mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-08-20 07:10:00 +00:00
383 lines
9.2 KiB
Plaintext
383 lines
9.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Import Python packages\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# ! uv pip install E:\\Work\\ruzt\\msyrs --upgrade"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import macrosynergy\n",
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"import polars as pl\n",
|
|
"import time\n",
|
|
"import os\n",
|
|
"\n",
|
|
"from macrosynergy.panel import view_timelines\n",
|
|
"from macrosynergy.management.types import QuantamentalDataFrame"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Import Python bindings - `msyrs`\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import msyrs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"DATA_FOLDER_PATH = \"E:/Work/jpmaqs-data\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cids_dm = \"AUD.CAD.CHF.EUR.GBP.JPY.NOK.NZD.SEK.USD\".split(\".\")\n",
|
|
"cids_em = \"CLP.COP.CZK.HUF.IDR.ILS.INR.KRW.MXN.PLN.THB.TRY.TWD.ZAR\".split(\".\")\n",
|
|
"cids = cids_dm + cids_em\n",
|
|
"cids_dux = list(set(cids) - set([\"IDR\", \"NZD\"]))\n",
|
|
"ecos = \"CPIC_SA_P1M1ML12.CPIC_SJA_P3M3ML3AR.CPIC_SJA_P6M6ML6AR.CPIH_SA_P1M1ML12.CPIH_SJA_P3M3ML3AR.CPIH_SJA_P6M6ML6AR.INFTEFF_NSA.INTRGDP_NSA_P1M1ML12_3MMA.INTRGDPv5Y_NSA_P1M1ML12_3MMA.PCREDITGDP_SJA_D1M1ML12.RGDP_SA_P1Q1QL4_20QMA.RYLDIRS02Y_NSA.RYLDIRS05Y_NSA.PCREDITBN_SJA_P1M1ML12\".split(\n",
|
|
" \".\"\n",
|
|
")\n",
|
|
"\n",
|
|
"\n",
|
|
"mkts = \"DU02YXR_NSA.DU05YXR_NSA.DU02YXR_VT10.DU05YXR_VT10.EQXR_NSA.EQXR_VT10.FXXR_NSA.FXXR_VT10.FXCRR_NSA.FXTARGETED_NSA.FXUNTRADABLE_NSA\".split(\n",
|
|
" \".\"\n",
|
|
")\n",
|
|
"xcats = ecos + mkts\n",
|
|
"\n",
|
|
"cpi_xcats = \"CPIC_SA_P1M1ML12.CPIC_SJA_P3M3ML3AR.CPIC_SJA_P6M6ML6AR.CPIH_SA_P1M1ML12.CPIH_SJA_P3M3ML3AR.CPIH_SJA_P6M6ML6AR\".split(\n",
|
|
" \".\"\n",
|
|
")\n",
|
|
"\n",
|
|
"tickers = [f\"{c}_{x}\" for c in cids for x in xcats]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"starttime = time.time()\n",
|
|
"\n",
|
|
"big_df: pl.DataFrame = msyrs.qdf.load_qdf_from_download_bank(\n",
|
|
" folder_path=DATA_FOLDER_PATH,\n",
|
|
" xcats=xcats,\n",
|
|
")\n",
|
|
"print(f\"Time taken to load qdf batch: {time.time() - starttime}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"big_df.estimated_size(\"mb\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"sel_cids = [\"USD\", \"EUR\", \"GBP\", \"AUD\", \"CAD\"]\n",
|
|
"start = \"1990-01-01\"\n",
|
|
"nb_start_time = time.time()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Running with uniform weights, 2 xcats, 5 cids\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fx_xcats = [xc for xc in xcats if xc.startswith(\"FX\")]\n",
|
|
"eq_xcats = [xc for xc in xcats if xc.startswith(\"EQ\")]\n",
|
|
"starttime = time.time()\n",
|
|
"\n",
|
|
"eq_df = msyrs.qdf.reduce_dataframe(\n",
|
|
" df=big_df,\n",
|
|
" cids=sel_cids,\n",
|
|
" xcats=fx_xcats + eq_xcats + cpi_xcats,\n",
|
|
" start=start,\n",
|
|
")\n",
|
|
"\n",
|
|
"fx_df = msyrs.qdf.reduce_dataframe(\n",
|
|
" df=big_df, cids=sel_cids, start=start, xcats=fx_xcats, intersect=True\n",
|
|
")\n",
|
|
"new_df: pl.DataFrame = msyrs.qdf.update_dataframe(df=eq_df, df_add=fx_df)\n",
|
|
"\n",
|
|
"print(f\"Time taken to reduce qdf: {time.time() - starttime}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"_cids = [\"USD\", \"CAD\"]\n",
|
|
"\n",
|
|
"_df = new_df.to_pandas()\n",
|
|
"starttime = time.time()\n",
|
|
"\n",
|
|
"\n",
|
|
"mx = macrosynergy.panel.linear_composite(\n",
|
|
"\n",
|
|
" df=_df,\n",
|
|
"\n",
|
|
" xcats=[\"EQXR_NSA\", \"FXXR_NSA\"],\n",
|
|
" cids=_cids,\n",
|
|
"\n",
|
|
" weights=None,\n",
|
|
"\n",
|
|
" signs=None,\n",
|
|
"\n",
|
|
" normalize_weights=False,\n",
|
|
" start=None,\n",
|
|
" end=None,\n",
|
|
"\n",
|
|
" blacklist=None,\n",
|
|
"\n",
|
|
" complete_xcats=False,\n",
|
|
"\n",
|
|
" complete_cids=False,\n",
|
|
"\n",
|
|
" new_xcat=\"COMPOSITE\",\n",
|
|
"\n",
|
|
" new_cid=\"GLB\",\n",
|
|
"\n",
|
|
")\n",
|
|
"print(f\"Time taken to run linear composite: {time.time() - starttime}\")\n",
|
|
"\n",
|
|
"\n",
|
|
"# view_timelines(QuantamentalDataFrame(mx), cids=_cids)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"_cids = [\"USD\", \"CAD\"]\n",
|
|
"starttime = time.time()\n",
|
|
"\n",
|
|
"x = msyrs.panel.linear_composite(\n",
|
|
"\n",
|
|
" df=new_df,\n",
|
|
"\n",
|
|
" xcats=[\"EQXR_NSA\", \"FXXR_NSA\"],\n",
|
|
" cids=_cids,\n",
|
|
"\n",
|
|
" weights=None,\n",
|
|
"\n",
|
|
" signs=None,\n",
|
|
"\n",
|
|
" weight_xcats=None,\n",
|
|
"\n",
|
|
" normalize_weights=False,\n",
|
|
" start=None,\n",
|
|
" end=None,\n",
|
|
"\n",
|
|
" blacklist=None,\n",
|
|
"\n",
|
|
" complete_xcats=False,\n",
|
|
"\n",
|
|
" complete_cids=False,\n",
|
|
"\n",
|
|
" new_xcat=\"COMPOSITE\",\n",
|
|
"\n",
|
|
" new_cid=\"GLB\",\n",
|
|
"\n",
|
|
")\n",
|
|
"print(f\"Time taken to run linear composite rs: {time.time() - starttime}\")\n",
|
|
"\n",
|
|
"# view_timelines(QuantamentalDataFrame(x.to_pandas()), cids=_cids)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Running with variable weights\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"_cids = [\"USD\", \"CAD\", \"EUR\", \"AUD\"]\n",
|
|
"_xcats = [\"EQXR_NSA\", \"FXXR_NSA\"]\n",
|
|
"\n",
|
|
"mx = macrosynergy.panel.linear_composite(\n",
|
|
" df=new_df.to_pandas(),\n",
|
|
" xcats=_xcats,\n",
|
|
" cids=_cids,\n",
|
|
" weights=[1, 9],\n",
|
|
" normalize_weights=False,\n",
|
|
" new_xcat=\"COMPOSITE\",\n",
|
|
" new_cid=\"GLB\",\n",
|
|
")\n",
|
|
"x = msyrs.panel.linear_composite(\n",
|
|
" df=new_df,\n",
|
|
" xcats=_xcats,\n",
|
|
" cids=_cids,\n",
|
|
" weights=[1, 9],\n",
|
|
" normalize_weights=False,\n",
|
|
" new_xcat=\"COMPOSITE\",\n",
|
|
" new_cid=\"GLB\",\n",
|
|
")\n",
|
|
"view_timelines(QuantamentalDataFrame(mx), cids=_cids)\n",
|
|
"mwide = QuantamentalDataFrame(mx).to_wide().sort_index()\n",
|
|
"rwide = QuantamentalDataFrame(x.to_pandas()).to_wide().sort_index()\n",
|
|
"np.allclose((mwide - rwide).sum(axis=1), 0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Running with variable weights, normalized\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"x = msyrs.panel.linear_composite(\n",
|
|
" df=new_df,\n",
|
|
" xcats=cpi_xcats,\n",
|
|
" cids=_cids,\n",
|
|
" weights=list(range(1, len(cpi_xcats) + 1)),\n",
|
|
" normalize_weights=True,\n",
|
|
" new_xcat=\"COMPOSITE\",\n",
|
|
" new_cid=\"GLB\",\n",
|
|
")\n",
|
|
"x.to_pandas().dropna(how=\"any\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"view_timelines(x.to_pandas().dropna(how=\"any\"), cids=_cids)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"mx = macrosynergy.panel.linear_composite(\n",
|
|
" df=new_df.to_pandas(),\n",
|
|
" xcats=cpi_xcats,\n",
|
|
" cids=_cids,\n",
|
|
" weights=list(range(1, len(cpi_xcats) + 1)),\n",
|
|
" normalize_weights=True,\n",
|
|
" new_xcat=\"COMPOSITE\",\n",
|
|
" new_cid=\"GLB\",\n",
|
|
")\n",
|
|
"view_timelines(mx.dropna(how=\"any\"), cids=_cids)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"mwide = QuantamentalDataFrame(mx).to_wide().sort_index()\n",
|
|
"rwide = QuantamentalDataFrame(x.to_pandas()).to_wide().sort_index()\n",
|
|
"np.allclose((mwide - rwide).sum(axis=1), 0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Running with categorical weights, normalized\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"raise NotImplementedError(\"Not implemented yet\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": ".venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|