mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-11-19 17:56:10 +00:00
Compare commits
51 Commits
a96cb41d97
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| c53693fa7b | |||
| 109d39b248 | |||
|
|
18ad6c689a | ||
| 1fead78b69 | |||
|
|
6fb32e743c | ||
| 2cb4e46217 | |||
|
|
a53ba63f30 | ||
|
|
dae60ea1bd | ||
|
|
755dee58e7 | ||
|
|
9e6e22fc37 | ||
|
|
b687fd4e6b | ||
|
|
68a01ab528 | ||
|
|
23a01dab07 | ||
|
|
f4ebd78234 | ||
|
|
1475156855 | ||
|
|
080680d095 | ||
|
|
2845f357b7 | ||
|
|
3d11226d57 | ||
|
|
039fb1a98e | ||
|
|
31a5ba2460 | ||
|
|
1a9f397702 | ||
|
|
ecd06eb352 | ||
|
|
ae327b6060 | ||
|
|
83ac9d4821 | ||
|
|
ae27ed9373 | ||
|
|
c7552f2264 | ||
|
|
3654c7053c | ||
|
|
1dcd9727b4 | ||
|
|
b62152b4f0 | ||
|
|
a6a901d6ab | ||
|
|
676af850ef | ||
|
|
ca2ca2a738 | ||
|
|
4876a74e01 | ||
|
|
b78dd75e77 | ||
|
|
9db8853d75 | ||
|
|
9738154dac | ||
| 7d0978e5fb | |||
|
|
ed01c4b8f2 | ||
|
|
e6964795e3 | ||
|
|
d1dd7ea6d2 | ||
|
|
676f78bb1e | ||
|
|
f7325a9558 | ||
|
|
18b9eef063 | ||
|
|
f99f78d508 | ||
| 2926a8a6e8 | |||
| d851c500af | |||
|
|
d741c7f472 | ||
|
|
7720312354 | ||
|
|
5509416d5f | ||
|
|
a451ba8cc7 | ||
|
|
bce1bdd21a |
11
.github/htmldocs/index.html
vendored
11
.github/htmldocs/index.html
vendored
@@ -58,6 +58,14 @@
|
||||
<h2>A lightweight dataframe & math toolkit for Rust</h2>
|
||||
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
|
||||
<p>
|
||||
|
||||
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a>
|
||||
<br><br>
|
||||
|
||||
📖 <a href="https://magnus167.github.io/rustframe/user-guide">User Guide</a>
|
||||
<br><br>
|
||||
|
||||
|
||||
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
|
||||
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
|
||||
|
||||
@@ -65,8 +73,7 @@
|
||||
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
|
||||
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
|
||||
<br><br>
|
||||
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a> |
|
||||
🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a>
|
||||
<!-- 🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a> -->
|
||||
</p>
|
||||
</main>
|
||||
</body>
|
||||
|
||||
21
.github/workflows/docs-and-testcov.yml
vendored
21
.github/workflows/docs-and-testcov.yml
vendored
@@ -153,7 +153,6 @@ jobs:
|
||||
|
||||
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
|
||||
|
||||
mkdir output
|
||||
cp tarpaulin-report.html target/doc/docs/
|
||||
cp tarpaulin-report.json target/doc/docs/
|
||||
cp tarpaulin-badge.json target/doc/docs/
|
||||
@@ -166,16 +165,30 @@ jobs:
|
||||
# copy the benchmark report to the output directory
|
||||
cp -r benchmark-report target/doc/
|
||||
|
||||
mkdir output
|
||||
cp -r target/doc/* output/
|
||||
|
||||
- name: Build user guide
|
||||
run: |
|
||||
cargo binstall mdbook
|
||||
bash ./docs/build.sh
|
||||
|
||||
- name: Copy user guide to output directory
|
||||
run: |
|
||||
mkdir output/user-guide
|
||||
cp -r docs/book/* output/user-guide/
|
||||
|
||||
- name: Add index.html to output directory
|
||||
run: |
|
||||
cp .github/htmldocs/index.html target/doc/index.html
|
||||
cp .github/rustframe_logo.png target/doc/rustframe_logo.png
|
||||
cp .github/htmldocs/index.html output/index.html
|
||||
cp .github/rustframe_logo.png output/rustframe_logo.png
|
||||
|
||||
- name: Upload Pages artifact
|
||||
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
|
||||
uses: actions/upload-pages-artifact@v3
|
||||
with:
|
||||
path: target/doc/
|
||||
# path: target/doc/
|
||||
path: output/
|
||||
|
||||
- name: Deploy to GitHub Pages
|
||||
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
|
||||
|
||||
5
.github/workflows/run-unit-tests.yml
vendored
5
.github/workflows/run-unit-tests.yml
vendored
@@ -78,3 +78,8 @@ jobs:
|
||||
uses: codecov/test-results-action@v1
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
|
||||
- name: Test build user guide
|
||||
run: |
|
||||
cargo binstall mdbook
|
||||
bash ./docs/build.sh
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -16,4 +16,6 @@ data/
|
||||
|
||||
tarpaulin-report.*
|
||||
|
||||
.github/htmldocs/rustframe_logo.png
|
||||
.github/htmldocs/rustframe_logo.png
|
||||
|
||||
docs/book/
|
||||
@@ -1,11 +1,12 @@
|
||||
[package]
|
||||
name = "rustframe"
|
||||
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
||||
version = "0.0.1-a.20250716"
|
||||
version = "0.0.1-a.20250805"
|
||||
edition = "2021"
|
||||
license = "GPL-3.0-or-later"
|
||||
readme = "README.md"
|
||||
description = "A simple dataframe library"
|
||||
description = "A simple dataframe and math toolkit"
|
||||
documentation = "https://magnus167.github.io/rustframe/"
|
||||
|
||||
[lib]
|
||||
name = "rustframe"
|
||||
|
||||
51
README.md
51
README.md
@@ -1,15 +1,12 @@
|
||||
# rustframe
|
||||
|
||||
<!-- # <img align="center" alt="Rustframe" src=".github/rustframe_logo.png" height="50px" /> rustframe -->
|
||||
|
||||
<!-- though the centre tag doesn't work as it would normally, it achieves the desired effect -->
|
||||
|
||||
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🌐 [Gitea mirror](https://gitea.nulltech.uk/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||
|
||||
<!-- [](https://github.com/Magnus167/rustframe) -->
|
||||
|
||||
[](https://codecov.io/gh/Magnus167/rustframe)
|
||||
[](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
|
||||
[](https://gitea.nulltech.uk/Magnus167/rustframe)
|
||||
|
||||
---
|
||||
|
||||
@@ -27,10 +24,8 @@ Rustframe is an educational project, and is not intended for production use. It
|
||||
- **Math that reads like math** - element-wise `+`, `−`, `×`, `÷` on entire frames or scalars.
|
||||
- **Frames** - Column major data structure for single-type data, with labeled columns and typed row indices.
|
||||
- **Compute module** - Implements various statistical computations and machine learning models.
|
||||
|
||||
- **[Coming Soon]** _DataFrame_ - Multi-type data structure for heterogeneous data, with labeled columns and typed row indices.
|
||||
|
||||
- **Random number utils** - Built-in pseudo and cryptographically secure generators for simulations.
|
||||
- **[Coming Soon]** _DataFrame_ - Multi-type data structure for heterogeneous data, with labeled columns and typed row indices.
|
||||
|
||||
#### Matrix and Frame functionality
|
||||
|
||||
@@ -55,12 +50,6 @@ The `compute` module provides implementations for various statistical computatio
|
||||
- Logistic Regression
|
||||
- Principal Component Analysis
|
||||
|
||||
### Coming soon
|
||||
|
||||
- **CSV I/O** - read/write CSV files with a simple API.
|
||||
- **Date Utils** - date math, calendar slicing, indexing, and more.
|
||||
- **More math** - more math functions and aggregations.
|
||||
|
||||
### Heads up
|
||||
|
||||
- **Not memory‑efficient (yet)** - footprint needs work.
|
||||
@@ -70,7 +59,6 @@ The `compute` module provides implementations for various statistical computatio
|
||||
|
||||
- Optional GPU acceleration (Vulkan or similar) for heavier workloads.
|
||||
- Straightforward Python bindings using `pyo3`.
|
||||
- Integration with common ML libraries, or introduce simple ML features.
|
||||
|
||||
---
|
||||
|
||||
@@ -138,10 +126,6 @@ let mc: Matrix<f64> = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let md: Matrix<f64> = Matrix::from_cols(vec![vec![5.0, 6.0], vec![7.0, 8.0]]);
|
||||
let mul_result: Matrix<f64> = mc.matrix_mul(&md);
|
||||
// Expected:
|
||||
// 1*5 + 3*6 = 5 + 18 = 23
|
||||
// 2*5 + 4*6 = 10 + 24 = 34
|
||||
// 1*7 + 3*8 = 7 + 24 = 31
|
||||
// 2*7 + 4*8 = 14 + 32 = 46
|
||||
assert_eq!(mul_result.data(), &[23.0, 34.0, 31.0, 46.0]);
|
||||
|
||||
// Dot product (alias for matrix_mul for FloatMatrix)
|
||||
@@ -150,14 +134,7 @@ assert_eq!(dot_result, mul_result);
|
||||
|
||||
// Transpose
|
||||
let original_matrix: Matrix<f64> = Matrix::from_cols(vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]);
|
||||
// Original:
|
||||
// 1 4
|
||||
// 2 5
|
||||
// 3 6
|
||||
let transposed_matrix: Matrix<f64> = original_matrix.transpose();
|
||||
// Transposed:
|
||||
// 1 2 3
|
||||
// 4 5 6
|
||||
assert_eq!(transposed_matrix.rows(), 2);
|
||||
assert_eq!(transposed_matrix.cols(), 3);
|
||||
assert_eq!(transposed_matrix.data(), &[1.0, 4.0, 2.0, 5.0, 3.0, 6.0]);
|
||||
@@ -166,10 +143,6 @@ assert_eq!(transposed_matrix.data(), &[1.0, 4.0, 2.0, 5.0, 3.0, 6.0]);
|
||||
let matrix = Matrix::from_cols(vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]);
|
||||
// Map function to double each value
|
||||
let mapped_matrix = matrix.map(|x| x * 2.0);
|
||||
// Expected data after mapping
|
||||
// 2 8
|
||||
// 4 10
|
||||
// 6 12
|
||||
assert_eq!(mapped_matrix.data(), &[2.0, 4.0, 6.0, 8.0, 10.0, 12.0]);
|
||||
|
||||
// Zip
|
||||
@@ -177,13 +150,10 @@ let a = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]); // 2x2 matrix
|
||||
let b = Matrix::from_cols(vec![vec![5.0, 6.0], vec![7.0, 8.0]]); // 2x2 matrix
|
||||
// Zip function to add corresponding elements
|
||||
let zipped_matrix = a.zip(&b, |x, y| x + y);
|
||||
// Expected data after zipping
|
||||
// 6 10
|
||||
// 8 12
|
||||
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
||||
```
|
||||
|
||||
### More examples
|
||||
## More examples
|
||||
|
||||
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
||||
|
||||
@@ -222,10 +192,21 @@ cargo run --example
|
||||
|
||||
Each demo runs a couple of mini-scenarios showcasing the APIs.
|
||||
|
||||
### Running benchmarks
|
||||
## Running benchmarks
|
||||
|
||||
To run the benchmarks, use:
|
||||
|
||||
```bash
|
||||
cargo bench --features "bench"
|
||||
```
|
||||
|
||||
## Building the user-guide
|
||||
|
||||
To build the user guide, use:
|
||||
|
||||
```bash
|
||||
cargo binstall mdbook
|
||||
bash docs/build.sh
|
||||
```
|
||||
|
||||
This will generate the user guide in the `docs/book` directory.
|
||||
|
||||
7
docs/book.toml
Normal file
7
docs/book.toml
Normal file
@@ -0,0 +1,7 @@
|
||||
[book]
|
||||
title = "Rustframe User Guide"
|
||||
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
||||
description = "Guided journey through Rustframe capabilities."
|
||||
|
||||
[build]
|
||||
build-dir = "book"
|
||||
7
docs/build.sh
Executable file
7
docs/build.sh
Executable file
@@ -0,0 +1,7 @@
|
||||
#!/usr/bin/env sh
|
||||
# Build and test the Rustframe user guide using mdBook.
|
||||
set -e
|
||||
|
||||
cd docs
|
||||
bash gen.sh "$@"
|
||||
cd ..
|
||||
14
docs/gen.sh
Normal file
14
docs/gen.sh
Normal file
@@ -0,0 +1,14 @@
|
||||
#!/usr/bin/env sh
|
||||
|
||||
set -e
|
||||
|
||||
cargo clean
|
||||
|
||||
cargo build --manifest-path ../Cargo.toml
|
||||
|
||||
mdbook test -L ../target/debug/deps "$@"
|
||||
|
||||
mdbook build "$@"
|
||||
|
||||
cargo build
|
||||
# cargo build --release
|
||||
7
docs/src/SUMMARY.md
Normal file
7
docs/src/SUMMARY.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Summary
|
||||
|
||||
- [Introduction](./introduction.md)
|
||||
- [Data Manipulation](./data-manipulation.md)
|
||||
- [Compute Features](./compute.md)
|
||||
- [Machine Learning](./machine-learning.md)
|
||||
- [Utilities](./utilities.md)
|
||||
222
docs/src/compute.md
Normal file
222
docs/src/compute.md
Normal file
@@ -0,0 +1,222 @@
|
||||
# Compute Features
|
||||
|
||||
The `compute` module hosts numerical routines for exploratory data analysis.
|
||||
It covers descriptive statistics, correlations, probability distributions and
|
||||
some basic inferential tests.
|
||||
|
||||
## Basic Statistics
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
assert_eq!(mean(&m), 2.5);
|
||||
assert_eq!(stddev(&m), 1.118033988749895);
|
||||
assert_eq!(median(&m), 2.5);
|
||||
assert_eq!(population_variance(&m), 1.25);
|
||||
assert_eq!(percentile(&m, 50.0), 3.0);
|
||||
// column averages returned as 1 x n matrix
|
||||
let row_means = mean_horizontal(&m);
|
||||
assert_eq!(row_means.data(), &[2.0, 3.0]);
|
||||
let col_means = mean_vertical(&m);
|
||||
assert_eq!(col_means.data(), & [1.5, 3.5]);
|
||||
```
|
||||
|
||||
### Axis-specific Operations
|
||||
|
||||
Operations can be applied along specific axes (rows or columns):
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// 3x2 matrix
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
|
||||
|
||||
// Mean along columns (vertical) - returns 1 x cols matrix
|
||||
let col_means = mean_vertical(&m);
|
||||
assert_eq!(col_means.shape(), (1, 2));
|
||||
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
|
||||
|
||||
// Mean along rows (horizontal) - returns rows x 1 matrix
|
||||
let row_means = mean_horizontal(&m);
|
||||
assert_eq!(row_means.shape(), (3, 1));
|
||||
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
|
||||
|
||||
// Standard deviation along columns
|
||||
let col_stddev = stddev_vertical(&m);
|
||||
assert_eq!(col_stddev.shape(), (1, 2));
|
||||
|
||||
// Standard deviation along rows
|
||||
let row_stddev = stddev_horizontal(&m);
|
||||
assert_eq!(row_stddev.shape(), (3, 1));
|
||||
```
|
||||
|
||||
## Correlation
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::{pearson, covariance};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||
let corr = pearson(&x, &y);
|
||||
let cov = covariance(&x, &y);
|
||||
assert!((corr - 1.0).abs() < 1e-8);
|
||||
assert!((cov - 2.5).abs() < 1e-8);
|
||||
```
|
||||
|
||||
## Covariance
|
||||
|
||||
### `covariance`
|
||||
|
||||
Computes the population covariance between two equally sized matrices by flattening
|
||||
their values.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::covariance;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||
let cov = covariance(&x, &y);
|
||||
assert!((cov - 2.5).abs() < 1e-8);
|
||||
```
|
||||
|
||||
### `covariance_vertical`
|
||||
|
||||
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
|
||||
column pair covariances.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::covariance_vertical;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov = covariance_vertical(&m);
|
||||
assert_eq!(cov.shape(), (2, 2));
|
||||
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
|
||||
```
|
||||
|
||||
### `covariance_horizontal`
|
||||
|
||||
Computes covariance between rows (i.e. across columns) returning a matrix that
|
||||
describes how each pair of rows varies together.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::covariance_horizontal;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov = covariance_horizontal(&m);
|
||||
assert_eq!(cov.shape(), (2, 2));
|
||||
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
|
||||
```
|
||||
|
||||
### `covariance_matrix`
|
||||
|
||||
Builds a covariance matrix either between columns (`Axis::Col`) or rows
|
||||
(`Axis::Row`). Each entry represents how two series co-vary.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::covariance_matrix;
|
||||
use rustframe::matrix::{Axis, Matrix};
|
||||
|
||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
|
||||
// Covariance between columns
|
||||
let cov_cols = covariance_matrix(&data, Axis::Col);
|
||||
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
|
||||
|
||||
// Covariance between rows
|
||||
let cov_rows = covariance_matrix(&data, Axis::Row);
|
||||
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
|
||||
```
|
||||
|
||||
## Distributions
|
||||
|
||||
Probability distribution helpers are available for common PDFs and CDFs.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::distributions::normal_pdf;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||
let pdf = normal_pdf(x, 0.0, 1.0);
|
||||
assert_eq!(pdf.data().len(), 2);
|
||||
```
|
||||
|
||||
### Additional Distributions
|
||||
|
||||
Rustframe provides several other probability distributions:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Normal distribution CDF
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||
let cdf = normal_cdf(x, 0.0, 1.0);
|
||||
assert_eq!(cdf.data().len(), 2);
|
||||
|
||||
// Binomial distribution PMF
|
||||
// Probability of k successes in n trials with probability p
|
||||
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
|
||||
let pmf = binomial_pmf(3, k.clone(), 0.5);
|
||||
assert_eq!(pmf.data().len(), 4);
|
||||
|
||||
// Binomial distribution CDF
|
||||
let cdf = binomial_cdf(3, k, 0.5);
|
||||
assert_eq!(cdf.data().len(), 4);
|
||||
|
||||
// Poisson distribution PMF
|
||||
// Probability of k events with rate parameter lambda
|
||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||
let pmf = poisson_pmf(2.0, k);
|
||||
assert_eq!(pmf.data().len(), 3);
|
||||
```
|
||||
|
||||
### Inferential Statistics
|
||||
|
||||
Rustframe provides several inferential statistical tests:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::Matrix;
|
||||
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
|
||||
|
||||
// Two-sample t-test
|
||||
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||
let (t_statistic, p_value) = t_test(&sample1, &sample2);
|
||||
assert!((t_statistic + 5.0).abs() < 1e-5);
|
||||
assert!(p_value > 0.0 && p_value < 1.0);
|
||||
|
||||
// Chi-square test of independence
|
||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||
let (chi2_statistic, p_value) = chi2_test(&observed);
|
||||
assert!(chi2_statistic > 0.0);
|
||||
assert!(p_value > 0.0 && p_value < 1.0);
|
||||
|
||||
// One-way ANOVA
|
||||
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
||||
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
||||
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
||||
let groups = vec![&group1, &group2, &group3];
|
||||
let (f_statistic, p_value) = anova(groups);
|
||||
assert!(f_statistic > 0.0);
|
||||
assert!(p_value > 0.0 && p_value < 1.0);
|
||||
```
|
||||
|
||||
With the basics covered, explore predictive models in the
|
||||
[machine learning](./machine-learning.md) chapter.
|
||||
157
docs/src/data-manipulation.md
Normal file
157
docs/src/data-manipulation.md
Normal file
@@ -0,0 +1,157 @@
|
||||
# Data Manipulation
|
||||
|
||||
Rustframe's `Frame` type couples tabular data with
|
||||
column labels and a typed row index. Frames expose a familiar API for loading
|
||||
data, selecting rows or columns and performing aggregations.
|
||||
|
||||
## Creating a Frame
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::{Frame, RowIndex};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let frame = Frame::new(data, vec!["A", "B"], None);
|
||||
assert_eq!(frame["A"], vec![1.0, 2.0]);
|
||||
```
|
||||
|
||||
## Indexing Rows
|
||||
|
||||
Row labels can be integers, dates or a default range. Retrieving a row returns a
|
||||
view that lets you inspect values by column name or position.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
# extern crate chrono;
|
||||
use chrono::NaiveDate;
|
||||
use rustframe::frame::{Frame, RowIndex};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
|
||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
|
||||
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
|
||||
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
|
||||
|
||||
// mutate by row key
|
||||
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
|
||||
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
|
||||
```
|
||||
|
||||
## Column operations
|
||||
|
||||
Columns can be inserted, renamed, removed or reordered in place.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::{Frame, RowIndex};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
||||
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
|
||||
|
||||
frame.add_column("Z", vec![5, 6]);
|
||||
frame.rename("Y", "W");
|
||||
let removed = frame.delete_column("X");
|
||||
assert_eq!(removed, vec![1, 2]);
|
||||
frame.sort_columns();
|
||||
assert_eq!(frame.columns(), &["W", "Z"]);
|
||||
```
|
||||
|
||||
## Aggregations
|
||||
|
||||
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::frame::Frame;
|
||||
use rustframe::matrix::{Matrix, SeriesOps};
|
||||
|
||||
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
|
||||
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
||||
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
|
||||
```
|
||||
|
||||
## Matrix Operations
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||
|
||||
let sum = data1.clone() + data2.clone();
|
||||
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
|
||||
|
||||
let product = data1.clone() * data2.clone();
|
||||
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
|
||||
|
||||
let scalar_product = data1.clone() * 2.0;
|
||||
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
|
||||
|
||||
let equals = data1 == data1.clone();
|
||||
assert_eq!(equals, true);
|
||||
```
|
||||
|
||||
### Advanced Matrix Operations
|
||||
|
||||
Matrices support a variety of advanced operations:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::{Matrix, SeriesOps};
|
||||
|
||||
// Matrix multiplication (dot product)
|
||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||
let product = a.matrix_mul(&b);
|
||||
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
|
||||
|
||||
// Transpose
|
||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let transposed = m.transpose();
|
||||
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
|
||||
|
||||
// Map function over all elements
|
||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let squared = m.map(|x| x * x);
|
||||
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
|
||||
|
||||
// Zip two matrices with a function
|
||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||
let zipped = a.zip(&b, |x, y| x + y);
|
||||
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
|
||||
```
|
||||
|
||||
### Matrix Reductions
|
||||
|
||||
Matrices support various reduction operations:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::{Matrix, SeriesOps};
|
||||
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
|
||||
|
||||
// Sum along columns (vertical)
|
||||
let col_sums = m.sum_vertical();
|
||||
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
|
||||
|
||||
// Sum along rows (horizontal)
|
||||
let row_sums = m.sum_horizontal();
|
||||
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
|
||||
|
||||
// Cumulative sum along columns
|
||||
let col_cumsum = m.cumsum_vertical();
|
||||
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
|
||||
|
||||
// Cumulative sum along rows
|
||||
let row_cumsum = m.cumsum_horizontal();
|
||||
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
|
||||
```
|
||||
|
||||
With the basics covered, continue to the [compute features](./compute.md)
|
||||
chapter for statistics and analytics.
|
||||
40
docs/src/introduction.md
Normal file
40
docs/src/introduction.md
Normal file
@@ -0,0 +1,40 @@
|
||||
# Introduction
|
||||
|
||||
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||
|
||||
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
|
||||
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
|
||||
API approachable while offering handy features for small analytical or
|
||||
educational projects.
|
||||
|
||||
Rustframe bundles:
|
||||
|
||||
- column‑labelled frames built on a fast column‑major matrix
|
||||
- familiar element‑wise math and aggregation routines
|
||||
- a growing `compute` module for statistics and machine learning
|
||||
- utilities for dates and random numbers
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
|
||||
|
||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
let frame = Frame::new(data, vec!["A", "B"], None);
|
||||
|
||||
// Perform column wise aggregation
|
||||
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
- [GitHub repository](https://github.com/Magnus167/rustframe)
|
||||
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
|
||||
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
|
||||
|
||||
This guide walks through the main building blocks of the library. Each chapter
|
||||
contains runnable snippets so you can follow along:
|
||||
|
||||
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
|
||||
2. [Compute features](./compute.md) for statistics and analytics
|
||||
3. [Machine learning](./machine-learning.md) for predictive models
|
||||
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules
|
||||
282
docs/src/machine-learning.md
Normal file
282
docs/src/machine-learning.md
Normal file
@@ -0,0 +1,282 @@
|
||||
# Machine Learning
|
||||
|
||||
The `compute::models` module bundles several learning algorithms that operate on
|
||||
`Matrix` structures. These examples highlight the basic training and prediction
|
||||
APIs. For more end‑to‑end walkthroughs see the examples directory in the
|
||||
repository.
|
||||
|
||||
Currently implemented models include:
|
||||
|
||||
- Linear and logistic regression
|
||||
- K‑means clustering
|
||||
- Principal component analysis (PCA)
|
||||
- Gaussian Naive Bayes
|
||||
- Dense neural networks
|
||||
|
||||
## Linear Regression
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::linreg::LinReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
||||
let mut model = LinReg::new(1);
|
||||
model.fit(&x, &y, 0.01, 100);
|
||||
let preds = model.predict(&x);
|
||||
assert_eq!(preds.rows(), 4);
|
||||
```
|
||||
|
||||
## K-means Walkthrough
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::k_means::KMeans;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
|
||||
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
|
||||
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
|
||||
let cluster = model.predict(&new_point)[0];
|
||||
```
|
||||
|
||||
## Logistic Regression
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::logreg::LogReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
let mut model = LogReg::new(1);
|
||||
model.fit(&x, &y, 0.1, 200);
|
||||
let preds = model.predict_proba(&x);
|
||||
assert_eq!(preds.rows(), 4);
|
||||
```
|
||||
|
||||
## Principal Component Analysis
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::pca::PCA;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let pca = PCA::fit(&data, 1, 0);
|
||||
let transformed = pca.transform(&data);
|
||||
assert_eq!(transformed.cols(), 1);
|
||||
```
|
||||
|
||||
## Gaussian Naive Bayes
|
||||
|
||||
Gaussian Naive Bayes classifier for continuous features:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::gaussian_nb::GaussianNB;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Training data with 2 features
|
||||
let x = Matrix::from_rows_vec(vec![
|
||||
1.0, 2.0,
|
||||
2.0, 3.0,
|
||||
3.0, 4.0,
|
||||
4.0, 5.0
|
||||
], 4, 2);
|
||||
|
||||
// Class labels (0 or 1)
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
|
||||
// Train the model
|
||||
let mut model = GaussianNB::new(1e-9, true);
|
||||
model.fit(&x, &y);
|
||||
|
||||
// Make predictions
|
||||
let predictions = model.predict(&x);
|
||||
assert_eq!(predictions.rows(), 4);
|
||||
```
|
||||
|
||||
## Dense Neural Networks
|
||||
|
||||
Simple fully connected neural network:
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Training data with 2 features
|
||||
let x = Matrix::from_rows_vec(vec![
|
||||
0.0, 0.0,
|
||||
0.0, 1.0,
|
||||
1.0, 0.0,
|
||||
1.0, 1.0
|
||||
], 4, 2);
|
||||
|
||||
// XOR target outputs
|
||||
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
|
||||
|
||||
// Create a neural network with 2 hidden layers
|
||||
let config = DenseNNConfig {
|
||||
input_size: 2,
|
||||
hidden_layers: vec![4, 4],
|
||||
output_size: 1,
|
||||
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
|
||||
initializer: InitializerKind::Uniform(0.5),
|
||||
loss: LossKind::MSE,
|
||||
learning_rate: 0.1,
|
||||
epochs: 1000,
|
||||
};
|
||||
let mut model = DenseNN::new(config);
|
||||
|
||||
// Train the model
|
||||
model.train(&x, &y);
|
||||
|
||||
// Make predictions
|
||||
let predictions = model.predict(&x);
|
||||
assert_eq!(predictions.rows(), 4);
|
||||
```
|
||||
|
||||
## Real-world Examples
|
||||
|
||||
### Housing Price Prediction
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::linreg::LinReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Features: square feet and bedrooms
|
||||
let features = Matrix::from_rows_vec(vec![
|
||||
2100.0, 3.0,
|
||||
1600.0, 2.0,
|
||||
2400.0, 4.0,
|
||||
1400.0, 2.0,
|
||||
], 4, 2);
|
||||
|
||||
// Sale prices
|
||||
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
|
||||
|
||||
let mut model = LinReg::new(2);
|
||||
model.fit(&features, &target, 1e-8, 10_000);
|
||||
|
||||
// Predict price of a new home
|
||||
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
|
||||
let predicted_price = model.predict(&new_home);
|
||||
println!("Predicted price: ${}", predicted_price.data()[0]);
|
||||
```
|
||||
|
||||
### Spam Detection
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::logreg::LogReg;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
|
||||
let x = Matrix::from_rows_vec(
|
||||
vec![
|
||||
// ─────────── spam examples ───────────
|
||||
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
|
||||
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
|
||||
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
|
||||
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
|
||||
1.0, 0.0, 1.0, 0.0, 1.0, // ...
|
||||
0.0, 1.0, 1.0, 1.0, 0.0, // ...
|
||||
2.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||
0.0, 1.0, 1.0, 0.0, 1.0, // ...
|
||||
1.0, 1.0, 1.0, 1.0, 0.0, // ...
|
||||
1.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||
// ─────────── ham examples ───────────
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
|
||||
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
|
||||
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
|
||||
0.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, // ...
|
||||
0.0, 0.0, 0.0, 1.0, 0.0, // ...
|
||||
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, // ...
|
||||
0.0, 0.0, 0.0, 1.0, 0.0,
|
||||
],
|
||||
20,
|
||||
5,
|
||||
);
|
||||
|
||||
// Labels: 1 = spam, 0 = ham
|
||||
let y = Matrix::from_vec(
|
||||
vec![
|
||||
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
|
||||
],
|
||||
20,
|
||||
1,
|
||||
);
|
||||
|
||||
// Train
|
||||
let mut model = LogReg::new(5);
|
||||
model.fit(&x, &y, 0.01, 5000);
|
||||
|
||||
// Predict
|
||||
// e.g. "free money offer"
|
||||
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
|
||||
let email = Matrix::from_vec(email_data, 1, 5);
|
||||
let prob_spam = model.predict_proba(&email);
|
||||
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
|
||||
```
|
||||
|
||||
### Iris Flower Classification
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::gaussian_nb::GaussianNB;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Features: sepal length and petal length
|
||||
let x = Matrix::from_rows_vec(vec![
|
||||
5.1, 1.4, // setosa
|
||||
4.9, 1.4, // setosa
|
||||
6.2, 4.5, // versicolor
|
||||
5.9, 5.1, // virginica
|
||||
], 4, 2);
|
||||
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
|
||||
let names = vec!["setosa", "versicolor", "virginica"];
|
||||
|
||||
let mut model = GaussianNB::new(1e-9, true);
|
||||
model.fit(&x, &y);
|
||||
|
||||
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
|
||||
let predicted_class = model.predict(&sample);
|
||||
let class_name = names[predicted_class.data()[0] as usize];
|
||||
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
|
||||
```
|
||||
|
||||
### Customer Segmentation
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::compute::models::k_means::KMeans;
|
||||
use rustframe::matrix::Matrix;
|
||||
|
||||
// Each row: [age, annual_income]
|
||||
let customers = Matrix::from_rows_vec(
|
||||
vec![
|
||||
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
|
||||
],
|
||||
4,
|
||||
2,
|
||||
);
|
||||
|
||||
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
|
||||
|
||||
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
|
||||
let cluster = model.predict(&new_customer)[0];
|
||||
println!("New customer belongs to cluster: {}", cluster);
|
||||
println!("Cluster labels: {:?}", labels);
|
||||
```
|
||||
|
||||
For helper functions and upcoming modules, visit the
|
||||
[utilities](./utilities.md) section.
|
||||
63
docs/src/utilities.md
Normal file
63
docs/src/utilities.md
Normal file
@@ -0,0 +1,63 @@
|
||||
# Utilities
|
||||
|
||||
Utilities provide handy helpers around the core library. Existing tools
|
||||
include:
|
||||
|
||||
- Date utilities for generating calendar sequences and business‑day sets
|
||||
- Random number generators for simulations and testing
|
||||
|
||||
## Date Helpers
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
|
||||
|
||||
// Calendar sequence
|
||||
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
||||
assert_eq!(list.count().unwrap(), 3);
|
||||
|
||||
// Business days starting from 2024‑01‑02
|
||||
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
|
||||
assert_eq!(bdates.list().unwrap().len(), 3);
|
||||
```
|
||||
|
||||
## Random Numbers
|
||||
|
||||
The `random` module offers deterministic and cryptographically secure RNGs.
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::random::{Prng, Rng};
|
||||
|
||||
let mut rng = Prng::new(42);
|
||||
let v1 = rng.next_u64();
|
||||
let v2 = rng.next_u64();
|
||||
assert_ne!(v1, v2);
|
||||
```
|
||||
|
||||
## Stats Functions
|
||||
|
||||
```rust
|
||||
# extern crate rustframe;
|
||||
use rustframe::matrix::Matrix;
|
||||
use rustframe::compute::stats::descriptive::{mean, median, stddev};
|
||||
|
||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||
|
||||
let mean_value = mean(&data);
|
||||
assert_eq!(mean_value, 3.0);
|
||||
|
||||
let median_value = median(&data);
|
||||
assert_eq!(median_value, 3.0);
|
||||
|
||||
let std_value = stddev(&data);
|
||||
assert_eq!(std_value, 2.0_f64.sqrt());
|
||||
```
|
||||
|
||||
Upcoming utilities will cover:
|
||||
|
||||
- Data import/export helpers
|
||||
- Visualization adapters
|
||||
- Streaming data interfaces
|
||||
|
||||
Contributions to these sections are welcome!
|
||||
@@ -3,7 +3,7 @@
|
||||
//! It demonstrates matrix operations like shifting, counting neighbors, and applying game rules.
|
||||
//! The game runs in a loop, updating the board state and printing it to the console.
|
||||
//! To modify the behaviour of the example, please change the constants at the top of this file.
|
||||
//! By default,
|
||||
|
||||
|
||||
use rustframe::matrix::{BoolMatrix, BoolOps, IntMatrix, Matrix};
|
||||
use rustframe::random::{rng, Rng};
|
||||
@@ -21,8 +21,6 @@ fn main() {
|
||||
let debug_mode = args.contains(&"--debug".to_string());
|
||||
let print_mode = if debug_mode { false } else { PRINT_BOARD };
|
||||
|
||||
// Initialize the game board.
|
||||
// This demonstrates `BoolMatrix::from_vec`.
|
||||
let mut current_board =
|
||||
BoolMatrix::from_vec(vec![false; BOARD_SIZE * BOARD_SIZE], BOARD_SIZE, BOARD_SIZE);
|
||||
|
||||
@@ -31,15 +29,11 @@ fn main() {
|
||||
add_simulated_activity(&mut current_board, BOARD_SIZE);
|
||||
|
||||
let mut generation_count: u32 = 0;
|
||||
// `previous_board_state` will store a clone of the board.
|
||||
// This demonstrates `Matrix::clone()` and later `PartialEq` for `Matrix`.
|
||||
let mut previous_board_state: Option<BoolMatrix> = None;
|
||||
let mut board_hashes = Vec::new();
|
||||
// let mut print_board_bool = true;
|
||||
let mut print_bool_int = 0;
|
||||
|
||||
loop {
|
||||
// if print_board_bool {
|
||||
if print_bool_int % SKIP_FRAMES == 0 {
|
||||
print_board(¤t_board, generation_count, print_mode);
|
||||
|
||||
@@ -47,7 +41,6 @@ fn main() {
|
||||
} else {
|
||||
print_bool_int += 1;
|
||||
}
|
||||
// `current_board.count()` demonstrates a method from `BoolOps`.
|
||||
board_hashes.push(hash_board(¤t_board, primes.clone()));
|
||||
if detect_stable_state(¤t_board, &previous_board_state) {
|
||||
println!(
|
||||
@@ -68,10 +61,8 @@ fn main() {
|
||||
add_simulated_activity(&mut current_board, BOARD_SIZE);
|
||||
}
|
||||
|
||||
// `current_board.clone()` demonstrates `Clone` for `Matrix`.
|
||||
previous_board_state = Some(current_board.clone());
|
||||
|
||||
// This is the core call to your game logic.
|
||||
let next_board = game_of_life_next_frame(¤t_board);
|
||||
current_board = next_board;
|
||||
|
||||
@@ -106,7 +97,6 @@ fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
|
||||
print_str.push_str("| ");
|
||||
for c in 0..board.cols() {
|
||||
if board[(r, c)] {
|
||||
// Using Index trait for Matrix<bool>
|
||||
print_str.push_str("██");
|
||||
} else {
|
||||
print_str.push_str(" ");
|
||||
@@ -188,74 +178,38 @@ pub fn game_of_life_next_frame(current_game: &BoolMatrix) -> BoolMatrix {
|
||||
if rows == 0 && cols == 0 {
|
||||
return BoolMatrix::from_vec(vec![], 0, 0); // Return an empty BoolMatrix
|
||||
}
|
||||
// Assuming valid non-empty dimensions (e.g., 25x25) as per typical GOL.
|
||||
// Your Matrix::from_vec would panic for other invalid 0-dim cases.
|
||||
|
||||
// Define the 8 neighbor offsets (row_delta, col_delta)
|
||||
let neighbor_offsets: [(isize, isize); 8] = [
|
||||
(-1, -1),
|
||||
(-1, 0),
|
||||
(-1, 1), // Top row (NW, N, NE)
|
||||
(-1, 1),
|
||||
(0, -1),
|
||||
(0, 1), // Middle row (W, E)
|
||||
(0, 1),
|
||||
(1, -1),
|
||||
(1, 0),
|
||||
(1, 1), // Bottom row (SW, S, SE)
|
||||
(1, 1),
|
||||
];
|
||||
|
||||
// 1. Initialize `neighbor_counts` with the first shifted layer.
|
||||
// This demonstrates creating an IntMatrix from a function and using it as a base.
|
||||
let (first_dr, first_dc) = neighbor_offsets[0];
|
||||
let mut neighbor_counts = get_shifted_neighbor_layer(current_game, first_dr, first_dc);
|
||||
|
||||
// 2. Add the remaining 7 neighbor layers.
|
||||
// This demonstrates element-wise addition of matrices (`Matrix + Matrix`).
|
||||
for i in 1..neighbor_offsets.len() {
|
||||
let (dr, dc) = neighbor_offsets[i];
|
||||
let next_neighbor_layer = get_shifted_neighbor_layer(current_game, dr, dc);
|
||||
// `neighbor_counts` (owned IntMatrix) + `next_neighbor_layer` (owned IntMatrix)
|
||||
// uses `impl Add for Matrix`, consumes both, returns new owned `IntMatrix`.
|
||||
neighbor_counts = neighbor_counts + next_neighbor_layer;
|
||||
}
|
||||
|
||||
// 3. Apply Game of Life rules using element-wise operations.
|
||||
|
||||
// Rule: Survival or Birth based on neighbor counts.
|
||||
// A cell is alive in the next generation if:
|
||||
// (it's currently alive AND has 2 or 3 neighbors) OR
|
||||
// (it's currently dead AND has exactly 3 neighbors)
|
||||
|
||||
// `neighbor_counts.eq_elem(scalar)`:
|
||||
// Demonstrates element-wise comparison of a Matrix with a scalar (broadcast).
|
||||
// Returns an owned `BoolMatrix`.
|
||||
let has_2_neighbors = neighbor_counts.eq_elem(2);
|
||||
let has_3_neighbors = neighbor_counts.eq_elem(3); // This will be reused
|
||||
let has_3_neighbors = neighbor_counts.eq_elem(3);
|
||||
|
||||
// `has_2_neighbors | has_3_neighbors`:
|
||||
// Demonstrates element-wise OR (`Matrix<bool> | Matrix<bool>`).
|
||||
// Consumes both operands, returns an owned `BoolMatrix`.
|
||||
let has_2_or_3_neighbors = has_2_neighbors | has_3_neighbors.clone(); // Clone has_3_neighbors as it's used again
|
||||
let has_2_or_3_neighbors = has_2_neighbors | has_3_neighbors.clone();
|
||||
|
||||
// `current_game & &has_2_or_3_neighbors`:
|
||||
// `current_game` is `&BoolMatrix`. `has_2_or_3_neighbors` is owned.
|
||||
// Demonstrates element-wise AND (`&Matrix<bool> & &Matrix<bool>`).
|
||||
// Borrows both operands, returns an owned `BoolMatrix`.
|
||||
let survives = current_game & &has_2_or_3_neighbors;
|
||||
|
||||
// `!current_game`:
|
||||
// Demonstrates element-wise NOT (`!&Matrix<bool>`).
|
||||
// Borrows operand, returns an owned `BoolMatrix`.
|
||||
let is_dead = !current_game;
|
||||
|
||||
// `is_dead & &has_3_neighbors`:
|
||||
// `is_dead` is owned. `has_3_neighbors` is owned.
|
||||
// Demonstrates element-wise AND (`Matrix<bool> & &Matrix<bool>`).
|
||||
// Consumes `is_dead`, borrows `has_3_neighbors`, returns an owned `BoolMatrix`.
|
||||
let births = is_dead & &has_3_neighbors;
|
||||
|
||||
// `survives | births`:
|
||||
// Demonstrates element-wise OR (`Matrix<bool> | Matrix<bool>`).
|
||||
// Consumes both operands, returns an owned `BoolMatrix`.
|
||||
let next_frame_game = survives | births;
|
||||
|
||||
next_frame_game
|
||||
|
||||
@@ -16,7 +16,7 @@ fn student_passing_example() {
|
||||
|
||||
// Hours studied for each student
|
||||
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
|
||||
// 0 = fail, 1 = pass
|
||||
// Label: 0 denotes failure and 1 denotes success
|
||||
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
|
||||
|
||||
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
|
||||
|
||||
@@ -6,9 +6,9 @@ use rustframe::matrix::{Axis, Matrix};
|
||||
/// Demonstrates some of the statistics utilities in Rustframe.
|
||||
///
|
||||
/// The example is split into three parts:
|
||||
/// 1. Basic descriptive statistics on a small data set.
|
||||
/// 2. Covariance and correlation calculations.
|
||||
/// 3. Simple inferential tests (t-test and chi-square).
|
||||
/// - Basic descriptive statistics on a small data set
|
||||
/// - Covariance and correlation calculations
|
||||
/// - Simple inferential tests (t-test and chi-square)
|
||||
fn main() {
|
||||
descriptive_demo();
|
||||
println!("\n-----\n");
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Algorithms and statistical utilities built on top of the core matrices.
|
||||
//!
|
||||
//! This module groups together machine‑learning models and statistical helper
|
||||
//! functions. For quick access to basic statistics see [`stats`](crate::compute::stats), while
|
||||
//! [`models`](crate::compute::models) contains small learning algorithms.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0], 3, 1);
|
||||
//! assert_eq!(stats::mean(&m), 2.0);
|
||||
//! ```
|
||||
pub mod models;
|
||||
|
||||
pub mod stats;
|
||||
|
||||
@@ -1,3 +1,15 @@
|
||||
//! Common activation functions used in neural networks.
|
||||
//!
|
||||
//! Functions operate element-wise on [`Matrix`] values.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::activations::sigmoid;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
|
||||
//! let y = sigmoid(&x);
|
||||
//! assert!((y.get(0,0) - 0.5).abs() < 1e-6);
|
||||
//! ```
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
pub fn sigmoid(x: &Matrix<f64>) -> Matrix<f64> {
|
||||
|
||||
@@ -1,3 +1,30 @@
|
||||
//! A minimal dense neural network implementation for educational purposes.
|
||||
//!
|
||||
//! Layers operate on [`Matrix`] values and support ReLU and Sigmoid
|
||||
//! activations. This is not meant to be a performant deep‑learning framework
|
||||
//! but rather a small example of how the surrounding matrix utilities can be
|
||||
//! composed.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::dense_nn::{ActivationKind, DenseNN, DenseNNConfig, InitializerKind, LossKind};
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! // Tiny network with one input and one output neuron.
|
||||
//! let config = DenseNNConfig {
|
||||
//! input_size: 1,
|
||||
//! hidden_layers: vec![],
|
||||
//! output_size: 1,
|
||||
//! activations: vec![ActivationKind::Relu],
|
||||
//! initializer: InitializerKind::Uniform(0.5),
|
||||
//! loss: LossKind::MSE,
|
||||
//! learning_rate: 0.1,
|
||||
//! epochs: 1,
|
||||
//! };
|
||||
//! let mut nn = DenseNN::new(config);
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
|
||||
//! let y = Matrix::from_vec(vec![2.0, 3.0], 2, 1);
|
||||
//! nn.train(&x, &y);
|
||||
//! ```
|
||||
use crate::compute::models::activations::{drelu, relu, sigmoid};
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
use crate::random::prelude::*;
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Gaussian Naive Bayes classifier for dense matrices.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::gaussian_nb::GaussianNB;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 1.0, 2.0], 2, 2); // two samples
|
||||
//! let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
|
||||
//! let mut model = GaussianNB::new(1e-9, false);
|
||||
//! model.fit(&x, &y);
|
||||
//! let preds = model.predict(&x);
|
||||
//! assert_eq!(preds.rows(), 2);
|
||||
//! ```
|
||||
use crate::matrix::Matrix;
|
||||
use std::collections::HashMap;
|
||||
|
||||
|
||||
@@ -1,3 +1,14 @@
|
||||
//! Simple k-means clustering working on [`Matrix`] data.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::k_means::KMeans;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
|
||||
//! let (model, labels) = KMeans::fit(&data, 2, 10, 1e-4);
|
||||
//! assert_eq!(model.centroids.rows(), 2);
|
||||
//! assert_eq!(labels.len(), 2);
|
||||
//! ```
|
||||
use crate::compute::stats::mean_vertical;
|
||||
use crate::matrix::Matrix;
|
||||
use crate::random::prelude::*;
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Ordinary least squares linear regression.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::linreg::LinReg;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
||||
//! let mut model = LinReg::new(1);
|
||||
//! model.fit(&x, &y, 0.01, 100);
|
||||
//! let preds = model.predict(&x);
|
||||
//! assert_eq!(preds.rows(), 4);
|
||||
//! ```
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
pub struct LinReg {
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Binary logistic regression classifier.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::logreg::LogReg;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
//! let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
//! let mut model = LogReg::new(1);
|
||||
//! model.fit(&x, &y, 0.1, 100);
|
||||
//! let preds = model.predict(&x);
|
||||
//! assert_eq!(preds[(0,0)], 0.0);
|
||||
//! ```
|
||||
use crate::compute::models::activations::sigmoid;
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
|
||||
@@ -1,3 +1,19 @@
|
||||
//! Lightweight machine‑learning models built on matrices.
|
||||
//!
|
||||
//! Models are intentionally minimal and operate on the [`Matrix`](crate::matrix::Matrix) type for
|
||||
//! inputs and parameters.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::linreg::LinReg;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
||||
//! let mut model = LinReg::new(1);
|
||||
//! model.fit(&x, &y, 0.01, 1000);
|
||||
//! let preds = model.predict(&x);
|
||||
//! assert_eq!(preds.rows(), 4);
|
||||
//! ```
|
||||
pub mod activations;
|
||||
pub mod dense_nn;
|
||||
pub mod gaussian_nb;
|
||||
|
||||
@@ -1,3 +1,14 @@
|
||||
//! Principal Component Analysis using covariance matrices.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::models::pca::PCA;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0], 2, 2);
|
||||
//! let pca = PCA::fit(&data, 1, 0);
|
||||
//! let projected = pca.transform(&data);
|
||||
//! assert_eq!(projected.cols(), 1);
|
||||
//! ```
|
||||
use crate::compute::stats::correlation::covariance_matrix;
|
||||
use crate::compute::stats::descriptive::mean_vertical;
|
||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||
@@ -44,11 +55,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_pca_basic() {
|
||||
// Simple 2D data, points along y=x line
|
||||
// Data:
|
||||
// 1.0, 1.0
|
||||
// 2.0, 2.0
|
||||
// 3.0, 3.0
|
||||
// Simple 2D data with points along the y = x line
|
||||
let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0, 3.0, 3.0], 3, 2);
|
||||
let (_n_samples, _n_features) = data.shape();
|
||||
|
||||
@@ -71,15 +78,7 @@ mod tests {
|
||||
assert!((pca.components.get(0, 0) - 1.0).abs() < EPSILON);
|
||||
assert!((pca.components.get(0, 1) - 1.0).abs() < EPSILON);
|
||||
|
||||
// Test transform
|
||||
// Centered data:
|
||||
// -1.0, -1.0
|
||||
// 0.0, 0.0
|
||||
// 1.0, 1.0
|
||||
// Projected: (centered_data * components.transpose())
|
||||
// (-1.0 * 1.0 + -1.0 * 1.0) = -2.0
|
||||
// ( 0.0 * 1.0 + 0.0 * 1.0) = 0.0
|
||||
// ( 1.0 * 1.0 + 1.0 * 1.0) = 2.0
|
||||
// Test transform: centered data projects to [-2.0, 0.0, 2.0]
|
||||
let transformed_data = pca.transform(&data);
|
||||
assert_eq!(transformed_data.rows(), 3);
|
||||
assert_eq!(transformed_data.cols(), 1);
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Covariance and correlation helpers.
|
||||
//!
|
||||
//! This module provides routines for measuring the relationship between
|
||||
//! columns or rows of matrices.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats::correlation;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
//! let cov = correlation::covariance(&x, &x);
|
||||
//! assert!((cov - 1.25).abs() < 1e-8);
|
||||
//! ```
|
||||
use crate::compute::stats::{mean, mean_horizontal, mean_vertical, stddev};
|
||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||
|
||||
@@ -137,10 +150,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_scalar_same_matrix() {
|
||||
// M =
|
||||
// 1,2
|
||||
// 3,4
|
||||
// mean = 2.5
|
||||
// Matrix with rows [1, 2] and [3, 4]; mean is 2.5
|
||||
let data = vec![1.0, 2.0, 3.0, 4.0];
|
||||
let m = Matrix::from_vec(data.clone(), 2, 2);
|
||||
|
||||
@@ -152,10 +162,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_scalar_diff_matrix() {
|
||||
// x =
|
||||
// 1,2
|
||||
// 3,4
|
||||
// y = 2*x
|
||||
// Matrix x has rows [1, 2] and [3, 4]; y is two times x
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||
|
||||
@@ -167,10 +174,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_vertical() {
|
||||
// M =
|
||||
// 1,2
|
||||
// 3,4
|
||||
// cols are [1,3] and [2,4], each var=1, cov=1
|
||||
// Matrix with rows [1, 2] and [3, 4]; columns are [1,3] and [2,4], each var=1, cov=1
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov_mat = covariance_vertical(&m);
|
||||
|
||||
@@ -184,10 +188,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_horizontal() {
|
||||
// M =
|
||||
// 1,2
|
||||
// 3,4
|
||||
// rows are [1,2] and [3,4], each var=0.25, cov=0.25
|
||||
// Matrix with rows [1,2] and [3,4], each var=0.25, cov=0.25
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov_mat = covariance_horizontal(&m);
|
||||
|
||||
@@ -201,10 +202,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_matrix_vertical() {
|
||||
// Test with a simple 2x2 matrix
|
||||
// M =
|
||||
// 1, 2
|
||||
// 3, 4
|
||||
// Test with a simple 2x2 matrix with rows [1, 2] and [3, 4]
|
||||
// Expected covariance matrix (vertical, i.e., between columns):
|
||||
// Col1: [1, 3], mean = 2
|
||||
// Col2: [2, 4], mean = 3
|
||||
@@ -212,9 +210,7 @@ mod tests {
|
||||
// Cov(Col2, Col2) = ((2-3)^2 + (4-3)^2) / (2-1) = (1+1)/1 = 2
|
||||
// Cov(Col1, Col2) = ((1-2)*(2-3) + (3-2)*(4-3)) / (2-1) = ((-1)*(-1) + (1)*(1))/1 = (1+1)/1 = 2
|
||||
// Cov(Col2, Col1) = 2
|
||||
// Expected:
|
||||
// 2, 2
|
||||
// 2, 2
|
||||
// Expected matrix filled with 2
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov_mat = covariance_matrix(&m, Axis::Col);
|
||||
|
||||
@@ -226,10 +222,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_covariance_matrix_horizontal() {
|
||||
// Test with a simple 2x2 matrix
|
||||
// M =
|
||||
// 1, 2
|
||||
// 3, 4
|
||||
// Test with a simple 2x2 matrix with rows [1, 2] and [3, 4]
|
||||
// Expected covariance matrix (horizontal, i.e., between rows):
|
||||
// Row1: [1, 2], mean = 1.5
|
||||
// Row2: [3, 4], mean = 3.5
|
||||
@@ -237,9 +230,7 @@ mod tests {
|
||||
// Cov(Row2, Row2) = ((3-3.5)^2 + (4-3.5)^2) / (2-1) = (0.25+0.25)/1 = 0.5
|
||||
// Cov(Row1, Row2) = ((1-1.5)*(3-3.5) + (2-1.5)*(4-3.5)) / (2-1) = ((-0.5)*(-0.5) + (0.5)*(0.5))/1 = (0.25+0.25)/1 = 0.5
|
||||
// Cov(Row2, Row1) = 0.5
|
||||
// Expected:
|
||||
// 0.5, -0.5
|
||||
// -0.5, 0.5
|
||||
// Expected matrix: [[0.5, -0.5], [-0.5, 0.5]]
|
||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
let cov_mat = covariance_matrix(&m, Axis::Row);
|
||||
|
||||
|
||||
@@ -1,3 +1,15 @@
|
||||
//! Descriptive statistics for matrices.
|
||||
//!
|
||||
//! Provides means, variances, medians and other aggregations computed either
|
||||
//! across the whole matrix or along a specific axis.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats::descriptive;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
//! assert_eq!(descriptive::mean(&m), 2.5);
|
||||
//! ```
|
||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||
|
||||
pub fn mean(x: &Matrix<f64>) -> f64 {
|
||||
@@ -350,11 +362,7 @@ mod tests {
|
||||
let data: Vec<f64> = (1..=24).map(|x| x as f64).collect();
|
||||
let x = Matrix::from_vec(data, 4, 6);
|
||||
|
||||
// columns:
|
||||
// 1, 5, 9, 13, 17, 21
|
||||
// 2, 6, 10, 14, 18, 22
|
||||
// 3, 7, 11, 15, 19, 23
|
||||
// 4, 8, 12, 16, 20, 24
|
||||
// columns contain sequences increasing by four starting at 1 through 4
|
||||
|
||||
let er0 = vec![1., 5., 9., 13., 17., 21.];
|
||||
let er50 = vec![3., 7., 11., 15., 19., 23.];
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Probability distribution functions applied element-wise to matrices.
|
||||
//!
|
||||
//! Includes approximations for the normal, uniform and gamma distributions as
|
||||
//! well as the error function.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats::distributions;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
|
||||
//! let pdf = distributions::normal_pdf(x.clone(), 0.0, 1.0);
|
||||
//! assert!((pdf.get(0,0) - 0.3989).abs() < 1e-3);
|
||||
//! ```
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
use std::f64::consts::PI;
|
||||
|
||||
@@ -1,3 +1,14 @@
|
||||
//! Basic inferential statistics such as t‑tests and chi‑square tests.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats::inferential;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let a = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
|
||||
//! let b = Matrix::from_vec(vec![1.1, 1.9], 2, 1);
|
||||
//! let (t, _p) = inferential::t_test(&a, &b);
|
||||
//! assert!(t.abs() < 1.0);
|
||||
//! ```
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
use crate::compute::stats::{gamma_cdf, mean, sample_variance};
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Statistical routines for matrices.
|
||||
//!
|
||||
//! Functions are grouped into submodules for descriptive statistics,
|
||||
//! correlations, probability distributions and basic inferential tests.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::compute::stats;
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||
//! let cov = stats::covariance(&m, &m);
|
||||
//! assert!((cov - 1.25).abs() < 1e-8);
|
||||
//! ```
|
||||
pub mod correlation;
|
||||
pub mod descriptive;
|
||||
pub mod distributions;
|
||||
|
||||
@@ -1,3 +1,19 @@
|
||||
//! Core data-frame structures such as [`Frame`] and [`RowIndex`].
|
||||
//!
|
||||
//! The [`Frame`] type stores column-labelled data with an optional row index
|
||||
//! and builds upon the [`crate::matrix::Matrix`] type.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::frame::{Frame, RowIndex};
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
||||
//! let frame = Frame::new(data, vec!["L", "R"], Some(RowIndex::Int(vec![10, 20])));
|
||||
//! assert_eq!(frame.columns(), &["L", "R"]);
|
||||
//! assert_eq!(frame.index(), &RowIndex::Int(vec![10, 20]));
|
||||
//! ```
|
||||
use crate::matrix::Matrix;
|
||||
use chrono::NaiveDate;
|
||||
use std::collections::HashMap;
|
||||
|
||||
@@ -1,3 +1,21 @@
|
||||
//! High-level interface for working with columnar data and row indices.
|
||||
//!
|
||||
//! The [`Frame`](crate::frame::Frame) type combines a matrix with column labels and a typed row
|
||||
//! index, similar to data frames in other data-analysis libraries.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::frame::{Frame, RowIndex};
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! // Build a frame from two columns labelled "A" and "B".
|
||||
//! let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
//! let frame = Frame::new(data, vec!["A", "B"], None);
|
||||
//!
|
||||
//! assert_eq!(frame["A"], vec![1.0, 2.0]);
|
||||
//! assert_eq!(frame.index(), &RowIndex::Range(0..2));
|
||||
//! ```
|
||||
pub mod base;
|
||||
pub mod ops;
|
||||
|
||||
|
||||
@@ -1,3 +1,16 @@
|
||||
//! Trait implementations that allow [`Frame`] to reuse matrix operations.
|
||||
//!
|
||||
//! These modules forward numeric and boolean aggregation methods from the
|
||||
//! underlying [`Matrix`](crate::matrix::Matrix) type so that they can be called
|
||||
//! directly on a [`Frame`].
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::frame::Frame;
|
||||
//! use rustframe::matrix::{Matrix, SeriesOps};
|
||||
//!
|
||||
//! let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
|
||||
//! assert_eq!(frame.sum_vertical(), vec![3.0]);
|
||||
//! ```
|
||||
use crate::frame::Frame;
|
||||
use crate::matrix::{Axis, BoolMatrix, BoolOps, FloatMatrix, SeriesOps};
|
||||
|
||||
|
||||
@@ -1,3 +1,14 @@
|
||||
//! Logical reductions for boolean matrices.
|
||||
//!
|
||||
//! The [`BoolOps`] trait mirrors common boolean aggregations such as `any` and
|
||||
//! `all` over rows or columns of a [`BoolMatrix`].
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::matrix::{BoolMatrix, BoolOps};
|
||||
//!
|
||||
//! let m = BoolMatrix::from_vec(vec![true, false], 2, 1);
|
||||
//! assert!(m.any());
|
||||
//! ```
|
||||
use crate::matrix::{Axis, BoolMatrix};
|
||||
|
||||
/// Boolean operations on `Matrix<bool>`
|
||||
|
||||
@@ -1028,9 +1028,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_from_rows_vec() {
|
||||
// Representing:
|
||||
// 1 2 3
|
||||
// 4 5 6
|
||||
// Matrix with rows [1, 2, 3] and [4, 5, 6]
|
||||
let rows_data = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||
let matrix = Matrix::from_rows_vec(rows_data, 2, 3);
|
||||
|
||||
@@ -1042,19 +1040,14 @@ mod tests {
|
||||
|
||||
// Helper function to create a basic Matrix for testing
|
||||
fn static_test_matrix() -> Matrix<i32> {
|
||||
// Column-major data:
|
||||
// 1 4 7
|
||||
// 2 5 8
|
||||
// 3 6 9
|
||||
// Column-major data representing a 3x3 matrix of sequential integers
|
||||
let data = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||
Matrix::from_vec(data, 3, 3)
|
||||
}
|
||||
|
||||
// Another helper for a different size
|
||||
fn static_test_matrix_2x4() -> Matrix<i32> {
|
||||
// Column-major data:
|
||||
// 1 3 5 7
|
||||
// 2 4 6 8
|
||||
// Column-major data representing a 2x4 matrix of sequential integers
|
||||
let data = vec![1, 2, 3, 4, 5, 6, 7, 8];
|
||||
Matrix::from_vec(data, 2, 4)
|
||||
}
|
||||
@@ -1132,10 +1125,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_from_cols_basic() {
|
||||
// Representing:
|
||||
// 1 4 7
|
||||
// 2 5 8
|
||||
// 3 6 9
|
||||
// Matrix with columns forming a 3x3 sequence
|
||||
let cols_data = vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]];
|
||||
let matrix = Matrix::from_cols(cols_data);
|
||||
|
||||
@@ -1512,8 +1502,7 @@ mod tests {
|
||||
|
||||
// Delete the first row
|
||||
matrix.delete_row(0);
|
||||
// Should be:
|
||||
// 3 6 9
|
||||
// Resulting data should be [3, 6, 9]
|
||||
assert_eq!(matrix.rows(), 1);
|
||||
assert_eq!(matrix.cols(), 3);
|
||||
assert_eq!(matrix.data(), &[3, 6, 9]);
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
//! Core matrix types and operations.
|
||||
//!
|
||||
//! The [`Matrix`](crate::matrix::Matrix) struct provides a simple column‑major 2D array with a
|
||||
//! suite of numeric helpers. Additional traits like [`SeriesOps`](crate::matrix::SeriesOps) and
|
||||
//! [`BoolOps`](crate::matrix::BoolOps) extend functionality for common statistics and logical reductions.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::matrix::Matrix;
|
||||
//!
|
||||
//! let m = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
||||
//! assert_eq!(m.shape(), (2, 2));
|
||||
//! assert_eq!(m[(0,1)], 3);
|
||||
//! ```
|
||||
pub mod boolops;
|
||||
pub mod mat;
|
||||
pub mod seriesops;
|
||||
|
||||
@@ -1,3 +1,14 @@
|
||||
//! Numeric reductions and transformations over matrix axes.
|
||||
//!
|
||||
//! [`SeriesOps`] provides methods like [`SeriesOps::sum_vertical`] or
|
||||
//! [`SeriesOps::map`] that operate on [`FloatMatrix`] values.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::matrix::{Matrix, SeriesOps};
|
||||
//!
|
||||
//! let m = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||
//! assert_eq!(m.sum_horizontal(), vec![4.0, 6.0]);
|
||||
//! ```
|
||||
use crate::matrix::{Axis, BoolMatrix, FloatMatrix};
|
||||
|
||||
/// "Series-like" helpers that work along a single axis.
|
||||
@@ -215,20 +226,13 @@ mod tests {
|
||||
|
||||
// Helper function to create a FloatMatrix for SeriesOps testing
|
||||
fn create_float_test_matrix() -> FloatMatrix {
|
||||
// 3x3 matrix (column-major) with some NaNs
|
||||
// 1.0 4.0 7.0
|
||||
// 2.0 NaN 8.0
|
||||
// 3.0 6.0 NaN
|
||||
// 3x3 column-major matrix containing a few NaN values
|
||||
let data = vec![1.0, 2.0, 3.0, 4.0, f64::NAN, 6.0, 7.0, 8.0, f64::NAN];
|
||||
FloatMatrix::from_vec(data, 3, 3)
|
||||
}
|
||||
|
||||
fn create_float_test_matrix_4x4() -> FloatMatrix {
|
||||
// 4x4 matrix (column-major) with some NaNs
|
||||
// 1.0 5.0 9.0 13.0
|
||||
// 2.0 NaN 10.0 NaN
|
||||
// 3.0 6.0 NaN 14.0
|
||||
// NaN 7.0 11.0 NaN
|
||||
// 4x4 column-major matrix with NaNs inserted at positions where index % 5 == 0
|
||||
// first make array with 16 elements
|
||||
FloatMatrix::from_vec(
|
||||
(0..16)
|
||||
|
||||
@@ -1,3 +1,13 @@
|
||||
//! Cryptographically secure random number generator.
|
||||
//!
|
||||
//! On Unix systems this reads from `/dev/urandom`; on Windows it uses the
|
||||
//! system's preferred CNG provider.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{crypto_rng, Rng};
|
||||
//! let mut rng = crypto_rng();
|
||||
//! let _v = rng.next_u64();
|
||||
//! ```
|
||||
#[cfg(unix)]
|
||||
use std::{fs::File, io::Read};
|
||||
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
//! Random number generation utilities.
|
||||
//!
|
||||
//! Provides both a simple pseudo-random generator [`Prng`](crate::random::Prng) and a
|
||||
//! cryptographically secure alternative [`CryptoRng`](crate::random::CryptoRng). The
|
||||
//! [`SliceRandom`](crate::random::SliceRandom) trait offers shuffling of slices using any RNG
|
||||
//! implementing [`Rng`](crate::random::Rng).
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{rng, SliceRandom};
|
||||
//!
|
||||
//! let mut rng = rng();
|
||||
//! let mut data = [1, 2, 3, 4];
|
||||
//! data.shuffle(&mut rng);
|
||||
//! assert_eq!(data.len(), 4);
|
||||
//! ```
|
||||
pub mod crypto;
|
||||
pub mod prng;
|
||||
pub mod random_core;
|
||||
|
||||
@@ -1,3 +1,11 @@
|
||||
//! A tiny XorShift64-based pseudo random number generator.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{rng, Rng};
|
||||
//! let mut rng = rng();
|
||||
//! let x = rng.next_u64();
|
||||
//! assert!(x >= 0);
|
||||
//! ```
|
||||
use std::time::{SystemTime, UNIX_EPOCH};
|
||||
|
||||
use crate::random::Rng;
|
||||
|
||||
@@ -1,3 +1,11 @@
|
||||
//! Core traits for random number generators and sampling ranges.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{rng, Rng};
|
||||
//! let mut r = rng();
|
||||
//! let value: f64 = r.random_range(0.0..1.0);
|
||||
//! assert!(value >= 0.0 && value < 1.0);
|
||||
//! ```
|
||||
use std::f64::consts::PI;
|
||||
use std::ops::Range;
|
||||
|
||||
|
||||
@@ -1,3 +1,11 @@
|
||||
//! Extensions for shuffling slices with a random number generator.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::random::{rng, SliceRandom};
|
||||
//! let mut data = [1, 2, 3];
|
||||
//! data.shuffle(&mut rng());
|
||||
//! assert_eq!(data.len(), 3);
|
||||
//! ```
|
||||
use crate::random::Rng;
|
||||
|
||||
/// Trait for randomizing slices.
|
||||
|
||||
@@ -1,3 +1,10 @@
|
||||
//! Generation and manipulation of calendar date sequences.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::utils::dateutils::dates::{DateFreq, DatesList};
|
||||
//! let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
||||
//! assert_eq!(list.count().unwrap(), 3);
|
||||
//! ```
|
||||
use chrono::{Datelike, Duration, NaiveDate, Weekday};
|
||||
use std::collections::HashMap;
|
||||
use std::error::Error;
|
||||
|
||||
@@ -1,3 +1,13 @@
|
||||
//! Generators for sequences of calendar and business dates.
|
||||
//!
|
||||
//! See [`dates`] for all-day calendars and [`bdates`] for business-day aware
|
||||
//! variants.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::utils::dateutils::{DatesList, DateFreq};
|
||||
//! let list = DatesList::new("2024-01-01".into(), "2024-01-02".into(), DateFreq::Daily);
|
||||
//! assert_eq!(list.count().unwrap(), 2);
|
||||
//! ```
|
||||
pub mod bdates;
|
||||
pub mod dates;
|
||||
|
||||
|
||||
@@ -1,3 +1,14 @@
|
||||
//! Assorted helper utilities.
|
||||
//!
|
||||
//! Currently this module exposes date generation utilities in [`dateutils`](crate::utils::dateutils),
|
||||
//! including calendar and business date sequences.
|
||||
//!
|
||||
//! ```
|
||||
//! use rustframe::utils::DatesList;
|
||||
//! use rustframe::utils::DateFreq;
|
||||
//! let dates = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
||||
//! assert_eq!(dates.count().unwrap(), 3);
|
||||
//! ```
|
||||
pub mod dateutils;
|
||||
|
||||
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};
|
||||
|
||||
Reference in New Issue
Block a user