mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 08:19:59 +00:00
77 lines
2.0 KiB
Markdown
77 lines
2.0 KiB
Markdown
# Machine Learning
|
||
|
||
The `compute::models` module bundles several learning algorithms that operate on
|
||
`Matrix` structures. These examples highlight the basic training and prediction
|
||
APIs. For more end‑to‑end walkthroughs see the examples directory in the
|
||
repository.
|
||
|
||
Currently implemented models include:
|
||
|
||
- Linear and logistic regression
|
||
- K‑means clustering
|
||
- Principal component analysis (PCA)
|
||
- Gaussian Naive Bayes
|
||
- Dense neural networks
|
||
|
||
## Linear Regression
|
||
|
||
```rust
|
||
# extern crate rustframe;
|
||
use rustframe::compute::models::linreg::LinReg;
|
||
use rustframe::matrix::Matrix;
|
||
|
||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
||
let mut model = LinReg::new(1);
|
||
model.fit(&x, &y, 0.01, 100);
|
||
let preds = model.predict(&x);
|
||
assert_eq!(preds.rows(), 4);
|
||
```
|
||
|
||
## K-means Walkthrough
|
||
|
||
```rust
|
||
# extern crate rustframe;
|
||
use rustframe::compute::models::k_means::KMeans;
|
||
use rustframe::matrix::Matrix;
|
||
|
||
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
|
||
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
|
||
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
|
||
let cluster = model.predict(&new_point)[0];
|
||
```
|
||
|
||
For helper functions and upcoming modules, visit the
|
||
[utilities](./utilities.md) section.
|
||
|
||
## Logistic Regression
|
||
|
||
```rust
|
||
# extern crate rustframe;
|
||
use rustframe::compute::models::logreg::LogReg;
|
||
use rustframe::matrix::Matrix;
|
||
|
||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||
let mut model = LogReg::new(1);
|
||
model.fit(&x, &y, 0.1, 200);
|
||
let preds = model.predict_proba(&x);
|
||
assert_eq!(preds.rows(), 4);
|
||
```
|
||
|
||
## Principal Component Analysis
|
||
|
||
```rust
|
||
# extern crate rustframe;
|
||
use rustframe::compute::models::pca::PCA;
|
||
use rustframe::matrix::Matrix;
|
||
|
||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||
let pca = PCA::fit(&data, 1, 0);
|
||
let transformed = pca.transform(&data);
|
||
assert_eq!(transformed.cols(), 1);
|
||
```
|
||
|
||
For helper functions and upcoming modules, visit the
|
||
[utilities](./utilities.md) section.
|