board: &mut BoolMatrix, board_size: usize) {
|
|||||||
// Initialize with a Glider pattern.
|
// Initialize with a Glider pattern.
|
||||||
// It demonstrates how to set specific cells in the matrix.
|
// It demonstrates how to set specific cells in the matrix.
|
||||||
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
||||||
let mut rng = rand::rng();
|
let mut rng = rng();
|
||||||
let r_offset = rng.random_range(0..(board_size - 3));
|
let r_offset = rng.random_range(0..(board_size - 3));
|
||||||
let c_offset = rng.random_range(0..(board_size - 3));
|
let c_offset = rng.random_range(0..(board_size - 3));
|
||||||
if board.rows() >= r_offset + 3 && board.cols() >= c_offset + 3 {
|
if board.rows() >= r_offset + 3 && board.cols() >= c_offset + 3 {
|
||||||
@ -266,7 +281,7 @@ pub fn generate_pulsar(board: &mut BoolMatrix, board_size: usize) {
|
|||||||
// Initialize with a Pulsar pattern.
|
// Initialize with a Pulsar pattern.
|
||||||
// This demonstrates how to set specific cells in the matrix.
|
// This demonstrates how to set specific cells in the matrix.
|
||||||
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
||||||
let mut rng = rand::rng();
|
let mut rng = rng();
|
||||||
let r_offset = rng.random_range(0..(board_size - 17));
|
let r_offset = rng.random_range(0..(board_size - 17));
|
||||||
let c_offset = rng.random_range(0..(board_size - 17));
|
let c_offset = rng.random_range(0..(board_size - 17));
|
||||||
if board.rows() >= r_offset + 17 && board.cols() >= c_offset + 17 {
|
if board.rows() >= r_offset + 17 && board.cols() >= c_offset + 17 {
|
||||||
|
66
examples/inferential_stats.rs
Normal file
66
examples/inferential_stats.rs
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
use rustframe::compute::stats::{anova, chi2_test, t_test};
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
/// Demonstrates simple inferential statistics tests.
|
||||||
|
fn main() {
|
||||||
|
t_test_demo();
|
||||||
|
println!("\n-----\n");
|
||||||
|
chi2_demo();
|
||||||
|
println!("\n-----\n");
|
||||||
|
anova_demo();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn t_test_demo() {
|
||||||
|
println!("Two-sample t-test\n-----------------");
|
||||||
|
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
let b = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||||
|
let (t, p) = t_test(&a, &b);
|
||||||
|
println!("t statistic: {:.2}, p-value: {:.4}", t, p);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn chi2_demo() {
|
||||||
|
println!("Chi-square test\n---------------");
|
||||||
|
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||||
|
let (chi2, p) = chi2_test(&observed);
|
||||||
|
println!("chi^2: {:.2}, p-value: {:.4}", chi2, p);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn anova_demo() {
|
||||||
|
println!("One-way ANOVA\n-------------");
|
||||||
|
let g1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
||||||
|
let g2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
||||||
|
let g3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
||||||
|
let (f, p) = anova(vec![&g1, &g2, &g3]);
|
||||||
|
println!("F statistic: {:.2}, p-value: {:.4}", f, p);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_t_test_demo() {
|
||||||
|
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
let b = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||||
|
let (t, _p) = t_test(&a, &b);
|
||||||
|
assert!((t + 5.0).abs() < 1e-5);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_chi2_demo() {
|
||||||
|
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||||
|
let (chi2, p) = chi2_test(&observed);
|
||||||
|
assert!(chi2 > 0.0);
|
||||||
|
assert!(p > 0.0 && p < 1.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_anova_demo() {
|
||||||
|
let g1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
||||||
|
let g2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
||||||
|
let g3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
||||||
|
let (f, p) = anova(vec![&g1, &g2, &g3]);
|
||||||
|
assert!(f > 0.0);
|
||||||
|
assert!(p > 0.0 && p < 1.0);
|
||||||
|
}
|
||||||
|
}
|
65
examples/k_means.rs
Normal file
65
examples/k_means.rs
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
use rustframe::compute::models::k_means::KMeans;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
/// Two quick K-Means clustering demos.
|
||||||
|
///
|
||||||
|
/// Example 1 groups store locations on a city map.
|
||||||
|
/// Example 2 segments customers by annual spending habits.
|
||||||
|
fn main() {
|
||||||
|
city_store_example();
|
||||||
|
println!("\n-----\n");
|
||||||
|
customer_spend_example();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn city_store_example() {
|
||||||
|
println!("Example 1: store locations");
|
||||||
|
|
||||||
|
// (x, y) coordinates of stores around a city
|
||||||
|
let raw = vec![
|
||||||
|
1.0, 2.0, 1.5, 1.8, 5.0, 8.0, 8.0, 8.0, 1.0, 0.6, 9.0, 11.0, 8.0, 2.0, 10.0, 2.0, 9.0, 3.0,
|
||||||
|
];
|
||||||
|
let x = Matrix::from_rows_vec(raw, 9, 2);
|
||||||
|
|
||||||
|
// Group stores into two areas
|
||||||
|
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
||||||
|
|
||||||
|
println!("Centres: {:?}", model.centroids.data());
|
||||||
|
println!("Labels: {:?}", labels);
|
||||||
|
|
||||||
|
let new_points = Matrix::from_rows_vec(vec![0.0, 0.0, 8.0, 3.0], 2, 2);
|
||||||
|
let pred = model.predict(&new_points);
|
||||||
|
println!("New store assignments: {:?}", pred);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn customer_spend_example() {
|
||||||
|
println!("Example 2: customer spending");
|
||||||
|
|
||||||
|
// (grocery spend, electronics spend) in dollars
|
||||||
|
let raw = vec![
|
||||||
|
200.0, 150.0, 220.0, 170.0, 250.0, 160.0, 800.0, 750.0, 820.0, 760.0, 790.0, 770.0,
|
||||||
|
];
|
||||||
|
let x = Matrix::from_rows_vec(raw, 6, 2);
|
||||||
|
|
||||||
|
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
||||||
|
|
||||||
|
println!("Centres: {:?}", model.centroids.data());
|
||||||
|
println!("Labels: {:?}", labels);
|
||||||
|
|
||||||
|
let new_customers = Matrix::from_rows_vec(vec![230.0, 155.0, 810.0, 760.0], 2, 2);
|
||||||
|
let pred = model.predict(&new_customers);
|
||||||
|
println!("Cluster of new customers: {:?}", pred);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn k_means_store_locations() {
|
||||||
|
let raw = vec![
|
||||||
|
1.0, 2.0, 1.5, 1.8, 5.0, 8.0, 8.0, 8.0, 1.0, 0.6, 9.0, 11.0, 8.0, 2.0, 10.0, 2.0, 9.0, 3.0,
|
||||||
|
];
|
||||||
|
let x = Matrix::from_rows_vec(raw, 9, 2);
|
||||||
|
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
||||||
|
assert_eq!(labels.len(), 9);
|
||||||
|
assert_eq!(model.centroids.rows(), 2);
|
||||||
|
let new_points = Matrix::from_rows_vec(vec![0.0, 0.0, 8.0, 3.0], 2, 2);
|
||||||
|
let pred = model.predict(&new_points);
|
||||||
|
assert_eq!(pred.len(), 2);
|
||||||
|
}
|
118
examples/linear_regression.rs
Normal file
118
examples/linear_regression.rs
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
use rustframe::compute::models::linreg::LinReg;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
/// Two quick linear regression demonstrations.
|
||||||
|
///
|
||||||
|
/// Example 1 fits a model to predict house price from floor area.
|
||||||
|
/// Example 2 adds number of bedrooms as a second feature.
|
||||||
|
fn main() {
|
||||||
|
example_one_feature();
|
||||||
|
println!("\n-----\n");
|
||||||
|
example_two_features();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Price ~ floor area
|
||||||
|
fn example_one_feature() {
|
||||||
|
println!("Example 1: predict price from floor area only");
|
||||||
|
|
||||||
|
// Square meters of floor area for a few houses
|
||||||
|
let sizes = vec![50.0, 60.0, 70.0, 80.0, 90.0, 100.0];
|
||||||
|
// Thousands of dollars in sale price
|
||||||
|
let prices = vec![150.0, 180.0, 210.0, 240.0, 270.0, 300.0];
|
||||||
|
|
||||||
|
// Each row is a sample with one feature
|
||||||
|
let x = Matrix::from_vec(sizes.clone(), sizes.len(), 1);
|
||||||
|
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
||||||
|
|
||||||
|
// Train with a small learning rate
|
||||||
|
let mut model = LinReg::new(1);
|
||||||
|
model.fit(&x, &y, 0.0005, 20000);
|
||||||
|
|
||||||
|
let preds = model.predict(&x);
|
||||||
|
println!("Size (m^2) -> predicted price (k) vs actual");
|
||||||
|
for i in 0..x.rows() {
|
||||||
|
println!(
|
||||||
|
"{:>3} -> {:>6.1} | {:>6.1}",
|
||||||
|
sizes[i],
|
||||||
|
preds[(i, 0)],
|
||||||
|
prices[i]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
let new_house = Matrix::from_vec(vec![120.0], 1, 1);
|
||||||
|
let pred = model.predict(&new_house);
|
||||||
|
println!("Predicted price for 120 m^2: {:.1}k", pred[(0, 0)]);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Price ~ floor area + bedrooms
|
||||||
|
fn example_two_features() {
|
||||||
|
println!("Example 2: price from area and bedrooms");
|
||||||
|
|
||||||
|
// (size m^2, bedrooms) for each house
|
||||||
|
let raw_x = vec![
|
||||||
|
50.0, 2.0, 70.0, 2.0, 90.0, 3.0, 110.0, 3.0, 130.0, 4.0, 150.0, 4.0,
|
||||||
|
];
|
||||||
|
let prices = vec![160.0, 195.0, 250.0, 285.0, 320.0, 350.0];
|
||||||
|
|
||||||
|
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
||||||
|
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
||||||
|
|
||||||
|
let mut model = LinReg::new(2);
|
||||||
|
model.fit(&x, &y, 0.0001, 50000);
|
||||||
|
|
||||||
|
let preds = model.predict(&x);
|
||||||
|
println!("size, beds -> predicted | actual (k)");
|
||||||
|
for i in 0..x.rows() {
|
||||||
|
let size = x[(i, 0)];
|
||||||
|
let beds = x[(i, 1)];
|
||||||
|
println!(
|
||||||
|
"{:>3} m^2, {:>1} -> {:>6.1} | {:>6.1}",
|
||||||
|
size,
|
||||||
|
beds,
|
||||||
|
preds[(i, 0)],
|
||||||
|
prices[i]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
let new_home = Matrix::from_rows_vec(vec![120.0, 3.0], 1, 2);
|
||||||
|
let pred = model.predict(&new_home);
|
||||||
|
println!(
|
||||||
|
"Predicted price for 120 m^2 with 3 bedrooms: {:.1}k",
|
||||||
|
pred[(0, 0)]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_linear_regression_one_feature() {
|
||||||
|
let sizes = vec![50.0, 60.0, 70.0, 80.0, 90.0, 100.0];
|
||||||
|
let prices = vec![150.0, 180.0, 210.0, 240.0, 270.0, 300.0];
|
||||||
|
let scaled: Vec<f64> = sizes.iter().map(|s| s / 100.0).collect();
|
||||||
|
let x = Matrix::from_vec(scaled, sizes.len(), 1);
|
||||||
|
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
||||||
|
let mut model = LinReg::new(1);
|
||||||
|
model.fit(&x, &y, 0.1, 2000);
|
||||||
|
let preds = model.predict(&x);
|
||||||
|
for i in 0..y.rows() {
|
||||||
|
assert!((preds[(i, 0)] - prices[i]).abs() < 1.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_linear_regression_two_features() {
|
||||||
|
let raw_x = vec![
|
||||||
|
50.0, 2.0, 70.0, 2.0, 90.0, 3.0, 110.0, 3.0, 130.0, 4.0, 150.0, 4.0,
|
||||||
|
];
|
||||||
|
let prices = vec![170.0, 210.0, 270.0, 310.0, 370.0, 410.0];
|
||||||
|
let scaled_x: Vec<f64> = raw_x
|
||||||
|
.chunks(2)
|
||||||
|
.flat_map(|pair| vec![pair[0] / 100.0, pair[1]])
|
||||||
|
.collect();
|
||||||
|
let x = Matrix::from_rows_vec(scaled_x, 6, 2);
|
||||||
|
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
||||||
|
let mut model = LinReg::new(2);
|
||||||
|
model.fit(&x, &y, 0.01, 50000);
|
||||||
|
let preds = model.predict(&x);
|
||||||
|
for i in 0..y.rows() {
|
||||||
|
assert!((preds[(i, 0)] - prices[i]).abs() < 1.0);
|
||||||
|
}
|
||||||
|
}
|
101
examples/logistic_regression.rs
Normal file
101
examples/logistic_regression.rs
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
use rustframe::compute::models::logreg::LogReg;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
/// Two binary classification demos using logistic regression.
|
||||||
|
///
|
||||||
|
/// Example 1 predicts exam success from hours studied.
|
||||||
|
/// Example 2 predicts whether an online shopper will make a purchase.
|
||||||
|
fn main() {
|
||||||
|
student_passing_example();
|
||||||
|
println!("\n-----\n");
|
||||||
|
purchase_prediction_example();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn student_passing_example() {
|
||||||
|
println!("Example 1: exam pass prediction");
|
||||||
|
|
||||||
|
// Hours studied for each student
|
||||||
|
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
|
||||||
|
// 0 = fail, 1 = pass
|
||||||
|
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
|
||||||
|
|
||||||
|
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
|
||||||
|
let y = Matrix::from_vec(passed.clone(), passed.len(), 1);
|
||||||
|
|
||||||
|
let mut model = LogReg::new(1);
|
||||||
|
model.fit(&x, &y, 0.1, 10000);
|
||||||
|
|
||||||
|
let preds = model.predict(&x);
|
||||||
|
println!("Hours -> pred | actual");
|
||||||
|
for i in 0..x.rows() {
|
||||||
|
println!(
|
||||||
|
"{:>2} -> {} | {}",
|
||||||
|
hours[i] as i32,
|
||||||
|
preds[(i, 0)] as i32,
|
||||||
|
passed[i] as i32
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Probability estimate for a new student
|
||||||
|
let new_student = Matrix::from_vec(vec![5.5], 1, 1);
|
||||||
|
let p = model.predict_proba(&new_student);
|
||||||
|
println!("Probability of passing with 5.5h study: {:.2}", p[(0, 0)]);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn purchase_prediction_example() {
|
||||||
|
println!("Example 2: purchase likelihood");
|
||||||
|
|
||||||
|
// minutes on site, pages viewed -> made a purchase?
|
||||||
|
let raw_x = vec![1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 5.0, 5.0, 3.5, 2.0, 6.0, 6.0];
|
||||||
|
let bought = vec![0.0, 0.0, 0.0, 1.0, 0.0, 1.0];
|
||||||
|
|
||||||
|
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
||||||
|
let y = Matrix::from_vec(bought.clone(), bought.len(), 1);
|
||||||
|
|
||||||
|
let mut model = LogReg::new(2);
|
||||||
|
model.fit(&x, &y, 0.05, 20000);
|
||||||
|
|
||||||
|
let preds = model.predict(&x);
|
||||||
|
println!("time, pages -> pred | actual");
|
||||||
|
for i in 0..x.rows() {
|
||||||
|
println!(
|
||||||
|
"{:>4}m, {:>2} -> {} | {}",
|
||||||
|
x[(i, 0)],
|
||||||
|
x[(i, 1)] as i32,
|
||||||
|
preds[(i, 0)] as i32,
|
||||||
|
bought[i] as i32
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
let new_visit = Matrix::from_rows_vec(vec![4.0, 4.0], 1, 2);
|
||||||
|
let p = model.predict_proba(&new_visit);
|
||||||
|
println!("Prob of purchase for 4min/4pages: {:.2}", p[(0, 0)]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_student_passing_example() {
|
||||||
|
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
|
||||||
|
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
|
||||||
|
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
|
||||||
|
let y = Matrix::from_vec(passed.clone(), passed.len(), 1);
|
||||||
|
let mut model = LogReg::new(1);
|
||||||
|
model.fit(&x, &y, 0.1, 10000);
|
||||||
|
let preds = model.predict(&x);
|
||||||
|
for i in 0..y.rows() {
|
||||||
|
assert_eq!(preds[(i, 0)], passed[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_purchase_prediction_example() {
|
||||||
|
let raw_x = vec![1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 5.0, 5.0, 3.5, 2.0, 6.0, 6.0];
|
||||||
|
let bought = vec![0.0, 0.0, 0.0, 1.0, 0.0, 1.0];
|
||||||
|
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
||||||
|
let y = Matrix::from_vec(bought.clone(), bought.len(), 1);
|
||||||
|
let mut model = LogReg::new(2);
|
||||||
|
model.fit(&x, &y, 0.05, 20000);
|
||||||
|
let preds = model.predict(&x);
|
||||||
|
for i in 0..y.rows() {
|
||||||
|
assert_eq!(preds[(i, 0)], bought[i]);
|
||||||
|
}
|
||||||
|
}
|
60
examples/pca.rs
Normal file
60
examples/pca.rs
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
use rustframe::compute::models::pca::PCA;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
/// Two dimensionality reduction examples using PCA.
|
||||||
|
///
|
||||||
|
/// Example 1 reduces 3D sensor readings to two components.
|
||||||
|
/// Example 2 compresses a small four-feature dataset.
|
||||||
|
fn main() {
|
||||||
|
sensor_demo();
|
||||||
|
println!("\n-----\n");
|
||||||
|
finance_demo();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn sensor_demo() {
|
||||||
|
println!("Example 1: 3D sensor data");
|
||||||
|
|
||||||
|
// Ten 3D observations from an accelerometer
|
||||||
|
let raw = vec![
|
||||||
|
2.5, 2.4, 0.5, 0.5, 0.7, 1.5, 2.2, 2.9, 0.7, 1.9, 2.2, 1.0, 3.1, 3.0, 0.6, 2.3, 2.7, 0.9,
|
||||||
|
2.0, 1.6, 1.1, 1.0, 1.1, 1.9, 1.5, 1.6, 2.2, 1.1, 0.9, 2.1,
|
||||||
|
];
|
||||||
|
let x = Matrix::from_rows_vec(raw, 10, 3);
|
||||||
|
|
||||||
|
let pca = PCA::fit(&x, 2, 0);
|
||||||
|
let reduced = pca.transform(&x);
|
||||||
|
|
||||||
|
println!("Components: {:?}", pca.components.data());
|
||||||
|
println!("First row -> {:.2?}", [reduced[(0, 0)], reduced[(0, 1)]]);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn finance_demo() {
|
||||||
|
println!("Example 2: 4D finance data");
|
||||||
|
|
||||||
|
// Four daily percentage returns of different stocks
|
||||||
|
let raw = vec![
|
||||||
|
0.2, 0.1, -0.1, 0.0, 0.3, 0.2, -0.2, 0.1, 0.1, 0.0, -0.1, -0.1, 0.4, 0.3, -0.3, 0.2, 0.0,
|
||||||
|
-0.1, 0.1, -0.1,
|
||||||
|
];
|
||||||
|
let x = Matrix::from_rows_vec(raw, 5, 4);
|
||||||
|
|
||||||
|
// Keep two principal components
|
||||||
|
let pca = PCA::fit(&x, 2, 0);
|
||||||
|
let reduced = pca.transform(&x);
|
||||||
|
|
||||||
|
println!("Reduced shape: {:?}", reduced.shape());
|
||||||
|
println!("First row -> {:.2?}", [reduced[(0, 0)], reduced[(0, 1)]]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_sensor_demo() {
|
||||||
|
let raw = vec![
|
||||||
|
2.5, 2.4, 0.5, 0.5, 0.7, 1.5, 2.2, 2.9, 0.7, 1.9, 2.2, 1.0, 3.1, 3.0, 0.6, 2.3, 2.7, 0.9,
|
||||||
|
2.0, 1.6, 1.1, 1.0, 1.1, 1.9, 1.5, 1.6, 2.2, 1.1, 0.9, 2.1,
|
||||||
|
];
|
||||||
|
let x = Matrix::from_rows_vec(raw, 10, 3);
|
||||||
|
let pca = PCA::fit(&x, 2, 0);
|
||||||
|
let reduced = pca.transform(&x);
|
||||||
|
assert_eq!(reduced.rows(), 10);
|
||||||
|
assert_eq!(reduced.cols(), 2);
|
||||||
|
}
|
67
examples/random_demo.rs
Normal file
67
examples/random_demo.rs
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
use rustframe::random::{crypto_rng, rng, Rng, SliceRandom};
|
||||||
|
|
||||||
|
/// Demonstrates basic usage of the random number generators.
|
||||||
|
///
|
||||||
|
/// It showcases uniform ranges, booleans, normal distribution,
|
||||||
|
/// shuffling and the cryptographically secure generator.
|
||||||
|
fn main() {
|
||||||
|
basic_usage();
|
||||||
|
println!("\n-----\n");
|
||||||
|
normal_demo();
|
||||||
|
println!("\n-----\n");
|
||||||
|
shuffle_demo();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn basic_usage() {
|
||||||
|
println!("Basic PRNG usage\n----------------");
|
||||||
|
let mut prng = rng();
|
||||||
|
println!("random u64 : {}", prng.next_u64());
|
||||||
|
println!("range [10,20): {}", prng.random_range(10..20));
|
||||||
|
println!("bool : {}", prng.gen_bool());
|
||||||
|
}
|
||||||
|
|
||||||
|
fn normal_demo() {
|
||||||
|
println!("Normal distribution\n-------------------");
|
||||||
|
let mut prng = rng();
|
||||||
|
for _ in 0..3 {
|
||||||
|
let v = prng.normal(0.0, 1.0);
|
||||||
|
println!("sample: {:.3}", v);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn shuffle_demo() {
|
||||||
|
println!("Slice shuffling\n----------------");
|
||||||
|
let mut prng = rng();
|
||||||
|
let mut data = [1, 2, 3, 4, 5];
|
||||||
|
data.shuffle(&mut prng);
|
||||||
|
println!("shuffled: {:?}", data);
|
||||||
|
|
||||||
|
let mut secure = crypto_rng();
|
||||||
|
let byte = secure.random_range(0..256usize);
|
||||||
|
println!("crypto byte: {}", byte);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use rustframe::random::{CryptoRng, Prng};
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_basic_usage_range_bounds() {
|
||||||
|
let mut rng = Prng::new(1);
|
||||||
|
for _ in 0..50 {
|
||||||
|
let v = rng.random_range(5..10);
|
||||||
|
assert!(v >= 5 && v < 10);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_byte_bounds() {
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
for _ in 0..50 {
|
||||||
|
let v = rng.random_range(0..256usize);
|
||||||
|
assert!(v < 256);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
57
examples/random_stats.rs
Normal file
57
examples/random_stats.rs
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
use rustframe::random::{crypto_rng, rng, Rng};
|
||||||
|
|
||||||
|
/// Demonstrates simple statistical checks on random number generators.
|
||||||
|
fn main() {
|
||||||
|
chi_square_demo();
|
||||||
|
println!("\n-----\n");
|
||||||
|
monobit_demo();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn chi_square_demo() {
|
||||||
|
println!("Chi-square test on PRNG");
|
||||||
|
let mut rng = rng();
|
||||||
|
let mut counts = [0usize; 10];
|
||||||
|
let samples = 10000;
|
||||||
|
for _ in 0..samples {
|
||||||
|
let v = rng.random_range(0..10usize);
|
||||||
|
counts[v] += 1;
|
||||||
|
}
|
||||||
|
let expected = samples as f64 / 10.0;
|
||||||
|
let chi2: f64 = counts
|
||||||
|
.iter()
|
||||||
|
.map(|&c| {
|
||||||
|
let diff = c as f64 - expected;
|
||||||
|
diff * diff / expected
|
||||||
|
})
|
||||||
|
.sum();
|
||||||
|
println!("counts: {:?}", counts);
|
||||||
|
println!("chi-square: {:.3}", chi2);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn monobit_demo() {
|
||||||
|
println!("Monobit test on crypto RNG");
|
||||||
|
let mut rng = crypto_rng();
|
||||||
|
let mut ones = 0usize;
|
||||||
|
let samples = 1000;
|
||||||
|
for _ in 0..samples {
|
||||||
|
ones += rng.next_u64().count_ones() as usize;
|
||||||
|
}
|
||||||
|
let ratio = ones as f64 / (samples as f64 * 64.0);
|
||||||
|
println!("ones ratio: {:.4}", ratio);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_chi_square_demo_runs() {
|
||||||
|
chi_square_demo();
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_monobit_demo_runs() {
|
||||||
|
monobit_demo();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
93
examples/stats_overview.rs
Normal file
93
examples/stats_overview.rs
Normal file
@ -0,0 +1,93 @@
|
|||||||
|
use rustframe::compute::stats::{
|
||||||
|
chi2_test, covariance, covariance_matrix, mean, median, pearson, percentile, stddev, t_test,
|
||||||
|
};
|
||||||
|
use rustframe::matrix::{Axis, Matrix};
|
||||||
|
|
||||||
|
/// Demonstrates some of the statistics utilities in Rustframe.
|
||||||
|
///
|
||||||
|
/// The example is split into three parts:
|
||||||
|
/// 1. Basic descriptive statistics on a small data set.
|
||||||
|
/// 2. Covariance and correlation calculations.
|
||||||
|
/// 3. Simple inferential tests (t-test and chi-square).
|
||||||
|
fn main() {
|
||||||
|
descriptive_demo();
|
||||||
|
println!("\n-----\n");
|
||||||
|
correlation_demo();
|
||||||
|
println!("\n-----\n");
|
||||||
|
inferential_demo();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn descriptive_demo() {
|
||||||
|
println!("Descriptive statistics\n----------------------");
|
||||||
|
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
println!("mean : {:.2}", mean(&data));
|
||||||
|
println!("std dev : {:.2}", stddev(&data));
|
||||||
|
println!("median : {:.2}", median(&data));
|
||||||
|
println!("25th percentile: {:.2}", percentile(&data, 25.0));
|
||||||
|
}
|
||||||
|
|
||||||
|
fn correlation_demo() {
|
||||||
|
println!("Covariance and Correlation\n--------------------------");
|
||||||
|
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
||||||
|
let cov = covariance(&x, &y);
|
||||||
|
let cov_mat = covariance_matrix(&x, Axis::Col);
|
||||||
|
let corr = pearson(&x, &y);
|
||||||
|
println!("covariance : {:.2}", cov);
|
||||||
|
println!("cov matrix : {:?}", cov_mat.data());
|
||||||
|
println!("pearson r : {:.2}", corr);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn inferential_demo() {
|
||||||
|
println!("Inferential statistics\n----------------------");
|
||||||
|
let s1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
let s2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||||
|
let (t_stat, t_p) = t_test(&s1, &s2);
|
||||||
|
println!("t statistic : {:.2}, p-value: {:.4}", t_stat, t_p);
|
||||||
|
|
||||||
|
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||||
|
let (chi2, chi_p) = chi2_test(&observed);
|
||||||
|
println!("chi^2 : {:.2}, p-value: {:.4}", chi2, chi_p);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
const EPS: f64 = 1e-8;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_descriptive_demo() {
|
||||||
|
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
assert!((mean(&data) - 3.0).abs() < EPS);
|
||||||
|
assert!((stddev(&data) - 1.4142135623730951).abs() < EPS);
|
||||||
|
assert!((median(&data) - 3.0).abs() < EPS);
|
||||||
|
assert!((percentile(&data, 25.0) - 2.0).abs() < EPS);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_correlation_demo() {
|
||||||
|
let x = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let y = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
||||||
|
let cov = covariance(&x, &y);
|
||||||
|
assert!((cov - 1.625).abs() < EPS);
|
||||||
|
let cov_mat = covariance_matrix(&x, Axis::Col);
|
||||||
|
assert!((cov_mat.get(0, 0) - 2.0).abs() < EPS);
|
||||||
|
assert!((cov_mat.get(1, 1) - 2.0).abs() < EPS);
|
||||||
|
let corr = pearson(&x, &y);
|
||||||
|
assert!((corr - 0.9827076298239908).abs() < 1e-6);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_inferential_demo() {
|
||||||
|
let s1 = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
let s2 = Matrix::from_rows_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||||
|
let (t_stat, p_value) = t_test(&s1, &s2);
|
||||||
|
assert!((t_stat + 5.0).abs() < 1e-5);
|
||||||
|
assert!(p_value > 0.0 && p_value < 1.0);
|
||||||
|
|
||||||
|
let observed = Matrix::from_rows_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||||
|
let (chi2, p) = chi2_test(&observed);
|
||||||
|
assert!(chi2 > 0.0);
|
||||||
|
assert!(p > 0.0 && p < 1.0);
|
||||||
|
}
|
||||||
|
}
|
@ -25,6 +25,7 @@ pub fn dleaky_relu(x: &Matrix<f64>) -> Matrix<f64> {
|
|||||||
x.map(|v| if v > 0.0 { 1.0 } else { 0.01 })
|
x.map(|v| if v > 0.0 { 1.0 } else { 0.01 })
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
use crate::compute::models::activations::{drelu, relu, sigmoid};
|
use crate::compute::models::activations::{drelu, relu, sigmoid};
|
||||||
use crate::matrix::{Matrix, SeriesOps};
|
use crate::matrix::{Matrix, SeriesOps};
|
||||||
use rand::prelude::*;
|
use crate::random::prelude::*;
|
||||||
|
|
||||||
/// Supported activation functions
|
/// Supported activation functions
|
||||||
#[derive(Clone)]
|
#[derive(Clone)]
|
||||||
@ -46,7 +46,7 @@ pub enum InitializerKind {
|
|||||||
|
|
||||||
impl InitializerKind {
|
impl InitializerKind {
|
||||||
pub fn initialize(&self, rows: usize, cols: usize) -> Matrix<f64> {
|
pub fn initialize(&self, rows: usize, cols: usize) -> Matrix<f64> {
|
||||||
let mut rng = rand::rng();
|
let mut rng = rng();
|
||||||
let fan_in = rows;
|
let fan_in = rows;
|
||||||
let fan_out = cols;
|
let fan_out = cols;
|
||||||
let limit = match self {
|
let limit = match self {
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
use crate::compute::stats::mean_vertical;
|
use crate::compute::stats::mean_vertical;
|
||||||
use crate::matrix::Matrix;
|
use crate::matrix::Matrix;
|
||||||
use rand::rng;
|
use crate::random::prelude::*;
|
||||||
use rand::seq::SliceRandom;
|
|
||||||
|
|
||||||
pub struct KMeans {
|
pub struct KMeans {
|
||||||
pub centroids: Matrix<f64>, // (k, n_features)
|
pub centroids: Matrix<f64>, // (k, n_features)
|
||||||
@ -193,7 +192,8 @@ mod tests {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
assert!(matches_data_point, "Centroid {} (empty cluster) does not match any data point", c);
|
// "Centroid {} (empty cluster) does not match any data point",c
|
||||||
|
assert!(matches_data_point);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
@ -360,5 +360,4 @@ mod tests {
|
|||||||
assert_eq!(predicted_label.len(), 1);
|
assert_eq!(predicted_label.len(), 1);
|
||||||
assert!(predicted_label[0] < k);
|
assert!(predicted_label[0] < k);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
659
src/dataframe/df.rs
Normal file
659
src/dataframe/df.rs
Normal file
@ -0,0 +1,659 @@
|
|||||||
|
use crate::frame::{Frame, RowIndex};
|
||||||
|
use std::any::{Any, TypeId};
|
||||||
|
use std::collections::HashMap;
|
||||||
|
use std::fmt; // Import TypeId
|
||||||
|
|
||||||
|
const DEFAULT_DISPLAY_ROWS: usize = 5;
|
||||||
|
const DEFAULT_DISPLAY_COLS: usize = 10;
|
||||||
|
|
||||||
|
// Trait to enable type-agnostic operations on Frame objects within DataFrame
|
||||||
|
pub trait SubFrame: Send + Sync + fmt::Debug + Any {
|
||||||
|
fn rows(&self) -> usize;
|
||||||
|
fn get_value_as_string(&self, physical_row_idx: usize, col_name: &str) -> String;
|
||||||
|
fn clone_box(&self) -> Box<dyn SubFrame>;
|
||||||
|
fn delete_column_from_frame(&mut self, col_name: &str);
|
||||||
|
fn get_frame_cols(&self) -> usize; // Add a method to get the number of columns in the underlying frame
|
||||||
|
|
||||||
|
// Methods for downcasting to concrete types
|
||||||
|
fn as_any(&self) -> &dyn Any;
|
||||||
|
fn as_any_mut(&mut self) -> &mut dyn Any;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Implement SubFrame for any Frame<T> that meets the requirements
|
||||||
|
impl<T> SubFrame for Frame<T>
|
||||||
|
where
|
||||||
|
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
||||||
|
{
|
||||||
|
fn rows(&self) -> usize {
|
||||||
|
self.rows()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_value_as_string(&self, physical_row_idx: usize, col_name: &str) -> String {
|
||||||
|
self.get_row(physical_row_idx).get(col_name).to_string()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn clone_box(&self) -> Box<dyn SubFrame> {
|
||||||
|
Box::new(self.clone())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn delete_column_from_frame(&mut self, col_name: &str) {
|
||||||
|
self.delete_column(col_name);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_frame_cols(&self) -> usize {
|
||||||
|
self.cols()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_any(&self) -> &dyn Any {
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_any_mut(&mut self) -> &mut dyn Any {
|
||||||
|
self
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub struct DataFrame {
|
||||||
|
frames_by_type: HashMap<TypeId, Box<dyn SubFrame>>, // Maps TypeId to the Frame holding columns of that type
|
||||||
|
column_to_type: HashMap<String, TypeId>, // Maps column name to its TypeId
|
||||||
|
column_names: Vec<String>,
|
||||||
|
index: RowIndex,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl DataFrame {
|
||||||
|
pub fn new() -> Self {
|
||||||
|
DataFrame {
|
||||||
|
frames_by_type: HashMap::new(),
|
||||||
|
column_to_type: HashMap::new(),
|
||||||
|
column_names: Vec::new(),
|
||||||
|
index: RowIndex::Range(0..0), // Initialize with an empty range index
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the number of rows in the DataFrame.
|
||||||
|
pub fn rows(&self) -> usize {
|
||||||
|
self.index.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the number of columns in the DataFrame.
|
||||||
|
pub fn cols(&self) -> usize {
|
||||||
|
self.column_names.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a reference to the vector of column names.
|
||||||
|
pub fn get_column_names(&self) -> &Vec<String> {
|
||||||
|
&self.column_names
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the number of internal Frame objects (one per unique data type).
|
||||||
|
pub fn num_internal_frames(&self) -> usize {
|
||||||
|
self.frames_by_type.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a reference to a column of a specific type, if it exists.
|
||||||
|
pub fn get_column<T>(&self, col_name: &str) -> Option<&[T]>
|
||||||
|
where
|
||||||
|
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
||||||
|
{
|
||||||
|
let expected_type_id = TypeId::of::<T>();
|
||||||
|
if let Some(actual_type_id) = self.column_to_type.get(col_name) {
|
||||||
|
if *actual_type_id == expected_type_id {
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get(actual_type_id) {
|
||||||
|
if let Some(frame) = sub_frame_box.as_any().downcast_ref::<Frame<T>>() {
|
||||||
|
return Some(frame.column(col_name));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
None
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a HashMap representing a row, mapping column names to their string values.
|
||||||
|
pub fn get_row(&self, row_idx: usize) -> Option<HashMap<String, String>> {
|
||||||
|
if row_idx >= self.rows() {
|
||||||
|
return None;
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut row_data = HashMap::new();
|
||||||
|
for col_name in &self.column_names {
|
||||||
|
if let Some(type_id) = self.column_to_type.get(col_name) {
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get(type_id) {
|
||||||
|
let value = sub_frame_box.get_value_as_string(row_idx, col_name);
|
||||||
|
row_data.insert(col_name.clone(), value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Some(row_data)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn add_column<T>(&mut self, col_name: &str, data: Vec<T>)
|
||||||
|
where
|
||||||
|
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
||||||
|
{
|
||||||
|
let type_id = TypeId::of::<T>();
|
||||||
|
let col_name_string = col_name.to_string();
|
||||||
|
|
||||||
|
// Check for duplicate column name across the entire DataFrame
|
||||||
|
if self.column_to_type.contains_key(&col_name_string) {
|
||||||
|
panic!(
|
||||||
|
"DataFrame::add_column: duplicate column name: '{}'",
|
||||||
|
col_name_string
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// If this is the first column being added, set the DataFrame's index
|
||||||
|
if self.column_names.is_empty() {
|
||||||
|
self.index = RowIndex::Range(0..data.len());
|
||||||
|
} else {
|
||||||
|
// Ensure new column has the same number of rows as existing columns
|
||||||
|
if data.len() != self.index.len() {
|
||||||
|
panic!(
|
||||||
|
"DataFrame::add_column: new column '{}' has {} rows, but existing columns have {} rows",
|
||||||
|
col_name_string,
|
||||||
|
data.len(),
|
||||||
|
self.index.len()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if a Frame of this type already exists
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get_mut(&type_id) {
|
||||||
|
// Downcast to the concrete Frame<T> and add the column
|
||||||
|
if let Some(frame) = sub_frame_box.as_any_mut().downcast_mut::<Frame<T>>() {
|
||||||
|
frame.add_column(col_name_string.clone(), data);
|
||||||
|
} else {
|
||||||
|
// This should ideally not happen if TypeId matches, but good for safety
|
||||||
|
panic!(
|
||||||
|
"Type mismatch when downcasting existing SubFrame for TypeId {:?}",
|
||||||
|
type_id
|
||||||
|
);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// No Frame of this type exists, create a new one
|
||||||
|
// The Frame::new constructor expects a Matrix and column names.
|
||||||
|
// We create a Matrix from a single column vector.
|
||||||
|
let new_frame = Frame::new(
|
||||||
|
crate::matrix::Matrix::from_cols(vec![data]),
|
||||||
|
vec![col_name_string.clone()],
|
||||||
|
Some(self.index.clone()), // Pass the DataFrame's index to the new Frame
|
||||||
|
);
|
||||||
|
self.frames_by_type.insert(type_id, Box::new(new_frame));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Update column mappings and names
|
||||||
|
self.column_to_type.insert(col_name_string.clone(), type_id);
|
||||||
|
self.column_names.push(col_name_string);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Drops a column from the DataFrame.
|
||||||
|
/// Panics if the column does not exist.
|
||||||
|
pub fn drop_column(&mut self, col_name: &str) {
|
||||||
|
let col_name_string = col_name.to_string();
|
||||||
|
|
||||||
|
// 1. Get the TypeId associated with the column
|
||||||
|
let type_id = self
|
||||||
|
.column_to_type
|
||||||
|
.remove(&col_name_string)
|
||||||
|
.unwrap_or_else(|| {
|
||||||
|
panic!(
|
||||||
|
"DataFrame::drop_column: column '{}' not found",
|
||||||
|
col_name_string
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
// 2. Remove the column name from the ordered list
|
||||||
|
self.column_names.retain(|name| name != &col_name_string);
|
||||||
|
|
||||||
|
// 3. Find the Frame object and delete the column from it
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get_mut(&type_id) {
|
||||||
|
sub_frame_box.delete_column_from_frame(&col_name_string);
|
||||||
|
|
||||||
|
// 4. If the Frame object for this type becomes empty, remove it from frames_by_type
|
||||||
|
if sub_frame_box.get_frame_cols() == 0 {
|
||||||
|
self.frames_by_type.remove(&type_id);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// This should not happen if column_to_type was consistent
|
||||||
|
panic!(
|
||||||
|
"DataFrame::drop_column: internal error, no frame found for type_id {:?}",
|
||||||
|
type_id
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl fmt::Display for DataFrame {
|
||||||
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||||
|
// Display column headers
|
||||||
|
for col_name in self.column_names.iter().take(DEFAULT_DISPLAY_COLS) {
|
||||||
|
write!(f, "{:<15}", col_name)?;
|
||||||
|
}
|
||||||
|
if self.column_names.len() > DEFAULT_DISPLAY_COLS {
|
||||||
|
write!(f, "...")?;
|
||||||
|
}
|
||||||
|
writeln!(f)?;
|
||||||
|
|
||||||
|
// Display data rows
|
||||||
|
let mut displayed_rows = 0;
|
||||||
|
for i in 0..self.index.len() {
|
||||||
|
if displayed_rows >= DEFAULT_DISPLAY_ROWS {
|
||||||
|
writeln!(f, "...")?;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
for col_name in self.column_names.iter().take(DEFAULT_DISPLAY_COLS) {
|
||||||
|
if let Some(type_id) = self.column_to_type.get(col_name) {
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get(type_id) {
|
||||||
|
write!(f, "{:<15}", sub_frame_box.get_value_as_string(i, col_name))?;
|
||||||
|
} else {
|
||||||
|
// This case indicates an inconsistency: column_to_type has an entry,
|
||||||
|
// but frames_by_type doesn't have the corresponding Frame.
|
||||||
|
write!(f, "{:<15}", "[ERROR]")?;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// This case indicates an inconsistency: column_names has an entry,
|
||||||
|
// but column_to_type doesn't have the corresponding column.
|
||||||
|
write!(f, "{:<15}", "[ERROR]")?;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if self.column_names.len() > DEFAULT_DISPLAY_COLS {
|
||||||
|
write!(f, "...")?;
|
||||||
|
}
|
||||||
|
writeln!(f)?;
|
||||||
|
displayed_rows += 1;
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl fmt::Debug for DataFrame {
|
||||||
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||||
|
f.debug_struct("DataFrame")
|
||||||
|
.field("column_names", &self.column_names)
|
||||||
|
.field("index", &self.index)
|
||||||
|
.field("column_to_type", &self.column_to_type)
|
||||||
|
.field("frames_by_type", &self.frames_by_type)
|
||||||
|
.finish()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use crate::frame::Frame;
|
||||||
|
use crate::matrix::Matrix;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_new() {
|
||||||
|
let df = DataFrame::new();
|
||||||
|
assert_eq!(df.rows(), 0);
|
||||||
|
assert_eq!(df.cols(), 0);
|
||||||
|
assert!(df.get_column_names().is_empty());
|
||||||
|
assert!(df.frames_by_type.is_empty());
|
||||||
|
assert!(df.column_to_type.is_empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_add_column_initial() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
let data = vec![1, 2, 3];
|
||||||
|
df.add_column("col_int", data.clone());
|
||||||
|
|
||||||
|
assert_eq!(df.rows(), 3);
|
||||||
|
assert_eq!(df.cols(), 1);
|
||||||
|
assert_eq!(df.get_column_names(), &vec!["col_int".to_string()]);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert_eq!(df.column_to_type.get("col_int"), Some(&TypeId::of::<i32>()));
|
||||||
|
|
||||||
|
// Verify the underlying frame
|
||||||
|
let sub_frame_box = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap();
|
||||||
|
let frame = sub_frame_box.as_any().downcast_ref::<Frame<i32>>().unwrap();
|
||||||
|
assert_eq!(frame.rows(), 3);
|
||||||
|
assert_eq!(frame.cols(), 1);
|
||||||
|
assert_eq!(frame.columns(), &vec!["col_int".to_string()]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_add_column_same_type() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_int2", vec![4, 5, 6]);
|
||||||
|
|
||||||
|
assert_eq!(df.rows(), 3);
|
||||||
|
assert_eq!(df.cols(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec!["col_int1".to_string(), "col_int2".to_string()]
|
||||||
|
);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert_eq!(
|
||||||
|
df.column_to_type.get("col_int1"),
|
||||||
|
Some(&TypeId::of::<i32>())
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
df.column_to_type.get("col_int2"),
|
||||||
|
Some(&TypeId::of::<i32>())
|
||||||
|
);
|
||||||
|
|
||||||
|
// Verify the underlying frame
|
||||||
|
let sub_frame_box = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap();
|
||||||
|
let frame = sub_frame_box.as_any().downcast_ref::<Frame<i32>>().unwrap();
|
||||||
|
assert_eq!(frame.rows(), 3);
|
||||||
|
assert_eq!(frame.cols(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
frame.columns(),
|
||||||
|
&vec!["col_int1".to_string(), "col_int2".to_string()]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_add_column_different_type() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
||||||
|
);
|
||||||
|
|
||||||
|
assert_eq!(df.rows(), 3);
|
||||||
|
assert_eq!(df.cols(), 3);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec![
|
||||||
|
"col_int".to_string(),
|
||||||
|
"col_float".to_string(),
|
||||||
|
"col_string".to_string()
|
||||||
|
]
|
||||||
|
);
|
||||||
|
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
||||||
|
|
||||||
|
assert_eq!(df.column_to_type.get("col_int"), Some(&TypeId::of::<i32>()));
|
||||||
|
assert_eq!(
|
||||||
|
df.column_to_type.get("col_float"),
|
||||||
|
Some(&TypeId::of::<f64>())
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
df.column_to_type.get("col_string"),
|
||||||
|
Some(&TypeId::of::<String>())
|
||||||
|
);
|
||||||
|
|
||||||
|
// Verify underlying frames
|
||||||
|
let int_frame = df
|
||||||
|
.frames_by_type
|
||||||
|
.get(&TypeId::of::<i32>())
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Frame<i32>>()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(int_frame.columns(), &vec!["col_int".to_string()]);
|
||||||
|
|
||||||
|
let float_frame = df
|
||||||
|
.frames_by_type
|
||||||
|
.get(&TypeId::of::<f64>())
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Frame<f64>>()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(float_frame.columns(), &vec!["col_float".to_string()]);
|
||||||
|
|
||||||
|
let string_frame = df
|
||||||
|
.frames_by_type
|
||||||
|
.get(&TypeId::of::<String>())
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Frame<String>>()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(string_frame.columns(), &vec!["col_string".to_string()]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_get_column() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
||||||
|
);
|
||||||
|
|
||||||
|
// Test getting existing columns with correct type
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column::<i32>("col_int").unwrap(),
|
||||||
|
vec![1, 2, 3].as_slice()
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column::<f64>("col_float").unwrap(),
|
||||||
|
vec![1.1, 2.2, 3.3].as_slice()
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column::<String>("col_string").unwrap(),
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()].as_slice()
|
||||||
|
);
|
||||||
|
|
||||||
|
// Test getting non-existent column
|
||||||
|
assert_eq!(df.get_column::<i32>("non_existent"), None);
|
||||||
|
|
||||||
|
// Test getting existing column with incorrect type
|
||||||
|
assert_eq!(df.get_column::<f64>("col_int"), None);
|
||||||
|
assert_eq!(df.get_column::<i32>("col_float"), None);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_get_row() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
||||||
|
);
|
||||||
|
|
||||||
|
// Test getting an existing row
|
||||||
|
let row0 = df.get_row(0).unwrap();
|
||||||
|
assert_eq!(row0.get("col_int"), Some(&"1".to_string()));
|
||||||
|
assert_eq!(row0.get("col_float"), Some(&"1.1".to_string()));
|
||||||
|
assert_eq!(row0.get("col_string"), Some(&"a".to_string()));
|
||||||
|
|
||||||
|
let row1 = df.get_row(1).unwrap();
|
||||||
|
assert_eq!(row1.get("col_int"), Some(&"2".to_string()));
|
||||||
|
assert_eq!(row1.get("col_float"), Some(&"2.2".to_string()));
|
||||||
|
assert_eq!(row1.get("col_string"), Some(&"b".to_string()));
|
||||||
|
|
||||||
|
// Test getting an out-of-bounds row
|
||||||
|
assert_eq!(df.get_row(3), None);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic(expected = "DataFrame::add_column: duplicate column name: 'col_int'")]
|
||||||
|
fn test_dataframe_add_column_duplicate_name() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_int", vec![4, 5, 6]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic(
|
||||||
|
expected = "DataFrame::add_column: new column 'col_int2' has 2 rows, but existing columns have 3 rows"
|
||||||
|
)]
|
||||||
|
fn test_dataframe_add_column_mismatched_rows() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_int2", vec![4, 5]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_display() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3, 4, 5, 6]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3, 4.4, 5.5, 6.6]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec![
|
||||||
|
"a".to_string(),
|
||||||
|
"b".to_string(),
|
||||||
|
"c".to_string(),
|
||||||
|
"d".to_string(),
|
||||||
|
"e".to_string(),
|
||||||
|
"f".to_string(),
|
||||||
|
],
|
||||||
|
);
|
||||||
|
|
||||||
|
let expected_output = "\
|
||||||
|
col_int col_float col_string
|
||||||
|
1 1.1 a
|
||||||
|
2 2.2 b
|
||||||
|
3 3.3 c
|
||||||
|
4 4.4 d
|
||||||
|
5 5.5 e
|
||||||
|
...
|
||||||
|
";
|
||||||
|
assert_eq!(format!("{}", df), expected_output);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_debug() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
|
||||||
|
let debug_output = format!("{:?}", df);
|
||||||
|
assert!(debug_output.contains("DataFrame {"));
|
||||||
|
assert!(debug_output.contains("column_names: [\"col_int\", \"col_float\"]"));
|
||||||
|
assert!(debug_output.contains("index: Range(0..3)"));
|
||||||
|
assert!(debug_output.contains("column_to_type: {"));
|
||||||
|
assert!(debug_output.contains("frames_by_type: {"));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_drop_column_single_type() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_int2", vec![4, 5, 6]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 3);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec![
|
||||||
|
"col_int1".to_string(),
|
||||||
|
"col_int2".to_string(),
|
||||||
|
"col_float".to_string()
|
||||||
|
]
|
||||||
|
);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
|
||||||
|
df.drop_column("col_int1");
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec!["col_int2".to_string(), "col_float".to_string()]
|
||||||
|
);
|
||||||
|
assert!(df.column_to_type.get("col_int1").is_none());
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>())); // Frame<i32> should still exist
|
||||||
|
let int_frame = df
|
||||||
|
.frames_by_type
|
||||||
|
.get(&TypeId::of::<i32>())
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Frame<i32>>()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(int_frame.columns(), &vec!["col_int2".to_string()]);
|
||||||
|
|
||||||
|
df.drop_column("col_int2");
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 1);
|
||||||
|
assert_eq!(df.get_column_names(), &vec!["col_float".to_string()]);
|
||||||
|
assert!(df.column_to_type.get("col_int2").is_none());
|
||||||
|
assert!(!df.frames_by_type.contains_key(&TypeId::of::<i32>())); // Frame<i32> should be removed
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_drop_column_mixed_types() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
||||||
|
);
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 3);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
||||||
|
|
||||||
|
df.drop_column("col_float");
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec!["col_int".to_string(), "col_string".to_string()]
|
||||||
|
);
|
||||||
|
assert!(df.column_to_type.get("col_float").is_none());
|
||||||
|
assert!(!df.frames_by_type.contains_key(&TypeId::of::<f64>())); // Frame<f64> should be removed
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
||||||
|
|
||||||
|
df.drop_column("col_int");
|
||||||
|
df.drop_column("col_string");
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 0);
|
||||||
|
assert!(df.get_column_names().is_empty());
|
||||||
|
assert!(df.frames_by_type.is_empty());
|
||||||
|
assert!(df.column_to_type.is_empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic(expected = "DataFrame::drop_column: column 'non_existent' not found")]
|
||||||
|
fn test_dataframe_drop_column_non_existent() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.drop_column("non_existent");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_add_column_reuses_existing_frame() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float1", vec![1.1, 2.2, 3.3]);
|
||||||
|
|
||||||
|
// Initially, there should be two frames (one for i32, one for f64)
|
||||||
|
assert_eq!(df.frames_by_type.len(), 2);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
|
||||||
|
// Add another integer column
|
||||||
|
df.add_column("col_int2", vec![4, 5, 6]);
|
||||||
|
|
||||||
|
// The number of frames should still be 2, as the existing i32 frame should be reused
|
||||||
|
assert_eq!(df.frames_by_type.len(), 2);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
|
||||||
|
// Verify the i32 frame now contains both integer columns
|
||||||
|
let int_frame = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap().as_any().downcast_ref::<Frame<i32>>().unwrap();
|
||||||
|
assert_eq!(int_frame.columns(), &vec!["col_int1".to_string(), "col_int2".to_string()]);
|
||||||
|
assert_eq!(int_frame.cols(), 2);
|
||||||
|
|
||||||
|
// Add another float column
|
||||||
|
df.add_column("col_float2", vec![4.4, 5.5, 6.6]);
|
||||||
|
|
||||||
|
// The number of frames should still be 2, as the existing f64 frame should be reused
|
||||||
|
assert_eq!(df.frames_by_type.len(), 2);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
|
||||||
|
// Verify the f64 frame now contains both float columns
|
||||||
|
let float_frame = df.frames_by_type.get(&TypeId::of::<f64>()).unwrap().as_any().downcast_ref::<Frame<f64>>().unwrap();
|
||||||
|
assert_eq!(float_frame.columns(), &vec!["col_float1".to_string(), "col_float2".to_string()]);
|
||||||
|
assert_eq!(float_frame.cols(), 2);
|
||||||
|
}
|
||||||
|
}
|
4
src/dataframe/mod.rs
Normal file
4
src/dataframe/mod.rs
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
//! This module provides the DataFrame structure for handling tabular data with mixed types.
|
||||||
|
pub mod df;
|
||||||
|
|
||||||
|
pub use df::{DataFrame, SubFrame};
|
@ -316,7 +316,7 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns an immutable slice of the specified column's data.
|
/// Returns an immutable slice of the specified column's data by name.
|
||||||
/// Panics if the column name is not found.
|
/// Panics if the column name is not found.
|
||||||
pub fn column(&self, name: &str) -> &[T] {
|
pub fn column(&self, name: &str) -> &[T] {
|
||||||
let idx = self
|
let idx = self
|
||||||
@ -325,7 +325,13 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
self.matrix.column(idx)
|
self.matrix.column(idx)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a mutable slice of the specified column's data.
|
/// Returns an immutable slice of the specified column's data by its physical index.
|
||||||
|
/// Panics if the index is out of bounds.
|
||||||
|
pub fn column_by_physical_idx(&self, idx: usize) -> &[T] {
|
||||||
|
self.matrix.column(idx)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a mutable slice of the specified column's data by name.
|
||||||
/// Panics if the column name is not found.
|
/// Panics if the column name is not found.
|
||||||
pub fn column_mut(&mut self, name: &str) -> &mut [T] {
|
pub fn column_mut(&mut self, name: &str) -> &mut [T] {
|
||||||
let idx = self
|
let idx = self
|
||||||
@ -334,6 +340,12 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
self.matrix.column_mut(idx)
|
self.matrix.column_mut(idx)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Returns a mutable slice of the specified column's data by its physical index.
|
||||||
|
/// Panics if the index is out of bounds.
|
||||||
|
pub fn column_mut_by_physical_idx(&mut self, idx: usize) -> &mut [T] {
|
||||||
|
self.matrix.column_mut(idx)
|
||||||
|
}
|
||||||
|
|
||||||
// Row access methods
|
// Row access methods
|
||||||
|
|
||||||
/// Returns an immutable view of the row for the given integer key.
|
/// Returns an immutable view of the row for the given integer key.
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#![doc = include_str!("../README.md")]
|
#![doc = include_str!("../README.md")]
|
||||||
|
|
||||||
|
/// Documentation for the [`crate::dataframe`] module.
|
||||||
|
pub mod dataframe;
|
||||||
|
|
||||||
/// Documentation for the [`crate::matrix`] module.
|
/// Documentation for the [`crate::matrix`] module.
|
||||||
pub mod matrix;
|
pub mod matrix;
|
||||||
|
|
||||||
@ -11,3 +14,6 @@ pub mod utils;
|
|||||||
|
|
||||||
/// Documentation for the [`crate::compute`] module.
|
/// Documentation for the [`crate::compute`] module.
|
||||||
pub mod compute;
|
pub mod compute;
|
||||||
|
|
||||||
|
/// Documentation for the [`crate::random`] module.
|
||||||
|
pub mod random;
|
||||||
|
227
src/random/crypto.rs
Normal file
227
src/random/crypto.rs
Normal file
@ -0,0 +1,227 @@
|
|||||||
|
#[cfg(unix)]
|
||||||
|
use std::{fs::File, io::Read};
|
||||||
|
|
||||||
|
use crate::random::Rng;
|
||||||
|
|
||||||
|
#[cfg(unix)]
|
||||||
|
pub struct CryptoRng {
|
||||||
|
file: File,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(unix)]
|
||||||
|
impl CryptoRng {
|
||||||
|
/// Open `/dev/urandom`.
|
||||||
|
pub fn new() -> Self {
|
||||||
|
let file = File::open("/dev/urandom").expect("failed to open /dev/urandom");
|
||||||
|
Self { file }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(unix)]
|
||||||
|
impl Rng for CryptoRng {
|
||||||
|
fn next_u64(&mut self) -> u64 {
|
||||||
|
let mut buf = [0u8; 8];
|
||||||
|
self.file
|
||||||
|
.read_exact(&mut buf)
|
||||||
|
.expect("failed reading from /dev/urandom");
|
||||||
|
u64::from_ne_bytes(buf)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(windows)]
|
||||||
|
pub struct CryptoRng;
|
||||||
|
|
||||||
|
#[cfg(windows)]
|
||||||
|
impl CryptoRng {
|
||||||
|
/// No handle is needed on Windows.
|
||||||
|
pub fn new() -> Self {
|
||||||
|
Self
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(windows)]
|
||||||
|
impl Rng for CryptoRng {
|
||||||
|
fn next_u64(&mut self) -> u64 {
|
||||||
|
let mut buf = [0u8; 8];
|
||||||
|
win_fill(&mut buf).expect("BCryptGenRandom failed");
|
||||||
|
u64::from_ne_bytes(buf)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Fill `buf` with cryptographically secure random bytes using CNG.
|
||||||
|
///
|
||||||
|
/// * `BCryptGenRandom(NULL, buf, len, BCRYPT_USE_SYSTEM_PREFERRED_RNG)`
|
||||||
|
/// asks the OS for its system‑preferred DRBG (CTR_DRBG on modern
|
||||||
|
/// Windows).
|
||||||
|
#[cfg(windows)]
|
||||||
|
fn win_fill(buf: &mut [u8]) -> Result<(), ()> {
|
||||||
|
use core::ffi::c_void;
|
||||||
|
|
||||||
|
type BcryptAlgHandle = *mut c_void;
|
||||||
|
type NTSTATUS = i32;
|
||||||
|
|
||||||
|
const BCRYPT_USE_SYSTEM_PREFERRED_RNG: u32 = 0x0000_0002;
|
||||||
|
|
||||||
|
#[link(name = "bcrypt")]
|
||||||
|
extern "system" {
|
||||||
|
fn BCryptGenRandom(
|
||||||
|
hAlgorithm: BcryptAlgHandle,
|
||||||
|
pbBuffer: *mut u8,
|
||||||
|
cbBuffer: u32,
|
||||||
|
dwFlags: u32,
|
||||||
|
) -> NTSTATUS;
|
||||||
|
}
|
||||||
|
|
||||||
|
// NT_SUCCESS(status) == status >= 0
|
||||||
|
let status = unsafe {
|
||||||
|
BCryptGenRandom(
|
||||||
|
core::ptr::null_mut(),
|
||||||
|
buf.as_mut_ptr(),
|
||||||
|
buf.len() as u32,
|
||||||
|
BCRYPT_USE_SYSTEM_PREFERRED_RNG,
|
||||||
|
)
|
||||||
|
};
|
||||||
|
|
||||||
|
if status >= 0 {
|
||||||
|
Ok(())
|
||||||
|
} else {
|
||||||
|
Err(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience constructor for [`CryptoRng`].
|
||||||
|
pub fn crypto_rng() -> CryptoRng {
|
||||||
|
CryptoRng::new()
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use crate::random::Rng;
|
||||||
|
use std::collections::HashSet;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_rng_nonzero() {
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
let mut all_same = true;
|
||||||
|
let mut prev = rng.next_u64();
|
||||||
|
for _ in 0..5 {
|
||||||
|
let val = rng.next_u64();
|
||||||
|
if val != prev {
|
||||||
|
all_same = false;
|
||||||
|
}
|
||||||
|
prev = val;
|
||||||
|
}
|
||||||
|
assert!(!all_same, "CryptoRng produced identical values");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_rng_variation_large() {
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
let mut values = HashSet::new();
|
||||||
|
for _ in 0..100 {
|
||||||
|
values.insert(rng.next_u64());
|
||||||
|
}
|
||||||
|
assert!(values.len() > 90, "CryptoRng output not varied enough");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_rng_random_range_uniform() {
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
let mut counts = [0usize; 10];
|
||||||
|
for _ in 0..1000 {
|
||||||
|
let v = rng.random_range(0..10usize);
|
||||||
|
counts[v] += 1;
|
||||||
|
}
|
||||||
|
for &c in &counts {
|
||||||
|
// "Crypto RNG counts far from uniform: {c}"
|
||||||
|
assert!((c as isize - 100).abs() < 50);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_normal_distribution() {
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
let mean = 0.0;
|
||||||
|
let sd = 1.0;
|
||||||
|
let n = 2000;
|
||||||
|
let mut sum = 0.0;
|
||||||
|
let mut sum_sq = 0.0;
|
||||||
|
for _ in 0..n {
|
||||||
|
let val = rng.normal(mean, sd);
|
||||||
|
sum += val;
|
||||||
|
sum_sq += val * val;
|
||||||
|
}
|
||||||
|
let sample_mean = sum / n as f64;
|
||||||
|
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
|
||||||
|
assert!(sample_mean.abs() < 0.1);
|
||||||
|
assert!((sample_var - 1.0).abs() < 0.2);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_two_instances_different_values() {
|
||||||
|
let mut a = CryptoRng::new();
|
||||||
|
let mut b = CryptoRng::new();
|
||||||
|
let va = a.next_u64();
|
||||||
|
let vb = b.next_u64();
|
||||||
|
assert_ne!(va, vb);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_rng_helper_function() {
|
||||||
|
let mut rng = crypto_rng();
|
||||||
|
let _ = rng.next_u64();
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_normal_zero_sd() {
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
for _ in 0..5 {
|
||||||
|
let v = rng.normal(10.0, 0.0);
|
||||||
|
assert_eq!(v, 10.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_shuffle_empty_slice() {
|
||||||
|
use crate::random::SliceRandom;
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
let mut arr: [u8; 0] = [];
|
||||||
|
arr.shuffle(&mut rng);
|
||||||
|
assert!(arr.is_empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_chi_square_uniform() {
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
let mut counts = [0usize; 10];
|
||||||
|
let samples = 10000;
|
||||||
|
for _ in 0..samples {
|
||||||
|
let v = rng.random_range(0..10usize);
|
||||||
|
counts[v] += 1;
|
||||||
|
}
|
||||||
|
let expected = samples as f64 / 10.0;
|
||||||
|
let chi2: f64 = counts
|
||||||
|
.iter()
|
||||||
|
.map(|&c| {
|
||||||
|
let diff = c as f64 - expected;
|
||||||
|
diff * diff / expected
|
||||||
|
})
|
||||||
|
.sum();
|
||||||
|
assert!(chi2 < 40.0, "chi-square statistic too high: {chi2}");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_crypto_monobit() {
|
||||||
|
let mut rng = CryptoRng::new();
|
||||||
|
let mut ones = 0usize;
|
||||||
|
let samples = 1000;
|
||||||
|
for _ in 0..samples {
|
||||||
|
ones += rng.next_u64().count_ones() as usize;
|
||||||
|
}
|
||||||
|
let total_bits = samples * 64;
|
||||||
|
let ratio = ones as f64 / total_bits as f64;
|
||||||
|
// "bit ratio far from 0.5: {ratio}"
|
||||||
|
assert!((ratio - 0.5).abs() < 0.02);
|
||||||
|
}
|
||||||
|
}
|
14
src/random/mod.rs
Normal file
14
src/random/mod.rs
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
pub mod crypto;
|
||||||
|
pub mod prng;
|
||||||
|
pub mod random_core;
|
||||||
|
pub mod seq;
|
||||||
|
|
||||||
|
pub use crypto::{crypto_rng, CryptoRng};
|
||||||
|
pub use prng::{rng, Prng};
|
||||||
|
pub use random_core::{RangeSample, Rng};
|
||||||
|
pub use seq::SliceRandom;
|
||||||
|
|
||||||
|
pub mod prelude {
|
||||||
|
pub use super::seq::SliceRandom;
|
||||||
|
pub use super::{crypto_rng, rng, CryptoRng, Prng, RangeSample, Rng};
|
||||||
|
}
|
227
src/random/prng.rs
Normal file
227
src/random/prng.rs
Normal file
@ -0,0 +1,227 @@
|
|||||||
|
use std::time::{SystemTime, UNIX_EPOCH};
|
||||||
|
|
||||||
|
use crate::random::Rng;
|
||||||
|
|
||||||
|
/// Simple XorShift64-based pseudo random number generator.
|
||||||
|
#[derive(Clone)]
|
||||||
|
pub struct Prng {
|
||||||
|
state: u64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Prng {
|
||||||
|
/// Create a new generator from the given seed.
|
||||||
|
pub fn new(seed: u64) -> Self {
|
||||||
|
Self { state: seed }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a generator seeded from the current time.
|
||||||
|
pub fn from_entropy() -> Self {
|
||||||
|
let nanos = SystemTime::now()
|
||||||
|
.duration_since(UNIX_EPOCH)
|
||||||
|
.unwrap()
|
||||||
|
.as_nanos() as u64;
|
||||||
|
Self::new(nanos)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Rng for Prng {
|
||||||
|
fn next_u64(&mut self) -> u64 {
|
||||||
|
let mut x = self.state;
|
||||||
|
x ^= x << 13;
|
||||||
|
x ^= x >> 7;
|
||||||
|
x ^= x << 17;
|
||||||
|
self.state = x;
|
||||||
|
x
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience constructor using system entropy.
|
||||||
|
pub fn rng() -> Prng {
|
||||||
|
Prng::from_entropy()
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use crate::random::Rng;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_prng_determinism() {
|
||||||
|
let mut a = Prng::new(42);
|
||||||
|
let mut b = Prng::new(42);
|
||||||
|
for _ in 0..5 {
|
||||||
|
assert_eq!(a.next_u64(), b.next_u64());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_random_range_f64() {
|
||||||
|
let mut rng = Prng::new(1);
|
||||||
|
for _ in 0..10 {
|
||||||
|
let v = rng.random_range(-1.0..1.0);
|
||||||
|
assert!(v >= -1.0 && v < 1.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_random_range_usize() {
|
||||||
|
let mut rng = Prng::new(9);
|
||||||
|
for _ in 0..100 {
|
||||||
|
let v = rng.random_range(10..20);
|
||||||
|
assert!(v >= 10 && v < 20);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gen_bool_balance() {
|
||||||
|
let mut rng = Prng::new(123);
|
||||||
|
let mut trues = 0;
|
||||||
|
for _ in 0..1000 {
|
||||||
|
if rng.gen_bool() {
|
||||||
|
trues += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
let ratio = trues as f64 / 1000.0;
|
||||||
|
assert!(ratio > 0.4 && ratio < 0.6);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_normal_distribution() {
|
||||||
|
let mut rng = Prng::new(7);
|
||||||
|
let mut sum = 0.0;
|
||||||
|
let mut sum_sq = 0.0;
|
||||||
|
let mean = 5.0;
|
||||||
|
let sd = 2.0;
|
||||||
|
let n = 5000;
|
||||||
|
for _ in 0..n {
|
||||||
|
let val = rng.normal(mean, sd);
|
||||||
|
sum += val;
|
||||||
|
sum_sq += val * val;
|
||||||
|
}
|
||||||
|
let sample_mean = sum / n as f64;
|
||||||
|
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
|
||||||
|
assert!((sample_mean - mean).abs() < 0.1);
|
||||||
|
assert!((sample_var - sd * sd).abs() < 0.2 * sd * sd);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_prng_from_entropy_unique() {
|
||||||
|
use std::{collections::HashSet, thread, time::Duration};
|
||||||
|
let mut seen = HashSet::new();
|
||||||
|
for _ in 0..5 {
|
||||||
|
let mut rng = Prng::from_entropy();
|
||||||
|
seen.insert(rng.next_u64());
|
||||||
|
thread::sleep(Duration::from_micros(1));
|
||||||
|
}
|
||||||
|
assert!(seen.len() > 1, "Entropy seeds produced identical outputs");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_prng_uniform_distribution() {
|
||||||
|
let mut rng = Prng::new(12345);
|
||||||
|
let mut counts = [0usize; 10];
|
||||||
|
for _ in 0..10000 {
|
||||||
|
let v = rng.random_range(0..10usize);
|
||||||
|
counts[v] += 1;
|
||||||
|
}
|
||||||
|
for &c in &counts {
|
||||||
|
// "PRNG counts far from uniform: {c}"
|
||||||
|
assert!((c as isize - 1000).abs() < 150);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_prng_different_seeds_different_output() {
|
||||||
|
let mut a = Prng::new(1);
|
||||||
|
let mut b = Prng::new(2);
|
||||||
|
let va = a.next_u64();
|
||||||
|
let vb = b.next_u64();
|
||||||
|
assert_ne!(va, vb);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_prng_gen_bool_varies() {
|
||||||
|
let mut rng = Prng::new(99);
|
||||||
|
let mut seen_true = false;
|
||||||
|
let mut seen_false = false;
|
||||||
|
for _ in 0..100 {
|
||||||
|
if rng.gen_bool() {
|
||||||
|
seen_true = true;
|
||||||
|
} else {
|
||||||
|
seen_false = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
assert!(seen_true && seen_false);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_random_range_single_usize() {
|
||||||
|
let mut rng = Prng::new(42);
|
||||||
|
for _ in 0..10 {
|
||||||
|
let v = rng.random_range(5..6);
|
||||||
|
assert_eq!(v, 5);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_random_range_single_f64() {
|
||||||
|
let mut rng = Prng::new(42);
|
||||||
|
for _ in 0..10 {
|
||||||
|
let v = rng.random_range(1.234..1.235);
|
||||||
|
assert!(v >= 1.234 && v < 1.235);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_prng_normal_zero_sd() {
|
||||||
|
let mut rng = Prng::new(7);
|
||||||
|
for _ in 0..5 {
|
||||||
|
let v = rng.normal(3.0, 0.0);
|
||||||
|
assert_eq!(v, 3.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_random_range_extreme_usize() {
|
||||||
|
let mut rng = Prng::new(5);
|
||||||
|
for _ in 0..10 {
|
||||||
|
let v = rng.random_range(0..usize::MAX);
|
||||||
|
assert!(v < usize::MAX);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_prng_chi_square_uniform() {
|
||||||
|
let mut rng = Prng::new(12345);
|
||||||
|
let mut counts = [0usize; 10];
|
||||||
|
let samples = 10000;
|
||||||
|
for _ in 0..samples {
|
||||||
|
let v = rng.random_range(0..10usize);
|
||||||
|
counts[v] += 1;
|
||||||
|
}
|
||||||
|
let expected = samples as f64 / 10.0;
|
||||||
|
let chi2: f64 = counts
|
||||||
|
.iter()
|
||||||
|
.map(|&c| {
|
||||||
|
let diff = c as f64 - expected;
|
||||||
|
diff * diff / expected
|
||||||
|
})
|
||||||
|
.sum();
|
||||||
|
// "chi-square statistic too high: {chi2}"
|
||||||
|
assert!(chi2 < 20.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_prng_monobit() {
|
||||||
|
let mut rng = Prng::new(42);
|
||||||
|
let mut ones = 0usize;
|
||||||
|
let samples = 1000;
|
||||||
|
for _ in 0..samples {
|
||||||
|
ones += rng.next_u64().count_ones() as usize;
|
||||||
|
}
|
||||||
|
let total_bits = samples * 64;
|
||||||
|
let ratio = ones as f64 / total_bits as f64;
|
||||||
|
// "bit ratio far from 0.5: {ratio}"
|
||||||
|
assert!((ratio - 0.5).abs() < 0.01);
|
||||||
|
}
|
||||||
|
}
|
98
src/random/random_core.rs
Normal file
98
src/random/random_core.rs
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
use std::f64::consts::PI;
|
||||||
|
use std::ops::Range;
|
||||||
|
|
||||||
|
/// Trait implemented by random number generators.
|
||||||
|
pub trait Rng {
|
||||||
|
/// Generate the next random `u64` value.
|
||||||
|
fn next_u64(&mut self) -> u64;
|
||||||
|
|
||||||
|
/// Generate a value uniformly in the given range.
|
||||||
|
fn random_range<T>(&mut self, range: Range<T>) -> T
|
||||||
|
where
|
||||||
|
T: RangeSample,
|
||||||
|
{
|
||||||
|
T::from_u64(self.next_u64(), &range)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generate a boolean with probability 0.5 of being `true`.
|
||||||
|
fn gen_bool(&mut self) -> bool {
|
||||||
|
self.random_range(0..2usize) == 1
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Sample from a normal distribution using the Box-Muller transform.
|
||||||
|
fn normal(&mut self, mean: f64, sd: f64) -> f64 {
|
||||||
|
let u1 = self.random_range(0.0..1.0);
|
||||||
|
let u2 = self.random_range(0.0..1.0);
|
||||||
|
mean + sd * (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Conversion from a raw `u64` into a type within a range.
|
||||||
|
pub trait RangeSample: Sized {
|
||||||
|
fn from_u64(value: u64, range: &Range<Self>) -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl RangeSample for usize {
|
||||||
|
fn from_u64(value: u64, range: &Range<Self>) -> Self {
|
||||||
|
let span = range.end - range.start;
|
||||||
|
(value as usize % span) + range.start
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl RangeSample for f64 {
|
||||||
|
fn from_u64(value: u64, range: &Range<Self>) -> Self {
|
||||||
|
let span = range.end - range.start;
|
||||||
|
range.start + (value as f64 / u64::MAX as f64) * span
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_range_sample_usize_boundary() {
|
||||||
|
assert_eq!(<usize as RangeSample>::from_u64(0, &(0..1)), 0);
|
||||||
|
assert_eq!(<usize as RangeSample>::from_u64(u64::MAX, &(0..1)), 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_range_sample_f64_boundary() {
|
||||||
|
let v0 = <f64 as RangeSample>::from_u64(0, &(0.0..1.0));
|
||||||
|
let vmax = <f64 as RangeSample>::from_u64(u64::MAX, &(0.0..1.0));
|
||||||
|
assert!(v0 >= 0.0 && v0 < 1.0);
|
||||||
|
assert!(vmax > 0.999999999999 && vmax <= 1.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_range_sample_usize_varied() {
|
||||||
|
for i in 0..5 {
|
||||||
|
let v = <usize as RangeSample>::from_u64(i, &(10..15));
|
||||||
|
assert!(v >= 10 && v < 15);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_range_sample_f64_span() {
|
||||||
|
for val in [0, u64::MAX / 2, u64::MAX] {
|
||||||
|
let f = <f64 as RangeSample>::from_u64(val, &(2.0..4.0));
|
||||||
|
assert!(f >= 2.0 && f <= 4.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_range_sample_usize_single_value() {
|
||||||
|
for val in [0, 1, u64::MAX] {
|
||||||
|
let n = <usize as RangeSample>::from_u64(val, &(5..6));
|
||||||
|
assert_eq!(n, 5);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_range_sample_f64_negative_range() {
|
||||||
|
for val in [0, u64::MAX / 3, u64::MAX] {
|
||||||
|
let f = <f64 as RangeSample>::from_u64(val, &(-2.0..2.0));
|
||||||
|
assert!(f >= -2.0 && f <= 2.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
105
src/random/seq.rs
Normal file
105
src/random/seq.rs
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
use crate::random::Rng;
|
||||||
|
|
||||||
|
/// Trait for randomizing slices.
|
||||||
|
pub trait SliceRandom {
|
||||||
|
/// Shuffle the slice in place using the provided RNG.
|
||||||
|
fn shuffle<R: Rng>(&mut self, rng: &mut R);
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> SliceRandom for [T] {
|
||||||
|
fn shuffle<R: Rng>(&mut self, rng: &mut R) {
|
||||||
|
for i in (1..self.len()).rev() {
|
||||||
|
let j = rng.random_range(0..(i + 1));
|
||||||
|
self.swap(i, j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use crate::random::{CryptoRng, Prng};
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_shuffle_slice() {
|
||||||
|
let mut rng = Prng::new(3);
|
||||||
|
let mut arr = [1, 2, 3, 4, 5];
|
||||||
|
let orig = arr.clone();
|
||||||
|
arr.shuffle(&mut rng);
|
||||||
|
assert_eq!(arr.len(), orig.len());
|
||||||
|
let mut sorted = arr.to_vec();
|
||||||
|
sorted.sort();
|
||||||
|
assert_eq!(sorted, orig.to_vec());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_slice_shuffle_deterministic_with_prng() {
|
||||||
|
let mut rng1 = Prng::new(11);
|
||||||
|
let mut rng2 = Prng::new(11);
|
||||||
|
let mut a = [1u8, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||||
|
let mut b = a.clone();
|
||||||
|
a.shuffle(&mut rng1);
|
||||||
|
b.shuffle(&mut rng2);
|
||||||
|
assert_eq!(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_slice_shuffle_crypto_random_changes() {
|
||||||
|
let mut rng1 = CryptoRng::new();
|
||||||
|
let mut rng2 = CryptoRng::new();
|
||||||
|
let orig = [1u8, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||||
|
let mut a = orig.clone();
|
||||||
|
let mut b = orig.clone();
|
||||||
|
a.shuffle(&mut rng1);
|
||||||
|
b.shuffle(&mut rng2);
|
||||||
|
assert!(a != orig || b != orig, "Shuffles did not change order");
|
||||||
|
assert_ne!(a, b, "Two Crypto RNG shuffles produced same order");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_shuffle_single_element_no_change() {
|
||||||
|
let mut rng = Prng::new(1);
|
||||||
|
let mut arr = [42];
|
||||||
|
arr.shuffle(&mut rng);
|
||||||
|
assert_eq!(arr, [42]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_multiple_shuffles_different_results() {
|
||||||
|
let mut rng = Prng::new(5);
|
||||||
|
let mut arr1 = [1, 2, 3, 4];
|
||||||
|
let mut arr2 = [1, 2, 3, 4];
|
||||||
|
arr1.shuffle(&mut rng);
|
||||||
|
arr2.shuffle(&mut rng);
|
||||||
|
assert_ne!(arr1, arr2);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_shuffle_empty_slice() {
|
||||||
|
let mut rng = Prng::new(1);
|
||||||
|
let mut arr: [i32; 0] = [];
|
||||||
|
arr.shuffle(&mut rng);
|
||||||
|
assert!(arr.is_empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_shuffle_three_uniform() {
|
||||||
|
use std::collections::HashMap;
|
||||||
|
let mut rng = Prng::new(123);
|
||||||
|
let mut counts: HashMap<[u8; 3], usize> = HashMap::new();
|
||||||
|
for _ in 0..6000 {
|
||||||
|
let mut arr = [1u8, 2, 3];
|
||||||
|
arr.shuffle(&mut rng);
|
||||||
|
*counts.entry(arr).or_insert(0) += 1;
|
||||||
|
}
|
||||||
|
let expected = 1000.0;
|
||||||
|
let chi2: f64 = counts
|
||||||
|
.values()
|
||||||
|
.map(|&c| {
|
||||||
|
let diff = c as f64 - expected;
|
||||||
|
diff * diff / expected
|
||||||
|
})
|
||||||
|
.sum();
|
||||||
|
assert!(chi2 < 30.0, "shuffle chi-square too high: {chi2}");
|
||||||
|
}
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user