Compare commits

..

32 Commits

Author SHA1 Message Date
Palash Tyagi
7ecfa0afe9
Merge cd3aa84e6019bad5492e9cbc6948caf6c0e0f726 into 2cb4e4621766466e995887c10892e8150d977c0a 2025-08-04 23:02:35 +01:00
2cb4e46217
Merge pull request #69 from Magnus167/user-guide
Add user guide mdbook
2025-08-04 22:22:55 +01:00
Palash Tyagi
a53ba63f30 Rearrange links in the introduction for improved visibility 2025-08-04 22:20:58 +01:00
Palash Tyagi
dae60ea1bd Rearrange links in the README for improved visibility 2025-08-04 22:15:42 +01:00
Palash Tyagi
755dee58e7 Refactor machine learning user-guide 2025-08-04 22:14:17 +01:00
Palash Tyagi
9e6e22fc37 Add covariance functions and examples to documentation 2025-08-04 20:37:27 +01:00
Palash Tyagi
b687fd4e6b Add advanced matrix operations and Gaussian Naive Bayes examples to documentation 2025-08-04 19:21:36 +01:00
Palash Tyagi
68a01ab528 Enhance documentation with additional compute examples and stats functions 2025-08-04 15:52:57 +01:00
Palash Tyagi
23a01dab07 Update documentation links 2025-08-04 00:29:13 +01:00
Palash Tyagi
f4ebd78234 Comment out the release build command in gen.sh for clarity 2025-08-04 00:06:59 +01:00
Palash Tyagi
1475156855 Fix casing in user guide title for consistency 2025-08-04 00:05:31 +01:00
Palash Tyagi
080680d095 Update book metadata: correct author field and ensure consistent title casing 2025-08-04 00:05:13 +01:00
Palash Tyagi
2845f357b7 Revise introduction for clarity and detail, enhancing the overview of RustFrame's features and capabilities 2025-08-04 00:04:41 +01:00
Palash Tyagi
3d11226d57 Update machine learning documentation for clarity and completeness 2025-08-04 00:04:36 +01:00
Palash Tyagi
039fb1a98e Enhance utilities documentation with additional date and random number examples 2025-08-04 00:04:07 +01:00
Palash Tyagi
31a5ba2460 Improve data manipulation examples 2025-08-04 00:02:46 +01:00
Palash Tyagi
1a9f397702 Add more statistical routines and examples 2025-08-04 00:02:17 +01:00
Palash Tyagi
ecd06eb352 update format in README 2025-08-03 23:28:19 +01:00
Palash Tyagi
ae327b6060 Update user guide build script path in CI workflows 2025-08-03 23:28:03 +01:00
Palash Tyagi
83ac9d4821 Remove local build instructions from the introduction of the user guide 2025-08-03 23:25:17 +01:00
Palash Tyagi
ae27ed9373 Add instructions for building the user guide 2025-08-03 23:25:13 +01:00
Palash Tyagi
c7552f2264 Simplify user guide build steps in CI workflows 2025-08-03 23:24:54 +01:00
Palash Tyagi
3654c7053c Refactor build process 2025-08-03 23:23:10 +01:00
Palash Tyagi
1dcd9727b4 Update output directory structure for user guide and index files 2025-08-03 23:15:54 +01:00
Palash Tyagi
b62152b4f0 Update output directory for user guide and artifact upload in CI workflow 2025-08-03 23:01:54 +01:00
Palash Tyagi
a6a901d6ab Add step to install mdBook for user guide build in CI workflows 2025-08-03 22:16:53 +01:00
Palash Tyagi
676af850ef Add step to test user guide build in CI workflow 2025-08-03 22:13:25 +01:00
Palash Tyagi
ca2ca2a738 Add link to User Guide in the main index page 2025-08-03 22:11:15 +01:00
Palash Tyagi
4876a74e01 Add user guide build and output steps to CI workflow 2025-08-03 22:11:10 +01:00
Palash Tyagi
b78dd75e77 Add build script for RustFrame user guide using mdBook 2025-08-03 22:07:38 +01:00
Palash Tyagi
9db8853d75 Add user guide configuration and update .gitignore 2025-08-03 22:07:32 +01:00
Palash Tyagi
9738154dac Add user guide examples 2025-08-03 22:07:18 +01:00
14 changed files with 846 additions and 8 deletions

View File

@ -58,6 +58,14 @@
<h2>A lightweight dataframe & math toolkit for Rust</h2> <h2>A lightweight dataframe & math toolkit for Rust</h2>
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;"> <hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
<p> <p>
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a>
<br><br>
📖 <a href="https://magnus167.github.io/rustframe/user-guide">User Guide</a>
<br><br>
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> | 📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a> 📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
@ -65,8 +73,7 @@
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> | 🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a> 🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
<br><br> <br><br>
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a> | <!-- 🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a> -->
🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a>
</p> </p>
</main> </main>
</body> </body>

View File

@ -153,7 +153,6 @@ jobs:
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
mkdir output
cp tarpaulin-report.html target/doc/docs/ cp tarpaulin-report.html target/doc/docs/
cp tarpaulin-report.json target/doc/docs/ cp tarpaulin-report.json target/doc/docs/
cp tarpaulin-badge.json target/doc/docs/ cp tarpaulin-badge.json target/doc/docs/
@ -166,16 +165,30 @@ jobs:
# copy the benchmark report to the output directory # copy the benchmark report to the output directory
cp -r benchmark-report target/doc/ cp -r benchmark-report target/doc/
mkdir output
cp -r target/doc/* output/
- name: Build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh
- name: Copy user guide to output directory
run: |
mkdir output/user-guide
cp -r docs/book/* output/user-guide/
- name: Add index.html to output directory - name: Add index.html to output directory
run: | run: |
cp .github/htmldocs/index.html target/doc/index.html cp .github/htmldocs/index.html output/index.html
cp .github/rustframe_logo.png target/doc/rustframe_logo.png cp .github/rustframe_logo.png output/rustframe_logo.png
- name: Upload Pages artifact - name: Upload Pages artifact
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch' # if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
uses: actions/upload-pages-artifact@v3 uses: actions/upload-pages-artifact@v3
with: with:
path: target/doc/ # path: target/doc/
path: output/
- name: Deploy to GitHub Pages - name: Deploy to GitHub Pages
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch' # if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'

View File

@ -78,3 +78,8 @@ jobs:
uses: codecov/test-results-action@v1 uses: codecov/test-results-action@v1
with: with:
token: ${{ secrets.CODECOV_TOKEN }} token: ${{ secrets.CODECOV_TOKEN }}
- name: Test build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh

2
.gitignore vendored
View File

@ -17,3 +17,5 @@ data/
tarpaulin-report.* tarpaulin-report.*
.github/htmldocs/rustframe_logo.png .github/htmldocs/rustframe_logo.png
docs/book/

View File

@ -1,11 +1,12 @@
# rustframe # rustframe
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🌐 [Gitea mirror](https://gitea.nulltech.uk/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/) 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
<!-- [![Last commit](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/rustframe/last-commit-date.json)](https://github.com/Magnus167/rustframe) --> <!-- [![Last commit](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/rustframe/last-commit-date.json)](https://github.com/Magnus167/rustframe) -->
[![codecov](https://codecov.io/gh/Magnus167/rustframe/graph/badge.svg?token=J7ULJEFTVI)](https://codecov.io/gh/Magnus167/rustframe) [![codecov](https://codecov.io/gh/Magnus167/rustframe/graph/badge.svg?token=J7ULJEFTVI)](https://codecov.io/gh/Magnus167/rustframe)
[![Coverage](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/docs/tarpaulin-badge.json)](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html) [![Coverage](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/docs/tarpaulin-badge.json)](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
[![gitea-mirror](https://img.shields.io/badge/git_mirror-blue)](https://gitea.nulltech.uk/Magnus167/rustframe)
--- ---
@ -205,3 +206,14 @@ To run the benchmarks, use:
```bash ```bash
cargo bench --features "bench" cargo bench --features "bench"
``` ```
## Building the user-guide
To build the user guide, use:
```bash
cargo binstall mdbook
bash docs/build.sh
```
This will generate the user guide in the `docs/book` directory.

7
docs/book.toml Normal file
View File

@ -0,0 +1,7 @@
[book]
title = "Rustframe User Guide"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
description = "Guided journey through Rustframe capabilities."
[build]
build-dir = "book"

7
docs/build.sh Executable file
View File

@ -0,0 +1,7 @@
#!/usr/bin/env sh
# Build and test the Rustframe user guide using mdBook.
set -e
cd docs
bash gen.sh "$@"
cd ..

14
docs/gen.sh Normal file
View File

@ -0,0 +1,14 @@
#!/usr/bin/env sh
set -e
cargo clean
cargo build --manifest-path ../Cargo.toml
mdbook test -L ../target/debug/deps "$@"
mdbook build "$@"
cargo build
# cargo build --release

7
docs/src/SUMMARY.md Normal file
View File

@ -0,0 +1,7 @@
# Summary
- [Introduction](./introduction.md)
- [Data Manipulation](./data-manipulation.md)
- [Compute Features](./compute.md)
- [Machine Learning](./machine-learning.md)
- [Utilities](./utilities.md)

222
docs/src/compute.md Normal file
View File

@ -0,0 +1,222 @@
# Compute Features
The `compute` module hosts numerical routines for exploratory data analysis.
It covers descriptive statistics, correlations, probability distributions and
some basic inferential tests.
## Basic Statistics
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
use rustframe::matrix::Matrix;
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
assert_eq!(mean(&m), 2.5);
assert_eq!(stddev(&m), 1.118033988749895);
assert_eq!(median(&m), 2.5);
assert_eq!(population_variance(&m), 1.25);
assert_eq!(percentile(&m, 50.0), 3.0);
// column averages returned as 1 x n matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.data(), &[2.0, 3.0]);
let col_means = mean_vertical(&m);
assert_eq!(col_means.data(), & [1.5, 3.5]);
```
### Axis-specific Operations
Operations can be applied along specific axes (rows or columns):
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
use rustframe::matrix::Matrix;
// 3x2 matrix
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Mean along columns (vertical) - returns 1 x cols matrix
let col_means = mean_vertical(&m);
assert_eq!(col_means.shape(), (1, 2));
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
// Mean along rows (horizontal) - returns rows x 1 matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.shape(), (3, 1));
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
// Standard deviation along columns
let col_stddev = stddev_vertical(&m);
assert_eq!(col_stddev.shape(), (1, 2));
// Standard deviation along rows
let row_stddev = stddev_horizontal(&m);
assert_eq!(row_stddev.shape(), (3, 1));
```
## Correlation
```rust
# extern crate rustframe;
use rustframe::compute::stats::{pearson, covariance};
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let corr = pearson(&x, &y);
let cov = covariance(&x, &y);
assert!((corr - 1.0).abs() < 1e-8);
assert!((cov - 2.5).abs() < 1e-8);
```
## Covariance
### `covariance`
Computes the population covariance between two equally sized matrices by flattening
their values.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let cov = covariance(&x, &y);
assert!((cov - 2.5).abs() < 1e-8);
```
### `covariance_vertical`
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
column pair covariances.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_vertical;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_vertical(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
```
### `covariance_horizontal`
Computes covariance between rows (i.e. across columns) returning a matrix that
describes how each pair of rows varies together.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_horizontal;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_horizontal(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
```
### `covariance_matrix`
Builds a covariance matrix either between columns (`Axis::Col`) or rows
(`Axis::Row`). Each entry represents how two series co-vary.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_matrix;
use rustframe::matrix::{Axis, Matrix};
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
// Covariance between columns
let cov_cols = covariance_matrix(&data, Axis::Col);
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
// Covariance between rows
let cov_rows = covariance_matrix(&data, Axis::Row);
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
```
## Distributions
Probability distribution helpers are available for common PDFs and CDFs.
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::normal_pdf;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let pdf = normal_pdf(x, 0.0, 1.0);
assert_eq!(pdf.data().len(), 2);
```
### Additional Distributions
Rustframe provides several other probability distributions:
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
use rustframe::matrix::Matrix;
// Normal distribution CDF
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let cdf = normal_cdf(x, 0.0, 1.0);
assert_eq!(cdf.data().len(), 2);
// Binomial distribution PMF
// Probability of k successes in n trials with probability p
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
let pmf = binomial_pmf(3, k.clone(), 0.5);
assert_eq!(pmf.data().len(), 4);
// Binomial distribution CDF
let cdf = binomial_cdf(3, k, 0.5);
assert_eq!(cdf.data().len(), 4);
// Poisson distribution PMF
// Probability of k events with rate parameter lambda
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = poisson_pmf(2.0, k);
assert_eq!(pmf.data().len(), 3);
```
### Inferential Statistics
Rustframe provides several inferential statistical tests:
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
// Two-sample t-test
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_statistic, p_value) = t_test(&sample1, &sample2);
assert!((t_statistic + 5.0).abs() < 1e-5);
assert!(p_value > 0.0 && p_value < 1.0);
// Chi-square test of independence
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2_statistic, p_value) = chi2_test(&observed);
assert!(chi2_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
// One-way ANOVA
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
let groups = vec![&group1, &group2, &group3];
let (f_statistic, p_value) = anova(groups);
assert!(f_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
```
With the basics covered, explore predictive models in the
[machine learning](./machine-learning.md) chapter.

View File

@ -0,0 +1,157 @@
# Data Manipulation
Rustframe's `Frame` type couples tabular data with
column labels and a typed row index. Frames expose a familiar API for loading
data, selecting rows or columns and performing aggregations.
## Creating a Frame
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
assert_eq!(frame["A"], vec![1.0, 2.0]);
```
## Indexing Rows
Row labels can be integers, dates or a default range. Retrieving a row returns a
view that lets you inspect values by column name or position.
```rust
# extern crate rustframe;
# extern crate chrono;
use chrono::NaiveDate;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
// mutate by row key
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
```
## Column operations
Columns can be inserted, renamed, removed or reordered in place.
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
frame.add_column("Z", vec![5, 6]);
frame.rename("Y", "W");
let removed = frame.delete_column("X");
assert_eq!(removed, vec![1, 2]);
frame.sort_columns();
assert_eq!(frame.columns(), &["W", "Z"]);
```
## Aggregations
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
```rust
# extern crate rustframe;
use rustframe::frame::Frame;
use rustframe::matrix::{Matrix, SeriesOps};
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
```
## Matrix Operations
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let sum = data1.clone() + data2.clone();
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
let product = data1.clone() * data2.clone();
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
let scalar_product = data1.clone() * 2.0;
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
let equals = data1 == data1.clone();
assert_eq!(equals, true);
```
### Advanced Matrix Operations
Matrices support a variety of advanced operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
// Matrix multiplication (dot product)
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let product = a.matrix_mul(&b);
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
// Transpose
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let transposed = m.transpose();
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
// Map function over all elements
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let squared = m.map(|x| x * x);
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
// Zip two matrices with a function
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let zipped = a.zip(&b, |x, y| x + y);
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
```
### Matrix Reductions
Matrices support various reduction operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Sum along columns (vertical)
let col_sums = m.sum_vertical();
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
// Sum along rows (horizontal)
let row_sums = m.sum_horizontal();
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
// Cumulative sum along columns
let col_cumsum = m.cumsum_vertical();
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
// Cumulative sum along rows
let row_cumsum = m.cumsum_horizontal();
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
```
With the basics covered, continue to the [compute features](./compute.md)
chapter for statistics and analytics.

40
docs/src/introduction.md Normal file
View File

@ -0,0 +1,40 @@
# Introduction
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
API approachable while offering handy features for small analytical or
educational projects.
Rustframe bundles:
- columnlabelled frames built on a fast columnmajor matrix
- familiar elementwise math and aggregation routines
- a growing `compute` module for statistics and machine learning
- utilities for dates and random numbers
```rust
# extern crate rustframe;
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
// Perform column wise aggregation
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
```
## Resources
- [GitHub repository](https://github.com/Magnus167/rustframe)
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
This guide walks through the main building blocks of the library. Each chapter
contains runnable snippets so you can follow along:
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
2. [Compute features](./compute.md) for statistics and analytics
3. [Machine learning](./machine-learning.md) for predictive models
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules

View File

@ -0,0 +1,282 @@
# Machine Learning
The `compute::models` module bundles several learning algorithms that operate on
`Matrix` structures. These examples highlight the basic training and prediction
APIs. For more endtoend walkthroughs see the examples directory in the
repository.
Currently implemented models include:
- Linear and logistic regression
- Kmeans clustering
- Principal component analysis (PCA)
- Gaussian Naive Bayes
- Dense neural networks
## Linear Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
let mut model = LinReg::new(1);
model.fit(&x, &y, 0.01, 100);
let preds = model.predict(&x);
assert_eq!(preds.rows(), 4);
```
## K-means Walkthrough
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
let cluster = model.predict(&new_point)[0];
```
## Logistic Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
let mut model = LogReg::new(1);
model.fit(&x, &y, 0.1, 200);
let preds = model.predict_proba(&x);
assert_eq!(preds.rows(), 4);
```
## Principal Component Analysis
```rust
# extern crate rustframe;
use rustframe::compute::models::pca::PCA;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let pca = PCA::fit(&data, 1, 0);
let transformed = pca.transform(&data);
assert_eq!(transformed.cols(), 1);
```
## Gaussian Naive Bayes
Gaussian Naive Bayes classifier for continuous features:
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
1.0, 2.0,
2.0, 3.0,
3.0, 4.0,
4.0, 5.0
], 4, 2);
// Class labels (0 or 1)
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
// Train the model
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Dense Neural Networks
Simple fully connected neural network:
```rust
# extern crate rustframe;
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
1.0, 1.0
], 4, 2);
// XOR target outputs
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
// Create a neural network with 2 hidden layers
let config = DenseNNConfig {
input_size: 2,
hidden_layers: vec![4, 4],
output_size: 1,
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
initializer: InitializerKind::Uniform(0.5),
loss: LossKind::MSE,
learning_rate: 0.1,
epochs: 1000,
};
let mut model = DenseNN::new(config);
// Train the model
model.train(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Real-world Examples
### Housing Price Prediction
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
// Features: square feet and bedrooms
let features = Matrix::from_rows_vec(vec![
2100.0, 3.0,
1600.0, 2.0,
2400.0, 4.0,
1400.0, 2.0,
], 4, 2);
// Sale prices
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
let mut model = LinReg::new(2);
model.fit(&features, &target, 1e-8, 10_000);
// Predict price of a new home
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
let predicted_price = model.predict(&new_home);
println!("Predicted price: ${}", predicted_price.data()[0]);
```
### Spam Detection
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
let x = Matrix::from_rows_vec(
vec![
// ─────────── spam examples ───────────
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
1.0, 0.0, 1.0, 0.0, 1.0, // ...
0.0, 1.0, 1.0, 1.0, 0.0, // ...
2.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 1.0, 0.0, 1.0, // ...
1.0, 1.0, 1.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 1.0, 1.0, // ...
// ─────────── ham examples ───────────
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
0.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0,
],
20,
5,
);
// Labels: 1 = spam, 0 = ham
let y = Matrix::from_vec(
vec![
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
],
20,
1,
);
// Train
let mut model = LogReg::new(5);
model.fit(&x, &y, 0.01, 5000);
// Predict
// e.g. "free money offer"
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
let email = Matrix::from_vec(email_data, 1, 5);
let prob_spam = model.predict_proba(&email);
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
```
### Iris Flower Classification
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Features: sepal length and petal length
let x = Matrix::from_rows_vec(vec![
5.1, 1.4, // setosa
4.9, 1.4, // setosa
6.2, 4.5, // versicolor
5.9, 5.1, // virginica
], 4, 2);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
let names = vec!["setosa", "versicolor", "virginica"];
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
let predicted_class = model.predict(&sample);
let class_name = names[predicted_class.data()[0] as usize];
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
```
### Customer Segmentation
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
// Each row: [age, annual_income]
let customers = Matrix::from_rows_vec(
vec![
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
],
4,
2,
);
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
let cluster = model.predict(&new_customer)[0];
println!("New customer belongs to cluster: {}", cluster);
println!("Cluster labels: {:?}", labels);
```
For helper functions and upcoming modules, visit the
[utilities](./utilities.md) section.

63
docs/src/utilities.md Normal file
View File

@ -0,0 +1,63 @@
# Utilities
Utilities provide handy helpers around the core library. Existing tools
include:
- Date utilities for generating calendar sequences and businessday sets
- Random number generators for simulations and testing
## Date Helpers
```rust
# extern crate rustframe;
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
// Calendar sequence
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
assert_eq!(list.count().unwrap(), 3);
// Business days starting from 20240102
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
assert_eq!(bdates.list().unwrap().len(), 3);
```
## Random Numbers
The `random` module offers deterministic and cryptographically secure RNGs.
```rust
# extern crate rustframe;
use rustframe::random::{Prng, Rng};
let mut rng = Prng::new(42);
let v1 = rng.next_u64();
let v2 = rng.next_u64();
assert_ne!(v1, v2);
```
## Stats Functions
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::descriptive::{mean, median, stddev};
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let mean_value = mean(&data);
assert_eq!(mean_value, 3.0);
let median_value = median(&data);
assert_eq!(median_value, 3.0);
let std_value = stddev(&data);
assert_eq!(std_value, 2.0_f64.sqrt());
```
Upcoming utilities will cover:
- Data import/export helpers
- Visualization adapters
- Streaming data interfaces
Contributions to these sections are welcome!