{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Import Python packages\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# ! uv pip install E:\\Work\\ruzt\\msyrs --upgrade" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import macrosynergy\n", "import pandas as pd\n", "import numpy as np\n", "import polars as pl\n", "import time\n", "import os\n", "\n", "from macrosynergy.panel import view_timelines\n", "from macrosynergy.management.types import QuantamentalDataFrame" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import Python bindings - `msyrs`\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import msyrs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "DATA_FOLDER_PATH = \"E:/Work/jpmaqs-data\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cids_dm = \"AUD.CAD.CHF.EUR.GBP.JPY.NOK.NZD.SEK.USD\".split(\".\")\n", "cids_em = \"CLP.COP.CZK.HUF.IDR.ILS.INR.KRW.MXN.PLN.THB.TRY.TWD.ZAR\".split(\".\")\n", "cids = cids_dm + cids_em\n", "cids_dux = list(set(cids) - set([\"IDR\", \"NZD\"]))\n", "ecos = \"CPIC_SA_P1M1ML12.CPIC_SJA_P3M3ML3AR.CPIC_SJA_P6M6ML6AR.CPIH_SA_P1M1ML12.CPIH_SJA_P3M3ML3AR.CPIH_SJA_P6M6ML6AR.INFTEFF_NSA.INTRGDP_NSA_P1M1ML12_3MMA.INTRGDPv5Y_NSA_P1M1ML12_3MMA.PCREDITGDP_SJA_D1M1ML12.RGDP_SA_P1Q1QL4_20QMA.RYLDIRS02Y_NSA.RYLDIRS05Y_NSA.PCREDITBN_SJA_P1M1ML12\".split(\n", " \".\"\n", ")\n", "\n", "\n", "mkts = \"DU02YXR_NSA.DU05YXR_NSA.DU02YXR_VT10.DU05YXR_VT10.EQXR_NSA.EQXR_VT10.FXXR_NSA.FXXR_VT10.FXCRR_NSA.FXTARGETED_NSA.FXUNTRADABLE_NSA\".split(\n", " \".\"\n", ")\n", "xcats = ecos + mkts\n", "\n", "cpi_xcats = \"CPIC_SA_P1M1ML12.CPIC_SJA_P3M3ML3AR.CPIC_SJA_P6M6ML6AR.CPIH_SA_P1M1ML12.CPIH_SJA_P3M3ML3AR.CPIH_SJA_P6M6ML6AR\".split(\n", " \".\"\n", ")\n", "\n", "tickers = [f\"{c}_{x}\" for c in cids for x in xcats]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "starttime = time.time()\n", "\n", "big_df: pl.DataFrame = msyrs.qdf.load_qdf_from_download_bank(\n", " folder_path=DATA_FOLDER_PATH,\n", " xcats=xcats,\n", ")\n", "print(f\"Time taken to load qdf batch: {time.time() - starttime}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "big_df.estimated_size(\"mb\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sel_cids = [\"USD\", \"EUR\", \"GBP\", \"AUD\", \"CAD\"]\n", "start = \"1990-01-01\"\n", "nb_start_time = time.time()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Running with uniform weights, 2 xcats, 5 cids\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fx_xcats = [xc for xc in xcats if xc.startswith(\"FX\")]\n", "eq_xcats = [xc for xc in xcats if xc.startswith(\"EQ\")]\n", "starttime = time.time()\n", "\n", "eq_df = msyrs.qdf.reduce_dataframe(\n", " df=big_df,\n", " cids=sel_cids,\n", " xcats=fx_xcats + eq_xcats + cpi_xcats,\n", " start=start,\n", ")\n", "\n", "fx_df = msyrs.qdf.reduce_dataframe(\n", " df=big_df, cids=sel_cids, start=start, xcats=fx_xcats, intersect=True\n", ")\n", "new_df: pl.DataFrame = msyrs.qdf.update_dataframe(df=eq_df, df_add=fx_df)\n", "\n", "print(f\"Time taken to reduce qdf: {time.time() - starttime}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_cids = [\"USD\", \"CAD\"]\n", "\n", "_df = new_df.to_pandas()\n", "starttime = time.time()\n", "\n", "\n", "mx = macrosynergy.panel.linear_composite(\n", "\n", " df=_df,\n", "\n", " xcats=[\"EQXR_NSA\", \"FXXR_NSA\"],\n", " cids=_cids,\n", "\n", " weights=None,\n", "\n", " signs=None,\n", "\n", " normalize_weights=False,\n", " start=None,\n", " end=None,\n", "\n", " blacklist=None,\n", "\n", " complete_xcats=False,\n", "\n", " complete_cids=False,\n", "\n", " new_xcat=\"COMPOSITE\",\n", "\n", " new_cid=\"GLB\",\n", "\n", ")\n", "print(f\"Time taken to run linear composite: {time.time() - starttime}\")\n", "\n", "\n", "# view_timelines(QuantamentalDataFrame(mx), cids=_cids)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_cids = [\"USD\", \"CAD\"]\n", "starttime = time.time()\n", "\n", "x = msyrs.panel.linear_composite(\n", "\n", " df=new_df,\n", "\n", " xcats=[\"EQXR_NSA\", \"FXXR_NSA\"],\n", " cids=_cids,\n", "\n", " weights=None,\n", "\n", " signs=None,\n", "\n", " weight_xcats=None,\n", "\n", " normalize_weights=False,\n", " start=None,\n", " end=None,\n", "\n", " blacklist=None,\n", "\n", " complete_xcats=False,\n", "\n", " complete_cids=False,\n", "\n", " new_xcat=\"COMPOSITE\",\n", "\n", " new_cid=\"GLB\",\n", "\n", ")\n", "print(f\"Time taken to run linear composite rs: {time.time() - starttime}\")\n", "\n", "# view_timelines(QuantamentalDataFrame(x.to_pandas()), cids=_cids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Running with variable weights\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_cids = [\"USD\", \"CAD\", \"EUR\", \"AUD\"]\n", "_xcats = [\"EQXR_NSA\", \"FXXR_NSA\"]\n", "\n", "mx = macrosynergy.panel.linear_composite(\n", " df=new_df.to_pandas(),\n", " xcats=_xcats,\n", " cids=_cids,\n", " weights=[1, 9],\n", " normalize_weights=False,\n", " new_xcat=\"COMPOSITE\",\n", " new_cid=\"GLB\",\n", ")\n", "x = msyrs.panel.linear_composite(\n", " df=new_df,\n", " xcats=_xcats,\n", " cids=_cids,\n", " weights=[1, 9],\n", " normalize_weights=False,\n", " new_xcat=\"COMPOSITE\",\n", " new_cid=\"GLB\",\n", ")\n", "view_timelines(QuantamentalDataFrame(mx), cids=_cids)\n", "mwide = QuantamentalDataFrame(mx).to_wide().sort_index()\n", "rwide = QuantamentalDataFrame(x.to_pandas()).to_wide().sort_index()\n", "np.allclose((mwide - rwide).sum(axis=1), 0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Running with variable weights, normalized\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x = msyrs.panel.linear_composite(\n", " df=new_df,\n", " xcats=cpi_xcats,\n", " cids=_cids,\n", " weights=list(range(1, len(cpi_xcats) + 1)),\n", " normalize_weights=True,\n", " new_xcat=\"COMPOSITE\",\n", " new_cid=\"GLB\",\n", ")\n", "x.to_pandas().dropna(how=\"any\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "view_timelines(x.to_pandas().dropna(how=\"any\"), cids=_cids)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mx = macrosynergy.panel.linear_composite(\n", " df=new_df.to_pandas(),\n", " xcats=cpi_xcats,\n", " cids=_cids,\n", " weights=list(range(1, len(cpi_xcats) + 1)),\n", " normalize_weights=True,\n", " new_xcat=\"COMPOSITE\",\n", " new_cid=\"GLB\",\n", ")\n", "view_timelines(mx.dropna(how=\"any\"), cids=_cids)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mwide = QuantamentalDataFrame(mx).to_wide().sort_index()\n", "rwide = QuantamentalDataFrame(x.to_pandas()).to_wide().sort_index()\n", "np.allclose((mwide - rwide).sum(axis=1), 0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Running with categorical weights, normalized\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raise NotImplementedError(\"Not implemented yet\")" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 4 }