mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-11-19 12:16:09 +00:00
Compare commits
30 Commits
8f5f276efd
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1275e7c2c9 | ||
|
|
0e4d58a9d8 | ||
|
|
d16764944b | ||
|
|
80603aa951 | ||
|
|
fb2efa99ac | ||
|
|
178de83d1a | ||
|
|
ee531deb7a | ||
|
|
0443906cc9 | ||
|
|
f0a9242d10 | ||
|
|
df22667d63 | ||
|
|
7d4c198067 | ||
|
|
25192e425d | ||
|
|
e602b8b2b4 | ||
|
|
5d2ff3b88d | ||
|
|
3d2afa01a8 | ||
|
|
ed9d5d01a2 | ||
|
|
dda6e3e12f | ||
|
|
5ef2c7e6c7 | ||
|
|
5c3862c297 | ||
|
|
3559a90ad2 | ||
|
|
b7368a366e | ||
|
|
24a4176e17 | ||
|
|
165e1c19e4 | ||
|
|
fefe849394 | ||
| 4e4d1c6625 | |||
|
|
cfbd54be7a | ||
|
|
a4645dbc93 | ||
|
|
658eb0d121 | ||
|
|
93f88ab537 | ||
|
|
39d1a1b632 |
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
notebooks/** linguist-vendored
|
||||||
240
notebooks/funcwise/basic-utils.ipynb
vendored
240
notebooks/funcwise/basic-utils.ipynb
vendored
File diff suppressed because one or more lines are too long
360
notebooks/funcwise/bdate_range_util.ipynb
vendored
Normal file
360
notebooks/funcwise/bdate_range_util.ipynb
vendored
Normal file
@@ -0,0 +1,360 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# ! uv pip install E:\\Work\\ruzt\\msyrs --upgrade"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Import Python packages\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import macrosynergy\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import polars as pl\n",
|
||||||
|
"import os\n",
|
||||||
|
"import time\n",
|
||||||
|
"\n",
|
||||||
|
"from macrosynergy.panel import view_timelines\n",
|
||||||
|
"from macrosynergy.management.types import QuantamentalDataFrame\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Import Python bindings - `msyrs`\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import msyrs"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div>\n",
|
||||||
|
"<style scoped>\n",
|
||||||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||||||
|
" vertical-align: middle;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe tbody tr th {\n",
|
||||||
|
" vertical-align: top;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe thead th {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" }\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||||||
|
" <thead>\n",
|
||||||
|
" <tr style=\"text-align: right;\">\n",
|
||||||
|
" <th></th>\n",
|
||||||
|
" <th>bdates</th>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </thead>\n",
|
||||||
|
" <tbody>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>2000-01-03</td>\n",
|
||||||
|
" <td>2000-01-03</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1</th>\n",
|
||||||
|
" <td>2000-01-10</td>\n",
|
||||||
|
" <td>2000-01-10</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>2</th>\n",
|
||||||
|
" <td>2000-01-17</td>\n",
|
||||||
|
" <td>2000-01-17</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>3</th>\n",
|
||||||
|
" <td>2000-01-24</td>\n",
|
||||||
|
" <td>2000-01-24</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>4</th>\n",
|
||||||
|
" <td>2000-01-31</td>\n",
|
||||||
|
" <td>2000-01-31</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>...</th>\n",
|
||||||
|
" <td>...</td>\n",
|
||||||
|
" <td>...</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1056</th>\n",
|
||||||
|
" <td>2020-03-30</td>\n",
|
||||||
|
" <td>2020-03-30</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1057</th>\n",
|
||||||
|
" <td>2020-04-06</td>\n",
|
||||||
|
" <td>2020-04-06</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1058</th>\n",
|
||||||
|
" <td>2020-04-13</td>\n",
|
||||||
|
" <td>2020-04-13</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1059</th>\n",
|
||||||
|
" <td>2020-04-20</td>\n",
|
||||||
|
" <td>2020-04-20</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1060</th>\n",
|
||||||
|
" <td>2020-04-27</td>\n",
|
||||||
|
" <td>2020-04-27</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </tbody>\n",
|
||||||
|
"</table>\n",
|
||||||
|
"<p>1061 rows × 2 columns</p>\n",
|
||||||
|
"</div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
" bdates 0\n",
|
||||||
|
"0 2000-01-03 2000-01-03\n",
|
||||||
|
"1 2000-01-10 2000-01-10\n",
|
||||||
|
"2 2000-01-17 2000-01-17\n",
|
||||||
|
"3 2000-01-24 2000-01-24\n",
|
||||||
|
"4 2000-01-31 2000-01-31\n",
|
||||||
|
"... ... ...\n",
|
||||||
|
"1056 2020-03-30 2020-03-30\n",
|
||||||
|
"1057 2020-04-06 2020-04-06\n",
|
||||||
|
"1058 2020-04-13 2020-04-13\n",
|
||||||
|
"1059 2020-04-20 2020-04-20\n",
|
||||||
|
"1060 2020-04-27 2020-04-27\n",
|
||||||
|
"\n",
|
||||||
|
"[1061 rows x 2 columns]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='W').to_pandas()\n",
|
||||||
|
"y = pd.Series(pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='W-MON'))\n",
|
||||||
|
"\n",
|
||||||
|
"pd.concat([x, y], axis=1)\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Results for M\t & \tBMS\t are exactly the same\n",
|
||||||
|
"Results for Q\t & \tBQS\t are exactly the same\n",
|
||||||
|
"Results for W\t & \tW-MON\t are exactly the same\n",
|
||||||
|
"Results for WF\t & \tW-FRI\t are exactly the same\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"for rs_freq, pd_freq in [('M', 'BMS'), ('Q', 'BQS'), ('W', 'W-MON'), ('WF', 'W-FRI')]:\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" x = msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq=rs_freq).to_pandas()\n",
|
||||||
|
" y = pd.Series(pd.bdate_range(start='2000-01-01', end='2020-05-01', freq=pd_freq))\n",
|
||||||
|
"\n",
|
||||||
|
" e = x == y\n",
|
||||||
|
" res = e.all()\n",
|
||||||
|
" non_matching_df = pd.concat([x[~e], y[~e]], axis=1)\n",
|
||||||
|
" assert res, f\"Results for {rs_freq}\\t and \\t{pd_freq}\\t are not the same\\n{non_matching_df}\"\n",
|
||||||
|
" print(f\"Results for {rs_freq}\\t & \\t{pd_freq}\\t are exactly the same\")\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"23.5 μs ± 1.02 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
|
||||||
|
"67.4 μs ± 979 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
|
||||||
|
"1.97 ms ± 57.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||||
|
"4.65 ms ± 170 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||||
|
"28.3 ms ± 898 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n",
|
||||||
|
"93.8 ms ± 2.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='D')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='D')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='D')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='D')\n",
|
||||||
|
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='B')\n",
|
||||||
|
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='B')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"7.95 μs ± 146 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||||
|
"17.9 μs ± 108 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||||
|
"1.73 ms ± 20.8 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||||
|
"4 ms ± 69.3 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||||
|
"5.69 ms ± 139 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||||
|
"19.1 ms ± 268 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='WF')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='WF')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='WF')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='WF')\n",
|
||||||
|
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='W-FRI')\n",
|
||||||
|
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='W-FRI')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"6.9 μs ± 126 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||||
|
"13.1 μs ± 93.3 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||||
|
"1.73 ms ± 29.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||||
|
"4.2 ms ± 81.5 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||||
|
"931 μs ± 14.2 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||||
|
"3.05 ms ± 47.5 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='ME')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='ME')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='ME')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='ME')\n",
|
||||||
|
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BME')\n",
|
||||||
|
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BME')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"3.65 μs ± 69.1 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||||
|
"4.78 μs ± 38.7 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||||
|
"1.73 ms ± 122 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||||
|
"4.16 ms ± 286 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||||
|
"340 μs ± 11.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||||
|
"1.1 ms ± 11.5 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='Q')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='Q')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='Q')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='Q')\n",
|
||||||
|
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BQS')\n",
|
||||||
|
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BQS')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"3.21 μs ± 83.4 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||||
|
"3.66 μs ± 198 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||||
|
"2.67 ms ± 459 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||||
|
"3.71 ms ± 143 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||||
|
"98.7 μs ± 1.47 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
|
||||||
|
"289 μs ± 15.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='YE')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='YE')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='YE')\n",
|
||||||
|
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='YE')\n",
|
||||||
|
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BYE')\n",
|
||||||
|
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BYE')"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": ".venv",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.12.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
||||||
260
notebooks/funcwise/linear_composites.ipynb
vendored
260
notebooks/funcwise/linear_composites.ipynb
vendored
File diff suppressed because one or more lines are too long
33
scripts/unix/build.sh
Normal file
33
scripts/unix/build.sh
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Exit immediately if a command exits with a non-zero status
|
||||||
|
set -e
|
||||||
|
|
||||||
|
# Run "maturin --help". If it fails, print an error message and exit.
|
||||||
|
if ! maturin --help > /dev/null 2>&1; then
|
||||||
|
echo "Failed to run maturin --help" >&2
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Delete any existing build directory and create a new one.
|
||||||
|
rm -rf ./build
|
||||||
|
mkdir -p ./build
|
||||||
|
|
||||||
|
# Copy ./src/msyrs.pyi to ./msyrs.pyi.
|
||||||
|
cp ./src/msyrs.pyi ./msyrs.pyi
|
||||||
|
|
||||||
|
# Build using maturin.
|
||||||
|
maturin build --release --sdist --out ./build/
|
||||||
|
|
||||||
|
# Get the first wheel file found in the build directory.
|
||||||
|
whl_file=$(ls ./build/*.whl 2>/dev/null | head -n 1)
|
||||||
|
if [ -z "$whl_file" ]; then
|
||||||
|
echo "No wheel file found in ./build" >&2
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Rename the wheel file from .whl to .zip.
|
||||||
|
base_name="${whl_file%.whl}"
|
||||||
|
mv "$whl_file" "${base_name}.zip"
|
||||||
|
|
||||||
|
# Delete the temporary .pyi file.
|
||||||
|
rm ./msyrs.pyi
|
||||||
20
scripts/unix/install.sh
Normal file
20
scripts/unix/install.sh
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
# Ensure maturin is installed. For example, you can install it via:
|
||||||
|
# pip install maturin
|
||||||
|
|
||||||
|
# Run "maturin --help". If it fails, print an error message and exit.
|
||||||
|
if ! maturin --help > /dev/null 2>&1; then
|
||||||
|
echo "Failed to run maturin --help" >&2
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Copy ./src/msyrs.pyi to the current directory as msyrs.pyi
|
||||||
|
cp ./src/msyrs.pyi ./msyrs.pyi
|
||||||
|
|
||||||
|
# Run maturin develop in release mode.
|
||||||
|
maturin develop --release
|
||||||
|
|
||||||
|
# Delete the temporary msyrs.pyi file.
|
||||||
|
rm ./msyrs.pyi
|
||||||
@@ -68,7 +68,7 @@ pub fn get_period_indices_hv(dfw: PyDataFrame, est_freq: &str) -> PyResult<Vec<u
|
|||||||
cids,
|
cids,
|
||||||
weights = None,
|
weights = None,
|
||||||
signs = None,
|
signs = None,
|
||||||
weight_xcats = None,
|
weight_xcat = None,
|
||||||
normalize_weights = false,
|
normalize_weights = false,
|
||||||
start = None,
|
start = None,
|
||||||
end = None,
|
end = None,
|
||||||
@@ -84,7 +84,7 @@ pub fn linear_composite(
|
|||||||
cids: Vec<String>,
|
cids: Vec<String>,
|
||||||
weights: Option<Vec<f64>>,
|
weights: Option<Vec<f64>>,
|
||||||
signs: Option<Vec<f64>>,
|
signs: Option<Vec<f64>>,
|
||||||
weight_xcats: Option<Vec<String>>,
|
weight_xcat: Option<String>,
|
||||||
normalize_weights: bool,
|
normalize_weights: bool,
|
||||||
start: Option<String>,
|
start: Option<String>,
|
||||||
end: Option<String>,
|
end: Option<String>,
|
||||||
@@ -101,7 +101,7 @@ pub fn linear_composite(
|
|||||||
cids,
|
cids,
|
||||||
weights,
|
weights,
|
||||||
signs,
|
signs,
|
||||||
weight_xcats,
|
weight_xcat,
|
||||||
normalize_weights,
|
normalize_weights,
|
||||||
start,
|
start,
|
||||||
end,
|
end,
|
||||||
|
|||||||
@@ -1,22 +1,62 @@
|
|||||||
use pyo3::prelude::*;
|
use pyo3::{prelude::*, types::PyDict};
|
||||||
use pyo3_polars::{PyDataFrame, PySeries};
|
use pyo3_polars::{PyDataFrame, PySeries};
|
||||||
|
|
||||||
/// Python wrapper for [`crate::utils::qdf`] module.
|
/// Python wrapper for [`crate::utils::qdf`] module.
|
||||||
#[allow(deprecated)]
|
#[allow(deprecated)]
|
||||||
#[pymodule]
|
#[pymodule]
|
||||||
pub fn utils(_py: Python, m: &PyModule) -> PyResult<()> {
|
pub fn utils(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||||
m.add_function(wrap_pyfunction!(get_bdates_series_default, m)?)?;
|
m.add_function(wrap_pyfunction!(get_bdates_series_default_pl, m)?)?;
|
||||||
|
m.add_function(wrap_pyfunction!(get_bdates_series_default_opt, m)?)?;
|
||||||
|
m.add_function(wrap_pyfunction!(create_blacklist_from_qdf, m)?)?;
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
#[pyfunction]
|
#[pyfunction]
|
||||||
pub fn get_bdates_series_default(
|
pub fn get_bdates_series_default_pl(
|
||||||
start_date: String,
|
start_date: String,
|
||||||
end_date: String,
|
end_date: String,
|
||||||
freq: Option<String>,
|
freq: Option<String>,
|
||||||
) -> PyResult<PySeries> {
|
) -> PyResult<PySeries> {
|
||||||
Ok(PySeries(
|
Ok(PySeries(
|
||||||
crate::utils::dateutils::get_bdates_series_default(start_date, end_date, freq)
|
crate::utils::dateutils::get_bdates_series_default_pl(start_date, end_date, freq)
|
||||||
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?,
|
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?,
|
||||||
))
|
))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[pyfunction]
|
||||||
|
pub fn get_bdates_series_default_opt(
|
||||||
|
start_date: String,
|
||||||
|
end_date: String,
|
||||||
|
freq: Option<String>,
|
||||||
|
) -> PyResult<PySeries> {
|
||||||
|
Ok(PySeries(
|
||||||
|
crate::utils::dateutils::get_bdates_series_default_opt(start_date, end_date, freq)
|
||||||
|
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?,
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(deprecated)]
|
||||||
|
#[pyfunction(signature = (df, group_by_cid=None, blacklist_name=None, metrics=None))]
|
||||||
|
pub fn create_blacklist_from_qdf(
|
||||||
|
df: PyDataFrame,
|
||||||
|
group_by_cid: Option<bool>,
|
||||||
|
blacklist_name: Option<String>,
|
||||||
|
metrics: Option<Vec<String>>,
|
||||||
|
) -> PyResult<PyObject> {
|
||||||
|
let result = crate::utils::qdf::blacklist::create_blacklist_from_qdf(
|
||||||
|
&df.into(),
|
||||||
|
group_by_cid,
|
||||||
|
blacklist_name,
|
||||||
|
metrics,
|
||||||
|
)
|
||||||
|
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?;
|
||||||
|
Python::with_gil(|py| {
|
||||||
|
let dict = PyDict::new(py);
|
||||||
|
// for (key, (start_date, end_date)) in result {
|
||||||
|
// dict.set_item(key, (start_date, end_date))
|
||||||
|
for (key, dates) in result {
|
||||||
|
dict.set_item(key, dates).map_err(|e| PyErr::from(e))?;
|
||||||
|
}
|
||||||
|
Ok(dict.into())
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|||||||
@@ -58,7 +58,7 @@ fn all_jpmaq_expressions(expressions: Vec<String>) -> bool {
|
|||||||
///
|
///
|
||||||
/// Example Usage:
|
/// Example Usage:
|
||||||
///
|
///
|
||||||
/// ```rust
|
/// ```ignore
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||||
///
|
///
|
||||||
@@ -102,7 +102,7 @@ impl Default for JPMaQSDownloadGetIndicatorArgs {
|
|||||||
/// Struct for downloading data from the JPMaQS data from JPMorgan DataQuery API.
|
/// Struct for downloading data from the JPMaQS data from JPMorgan DataQuery API.
|
||||||
///
|
///
|
||||||
/// ## Example Usage
|
/// ## Example Usage
|
||||||
/// ```rust
|
/// ```ignore
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||||
/// use polars::prelude::*;
|
/// use polars::prelude::*;
|
||||||
@@ -277,7 +277,7 @@ impl JPMaQSDownload {
|
|||||||
///
|
///
|
||||||
/// Usage:
|
/// Usage:
|
||||||
///
|
///
|
||||||
/// ```rust
|
/// ```ignore
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||||
/// let mut jpamqs_download = JPMaQSDownload::default();
|
/// let mut jpamqs_download = JPMaQSDownload::default();
|
||||||
|
|||||||
@@ -51,6 +51,10 @@ class panel:
|
|||||||
def linear_composite(*args, **kwargs) -> DataFrame: ...
|
def linear_composite(*args, **kwargs) -> DataFrame: ...
|
||||||
|
|
||||||
class utils:
|
class utils:
|
||||||
__all__ = ["get_bdates_series_default"]
|
__all__ = ["get_bdates_series_default", "get_bdates_series_default_opt"]
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_bdates_series_default(*args, **kwargs) -> Series: ...
|
def get_bdates_series_default_pl(*args, **kwargs) -> Series: ...
|
||||||
|
@staticmethod
|
||||||
|
def get_bdates_series_default_opt(*args, **kwargs) -> Series: ...
|
||||||
|
@staticmethod
|
||||||
|
def create_blacklist_from_qdf(*args, **kwargs) -> dict: ...
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
use crate::utils::dateutils::{get_bdates_from_col, get_min_max_real_dates};
|
use crate::utils::dateutils::{get_bdates_from_col, get_min_max_real_dates};
|
||||||
use crate::utils::qdf::pivots::*;
|
use crate::utils::qdf::pivots::*;
|
||||||
use crate::utils::qdf::reduce_df::*;
|
use crate::utils::qdf::reduce_dataframe;
|
||||||
use chrono::NaiveDate;
|
use chrono::NaiveDate;
|
||||||
use ndarray::{s, Array, Array1, Zip};
|
use ndarray::{s, Array, Array1, Zip};
|
||||||
use polars::prelude::*;
|
use polars::prelude::*;
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
use crate::utils::qdf::check_quantamental_dataframe;
|
use crate::utils::qdf::check_quantamental_dataframe;
|
||||||
use crate::utils::qdf::pivots::*;
|
use crate::utils::qdf::pivots::{pivot_dataframe_by_ticker, pivot_wide_dataframe_to_qdf};
|
||||||
use crate::utils::qdf::reduce_df::*;
|
use crate::utils::qdf::reduce_df::reduce_dataframe;
|
||||||
use polars::prelude::*;
|
use polars::prelude::*;
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
const TOLERANCE: f64 = 1e-8;
|
const TOLERANCE: f64 = 1e-8;
|
||||||
@@ -108,14 +108,42 @@ fn _form_agg_nan_mask_series(nan_mask_dfw: &DataFrame) -> Result<Series, PolarsE
|
|||||||
Ok(combined.into_series())
|
Ok(combined.into_series())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Form the weights DataFrame
|
||||||
fn _form_agg_weights_dfw(
|
fn _form_agg_weights_dfw(
|
||||||
agg_weights_map: &HashMap<String, Vec<f64>>,
|
agg_weights_map: &HashMap<String, (WeightValue, f64)>,
|
||||||
data_dfw: DataFrame,
|
dfw: &DataFrame,
|
||||||
) -> Result<DataFrame, PolarsError> {
|
) -> Result<DataFrame, PolarsError> {
|
||||||
let mut weights_dfw = DataFrame::new(vec![])?;
|
let mut weights_dfw = DataFrame::new(vec![])?;
|
||||||
for (agg_targ, weight_signs) in agg_weights_map.iter() {
|
for (agg_targ, weight_signs) in agg_weights_map.iter() {
|
||||||
let wgt = weight_signs[0] * weight_signs[1];
|
// let wgt = weight_signs[0] * weight_signs[1];
|
||||||
let wgt_series = Series::new(agg_targ.into(), vec![wgt; data_dfw.height()]);
|
let wgt_series = match &weight_signs.0 {
|
||||||
|
WeightValue::F64(val) => {
|
||||||
|
let wgt = val * weight_signs.1;
|
||||||
|
Series::new(agg_targ.into(), vec![wgt; dfw.height()])
|
||||||
|
}
|
||||||
|
WeightValue::Str(vstr) => {
|
||||||
|
// vstr column from data_dfw, else raise wieght specification error
|
||||||
|
if !dfw.get_column_names().contains(&&PlSmallStr::from(vstr)) {
|
||||||
|
return Err(PolarsError::ComputeError(
|
||||||
|
format!(
|
||||||
|
"The column {} does not exist in the DataFrame. {:?}",
|
||||||
|
vstr, agg_weights_map
|
||||||
|
)
|
||||||
|
.into(),
|
||||||
|
));
|
||||||
|
}
|
||||||
|
let vstr_series = dfw.column(vstr)?;
|
||||||
|
let multiplied_series = vstr_series * weight_signs.1;
|
||||||
|
let mut multiplied_series =
|
||||||
|
multiplied_series.as_series().cloned().ok_or_else(|| {
|
||||||
|
PolarsError::ComputeError(
|
||||||
|
"Failed to convert multiplied_series to Series".into(),
|
||||||
|
)
|
||||||
|
})?;
|
||||||
|
multiplied_series.rename(agg_targ.into());
|
||||||
|
multiplied_series
|
||||||
|
}
|
||||||
|
};
|
||||||
weights_dfw.with_column(wgt_series)?;
|
weights_dfw.with_column(wgt_series)?;
|
||||||
}
|
}
|
||||||
Ok(weights_dfw)
|
Ok(weights_dfw)
|
||||||
@@ -143,14 +171,14 @@ fn perform_single_group_agg(
|
|||||||
dfw: &DataFrame,
|
dfw: &DataFrame,
|
||||||
agg_on: &String,
|
agg_on: &String,
|
||||||
agg_targs: &Vec<String>,
|
agg_targs: &Vec<String>,
|
||||||
agg_weights_map: &HashMap<String, Vec<f64>>,
|
agg_weights_map: &HashMap<String, (WeightValue, f64)>,
|
||||||
normalize_weights: bool,
|
normalize_weights: bool,
|
||||||
complete: bool,
|
complete: bool,
|
||||||
) -> Result<Column, PolarsError> {
|
) -> Result<Column, PolarsError> {
|
||||||
let data_dfw = _form_agg_data_dfw(dfw, agg_targs)?;
|
let data_dfw = _form_agg_data_dfw(dfw, agg_targs)?;
|
||||||
let nan_mask_dfw = _form_agg_nan_mask_dfw(&data_dfw)?;
|
let nan_mask_dfw = _form_agg_nan_mask_dfw(&data_dfw)?;
|
||||||
let nan_mask_series = _form_agg_nan_mask_series(&nan_mask_dfw)?;
|
let nan_mask_series = _form_agg_nan_mask_series(&nan_mask_dfw)?;
|
||||||
let weights_dfw = _form_agg_weights_dfw(agg_weights_map, data_dfw.clone())?;
|
let weights_dfw = _form_agg_weights_dfw(agg_weights_map, dfw)?;
|
||||||
let weights_dfw = match normalize_weights {
|
let weights_dfw = match normalize_weights {
|
||||||
true => normalize_weights_with_nan_mask(weights_dfw, nan_mask_dfw)?,
|
true => normalize_weights_with_nan_mask(weights_dfw, nan_mask_dfw)?,
|
||||||
false => weights_dfw,
|
false => weights_dfw,
|
||||||
@@ -192,7 +220,7 @@ fn perform_single_group_agg(
|
|||||||
fn perform_multiplication(
|
fn perform_multiplication(
|
||||||
dfw: &DataFrame,
|
dfw: &DataFrame,
|
||||||
mult_targets: &HashMap<String, Vec<String>>,
|
mult_targets: &HashMap<String, Vec<String>>,
|
||||||
weights_map: &HashMap<String, HashMap<String, Vec<f64>>>,
|
weights_map: &HashMap<String, HashMap<String, (WeightValue, f64)>>,
|
||||||
complete: bool,
|
complete: bool,
|
||||||
normalize_weights: bool,
|
normalize_weights: bool,
|
||||||
) -> Result<DataFrame, PolarsError> {
|
) -> Result<DataFrame, PolarsError> {
|
||||||
@@ -200,6 +228,7 @@ fn perform_multiplication(
|
|||||||
// let mut new_dfw = DataFrame::new(vec![real_date])?;
|
// let mut new_dfw = DataFrame::new(vec![real_date])?;
|
||||||
let mut new_dfw = DataFrame::new(vec![])?;
|
let mut new_dfw = DataFrame::new(vec![])?;
|
||||||
assert!(!mult_targets.is_empty(), "agg_targs is empty");
|
assert!(!mult_targets.is_empty(), "agg_targs is empty");
|
||||||
|
|
||||||
for (agg_on, agg_targs) in mult_targets.iter() {
|
for (agg_on, agg_targs) in mult_targets.iter() {
|
||||||
// perform_single_group_agg
|
// perform_single_group_agg
|
||||||
let cols_len = new_dfw.get_column_names().len();
|
let cols_len = new_dfw.get_column_names().len();
|
||||||
@@ -288,76 +317,122 @@ fn get_mul_targets(
|
|||||||
Ok(mul_targets)
|
Ok(mul_targets)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Builds a map of the shape:
|
||||||
|
/// `HashMap<String, HashMap<String, (WeightValue, f64)>>`
|
||||||
|
/// where only one of `weights` or `weight_xcats` can be provided.
|
||||||
|
/// If neither is provided, weights default to 1.0.
|
||||||
|
/// Each tuple is `(WeightValue, f64) = (weight, sign)`.
|
||||||
fn form_weights_and_signs_map(
|
fn form_weights_and_signs_map(
|
||||||
cids: Vec<String>,
|
cids: Vec<String>,
|
||||||
xcats: Vec<String>,
|
xcats: Vec<String>,
|
||||||
weights: Option<Vec<f64>>,
|
weights: Option<Vec<f64>>,
|
||||||
|
weight_xcat: Option<String>,
|
||||||
signs: Option<Vec<f64>>,
|
signs: Option<Vec<f64>>,
|
||||||
) -> Result<HashMap<String, HashMap<String, Vec<f64>>>, Box<dyn std::error::Error>> {
|
) -> Result<HashMap<String, HashMap<String, (WeightValue, f64)>>, Box<dyn std::error::Error>> {
|
||||||
let _agg_xcats_for_cid = agg_xcats_for_cid(cids.clone(), xcats.clone());
|
// For demonstration, we pretend to load or infer these from helpers:
|
||||||
|
let agg_xcats_for_cid = agg_xcats_for_cid(cids.clone(), xcats.clone());
|
||||||
let (agg_on, agg_targ) = get_agg_on_agg_targs(cids.clone(), xcats.clone());
|
let (agg_on, agg_targ) = get_agg_on_agg_targs(cids.clone(), xcats.clone());
|
||||||
|
|
||||||
// if weights are None, create a vector of 1s of the same length as agg_targ
|
// Determine if each weight option has non-empty values.
|
||||||
let weights = weights.unwrap_or(vec![1.0 / agg_targ.len() as f64; agg_targ.len()]);
|
let weights_provided = weights.as_ref().map_or(false, |v| !v.is_empty());
|
||||||
let signs = signs.unwrap_or(vec![1.0; agg_targ.len()]);
|
let weight_xcats_provided = weight_xcat.as_ref().map_or(false, |v| !v.is_empty());
|
||||||
|
|
||||||
// check that the lengths of weights and signs match the length of agg_targ
|
// Enforce that only one of weights or weight_xcats is specified.
|
||||||
check_weights_signs_lengths(
|
if weights_provided && weight_xcats_provided {
|
||||||
weights.clone(),
|
return Err("Only one of `weights` and `weight_xcats` may be specified.".into());
|
||||||
signs.clone(),
|
}
|
||||||
_agg_xcats_for_cid,
|
|
||||||
agg_targ.len(),
|
|
||||||
)?;
|
|
||||||
|
|
||||||
let mut weights_map = HashMap::new();
|
// 1) Build the "actual_weights" vector as WeightValue.
|
||||||
|
let actual_weights: Vec<WeightValue> = if weights_provided {
|
||||||
|
weights.unwrap().into_iter().map(WeightValue::F64).collect()
|
||||||
|
} else if weight_xcats_provided {
|
||||||
|
vec![WeightValue::Str(weight_xcat.unwrap()); agg_targ.len()]
|
||||||
|
} else {
|
||||||
|
// Default to numeric 1.0 if neither is provided
|
||||||
|
vec![WeightValue::F64(1.0); agg_targ.len()]
|
||||||
|
};
|
||||||
|
|
||||||
|
// 2) Build the "signs" vector; default to 1.0 if not provided
|
||||||
|
let signs = signs.unwrap_or_else(|| vec![1.0; agg_targ.len()]);
|
||||||
|
|
||||||
|
// 3) Optional: check lengths & zero values (only numeric weights).
|
||||||
|
check_weights_signs_lengths(&actual_weights, &signs, agg_xcats_for_cid, agg_targ.len())?;
|
||||||
|
|
||||||
|
// 4) Build the final nested HashMap
|
||||||
|
let mut weights_map: HashMap<String, HashMap<String, (WeightValue, f64)>> = HashMap::new();
|
||||||
|
|
||||||
for agg_o in agg_on {
|
for agg_o in agg_on {
|
||||||
let mut agg_t_map = HashMap::new();
|
let mut agg_t_map = HashMap::new();
|
||||||
for (i, agg_t) in agg_targ.iter().enumerate() {
|
for (i, agg_t) in agg_targ.iter().enumerate() {
|
||||||
let ticker = match _agg_xcats_for_cid {
|
// Format the ticker
|
||||||
true => format!("{}_{}", agg_o, agg_t),
|
let ticker = if agg_xcats_for_cid {
|
||||||
false => format!("{}_{}", agg_t, agg_o),
|
format!("{}_{}", agg_o, agg_t)
|
||||||
|
} else {
|
||||||
|
format!("{}_{}", agg_t, agg_o)
|
||||||
};
|
};
|
||||||
let weight_signs = vec![weights[i], signs[i]];
|
// Build the tuple (WeightValue, f64)
|
||||||
agg_t_map.insert(ticker, weight_signs);
|
let weight_sign_tuple = match &actual_weights[i] {
|
||||||
|
WeightValue::F64(val) => (WeightValue::F64(*val).clone(), signs[i]),
|
||||||
|
WeightValue::Str(vstr) => {
|
||||||
|
let new_str = format!("{}_{}", agg_t, vstr);
|
||||||
|
(WeightValue::Str(new_str), signs[i])
|
||||||
|
}
|
||||||
|
};
|
||||||
|
agg_t_map.insert(ticker, weight_sign_tuple);
|
||||||
}
|
}
|
||||||
weights_map.insert(agg_o.clone(), agg_t_map);
|
weights_map.insert(agg_o.clone(), agg_t_map);
|
||||||
}
|
}
|
||||||
|
|
||||||
Ok(weights_map)
|
Ok(weights_map)
|
||||||
}
|
}
|
||||||
|
/// Checks that the given slices have the expected length and that:
|
||||||
|
/// - numeric weights are non-zero,
|
||||||
|
/// - signs are non-zero.
|
||||||
fn check_weights_signs_lengths(
|
fn check_weights_signs_lengths(
|
||||||
weights_vec: Vec<f64>,
|
weights_vec: &[WeightValue],
|
||||||
signs_vec: Vec<f64>,
|
signs_vec: &[f64],
|
||||||
_agg_xcats_for_cid: bool,
|
agg_xcats_for_cid: bool,
|
||||||
agg_targ_len: usize,
|
agg_targ_len: usize,
|
||||||
) -> Result<(), Box<dyn std::error::Error>> {
|
) -> Result<(), Box<dyn std::error::Error>> {
|
||||||
// for vx, vname in ...
|
// For diagnostics, decide what to call the dimension
|
||||||
let agg_targ = match _agg_xcats_for_cid {
|
let agg_targ = if agg_xcats_for_cid { "xcats" } else { "cids" };
|
||||||
true => "xcats",
|
|
||||||
false => "cids",
|
// 1) Check numeric weights for zeroes.
|
||||||
};
|
for (i, weight) in weights_vec.iter().enumerate() {
|
||||||
for (vx, vname) in vec![
|
if let WeightValue::F64(val) = weight {
|
||||||
(weights_vec.clone(), "weights"),
|
if *val == 0.0 {
|
||||||
(signs_vec.clone(), "signs"),
|
return Err(format!("The weight at index {} is 0.0", i).into());
|
||||||
] {
|
|
||||||
for (i, v) in vx.iter().enumerate() {
|
|
||||||
if *v == 0.0 {
|
|
||||||
return Err(format!("The {} at index {} is 0.0", vname, i).into());
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if vx.len() != agg_targ_len {
|
}
|
||||||
return Err(format!(
|
// 2) Ensure the weights vector is the expected length.
|
||||||
"The length of {} ({}) does not match the length of {} ({})",
|
if weights_vec.len() != agg_targ_len {
|
||||||
vname,
|
return Err(format!(
|
||||||
vx.len(),
|
"The length of weights ({}) does not match the length of {} ({})",
|
||||||
agg_targ,
|
weights_vec.len(),
|
||||||
agg_targ_len
|
agg_targ,
|
||||||
)
|
agg_targ_len
|
||||||
.into());
|
)
|
||||||
|
.into());
|
||||||
|
}
|
||||||
|
|
||||||
|
// 3) Check signs for zero.
|
||||||
|
for (i, sign) in signs_vec.iter().enumerate() {
|
||||||
|
if *sign == 0.0 {
|
||||||
|
return Err(format!("The sign at index {} is 0.0", i).into());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
// 4) Ensure the signs vector is the expected length.
|
||||||
|
if signs_vec.len() != agg_targ_len {
|
||||||
|
return Err(format!(
|
||||||
|
"The length of signs ({}) does not match the length of {} ({})",
|
||||||
|
signs_vec.len(),
|
||||||
|
agg_targ,
|
||||||
|
agg_targ_len
|
||||||
|
)
|
||||||
|
.into());
|
||||||
|
}
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
fn rename_result_dfw_cols(
|
fn rename_result_dfw_cols(
|
||||||
@@ -393,6 +468,36 @@ fn agg_xcats_for_cid(cids: Vec<String>, xcats: Vec<String>) -> bool {
|
|||||||
xcats.len() > 1
|
xcats.len() > 1
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Represents a weight value that can be a string, (float, or integer).
|
||||||
|
#[derive(Debug, Clone, PartialEq)]
|
||||||
|
pub enum WeightValue {
|
||||||
|
Str(String),
|
||||||
|
F64(f64),
|
||||||
|
}
|
||||||
|
impl From<String> for WeightValue {
|
||||||
|
fn from(s: String) -> Self {
|
||||||
|
WeightValue::Str(s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a> From<&'a str> for WeightValue {
|
||||||
|
fn from(s: &'a str) -> Self {
|
||||||
|
WeightValue::Str(s.to_string())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<f64> for WeightValue {
|
||||||
|
fn from(f: f64) -> Self {
|
||||||
|
WeightValue::F64(f)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<i32> for WeightValue {
|
||||||
|
fn from(i: i32) -> Self {
|
||||||
|
WeightValue::F64(i as f64)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Weighted linear combinations of cross sections or categories
|
/// Weighted linear combinations of cross sections or categories
|
||||||
/// # Arguments
|
/// # Arguments
|
||||||
/// * `df` - QDF DataFrame
|
/// * `df` - QDF DataFrame
|
||||||
@@ -417,7 +522,7 @@ pub fn linear_composite(
|
|||||||
cids: Vec<String>,
|
cids: Vec<String>,
|
||||||
weights: Option<Vec<f64>>,
|
weights: Option<Vec<f64>>,
|
||||||
signs: Option<Vec<f64>>,
|
signs: Option<Vec<f64>>,
|
||||||
weight_xcats: Option<Vec<String>>,
|
weight_xcat: Option<String>,
|
||||||
normalize_weights: bool,
|
normalize_weights: bool,
|
||||||
start: Option<String>,
|
start: Option<String>,
|
||||||
end: Option<String>,
|
end: Option<String>,
|
||||||
@@ -429,10 +534,28 @@ pub fn linear_composite(
|
|||||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||||
// Check if the DataFrame is a Quantamental DataFrame
|
// Check if the DataFrame is a Quantamental DataFrame
|
||||||
check_quantamental_dataframe(df)?;
|
check_quantamental_dataframe(df)?;
|
||||||
|
|
||||||
|
if agg_xcats_for_cid(cids.clone(), xcats.clone()) {
|
||||||
|
if weight_xcat.is_some() {
|
||||||
|
return Err(
|
||||||
|
format!(
|
||||||
|
"Using xcats as weights is not supported when aggregating cids for a single xcat. {:?} {:?}",
|
||||||
|
cids, xcats
|
||||||
|
)
|
||||||
|
.into(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut rxcats = xcats.clone();
|
||||||
|
if weight_xcat.is_some() {
|
||||||
|
rxcats.extend(vec![weight_xcat.clone().unwrap()]);
|
||||||
|
}
|
||||||
|
|
||||||
let rdf = reduce_dataframe(
|
let rdf = reduce_dataframe(
|
||||||
df.clone(),
|
df.clone(),
|
||||||
Some(cids.clone()),
|
Some(cids.clone()),
|
||||||
Some(xcats.clone()),
|
Some(rxcats.clone()),
|
||||||
Some(vec!["value".to_string()]),
|
Some(vec!["value".to_string()]),
|
||||||
start.clone(),
|
start.clone(),
|
||||||
end.clone(),
|
end.clone(),
|
||||||
@@ -443,10 +566,11 @@ pub fn linear_composite(
|
|||||||
let new_xcat = new_xcat.unwrap_or_else(|| "COMPOSITE".to_string());
|
let new_xcat = new_xcat.unwrap_or_else(|| "COMPOSITE".to_string());
|
||||||
let new_cid = new_cid.unwrap_or_else(|| "GLB".to_string());
|
let new_cid = new_cid.unwrap_or_else(|| "GLB".to_string());
|
||||||
|
|
||||||
let dfw = pivot_dataframe_by_ticker(rdf.clone(), Some("value".to_string())).unwrap();
|
let dfw = pivot_dataframe_by_ticker(rdf, Some("value".to_string())).unwrap();
|
||||||
|
|
||||||
let mul_targets = get_mul_targets(cids.clone(), xcats.clone())?;
|
let mul_targets = get_mul_targets(cids.clone(), xcats.clone())?;
|
||||||
let weights_map = form_weights_and_signs_map(cids.clone(), xcats.clone(), weights, signs)?;
|
let weights_map =
|
||||||
|
form_weights_and_signs_map(cids.clone(), xcats.clone(), weights, weight_xcat, signs)?;
|
||||||
|
|
||||||
for (ticker, targets) in mul_targets.iter() {
|
for (ticker, targets) in mul_targets.iter() {
|
||||||
println!("ticker: {}, targets: {:?}", ticker, targets);
|
println!("ticker: {}, targets: {:?}", ticker, targets);
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
use crate::utils::bdates::get_bdates_list_with_freq;
|
use crate::utils::bdates;
|
||||||
use crate::utils::bdates::BDateFreq;
|
use crate::utils::bdates::BDateFreq;
|
||||||
use chrono::NaiveDate;
|
use chrono::NaiveDate;
|
||||||
use chrono::{Datelike, Weekday};
|
use chrono::{Datelike, Weekday};
|
||||||
@@ -36,25 +36,110 @@ pub fn get_min_max_real_dates(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn get_bdates_series_default(
|
/// Get the business dates between two dates.
|
||||||
|
pub fn get_bdates_list(
|
||||||
|
start_date: String,
|
||||||
|
end_date: String,
|
||||||
|
) -> Result<Vec<NaiveDate>, Box<dyn Error>> {
|
||||||
|
let start_date = NaiveDate::parse_from_str(&start_date, "%Y-%m-%d")?;
|
||||||
|
let end_date = NaiveDate::parse_from_str(&end_date, "%Y-%m-%d")?;
|
||||||
|
|
||||||
|
let mut business_days = Vec::new();
|
||||||
|
let mut current_date = start_date;
|
||||||
|
while current_date <= end_date {
|
||||||
|
// Check if the current date is a business day (not Saturday or Sunday)
|
||||||
|
if current_date.weekday() != Weekday::Sat && current_date.weekday() != Weekday::Sun {
|
||||||
|
business_days.push(current_date);
|
||||||
|
}
|
||||||
|
current_date = current_date.succ_opt().ok_or(format!(
|
||||||
|
"Failed to get the next day for : {:?}",
|
||||||
|
current_date
|
||||||
|
))?;
|
||||||
|
}
|
||||||
|
Ok(business_days)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn compute_group_key(d: NaiveDate, freq: BDateFreq) -> String {
|
||||||
|
match freq {
|
||||||
|
// For Daily, each date is its own group.
|
||||||
|
BDateFreq::Daily => format!("{}", d),
|
||||||
|
// For weekly grouping, we use ISO week information.
|
||||||
|
BDateFreq::WeeklyMonday | BDateFreq::WeeklyFriday => {
|
||||||
|
let iso = d.iso_week();
|
||||||
|
format!("{}-W{:02}", iso.year(), iso.week())
|
||||||
|
}
|
||||||
|
// Group by Year-Month.
|
||||||
|
BDateFreq::MonthStart | BDateFreq::MonthEnd => {
|
||||||
|
format!("{}-M{:02}", d.year(), d.month())
|
||||||
|
}
|
||||||
|
// Group by Year-Quarter.
|
||||||
|
BDateFreq::QuarterStart | BDateFreq::QuarterEnd => {
|
||||||
|
let quarter = (d.month() - 1) / 3 + 1;
|
||||||
|
format!("{}-Q{}", d.year(), quarter)
|
||||||
|
}
|
||||||
|
// Group by Year.
|
||||||
|
BDateFreq::YearStart | BDateFreq::YearEnd => format!("{}", d.year()),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
pub fn get_bdates_series_default_opt(
|
||||||
start_date: String,
|
start_date: String,
|
||||||
end_date: String,
|
end_date: String,
|
||||||
freq: Option<String>,
|
freq: Option<String>,
|
||||||
) -> Result<Series, Box<dyn Error>> {
|
) -> Result<Series, Box<dyn Error>> {
|
||||||
let freq = freq.unwrap_or_else(|| "D".to_string());
|
let freq = freq.unwrap_or_else(|| "D".to_string());
|
||||||
let freq = BDateFreq::from_str(&freq)?;
|
let freq = BDateFreq::from_str(&freq)?;
|
||||||
get_bdates_series(start_date, end_date, freq)
|
let series = Series::new(
|
||||||
|
"bdates".into(),
|
||||||
|
bdates::get_bdates_list_with_freq(&start_date, &end_date, freq)?,
|
||||||
|
);
|
||||||
|
Ok(series)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn get_bdates_series_default_pl(
|
||||||
|
start_date: String,
|
||||||
|
end_date: String,
|
||||||
|
freq: Option<String>,
|
||||||
|
) -> Result<Series, Box<dyn Error>> {
|
||||||
|
let freq = freq.unwrap_or_else(|| "D".to_string());
|
||||||
|
let freq = BDateFreq::from_str(&freq)?;
|
||||||
|
get_bdates_series_pl(start_date, end_date, freq)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the business dates between two dates as a Series.
|
/// Get the business dates between two dates as a Series.
|
||||||
pub fn get_bdates_series(
|
pub fn get_bdates_series_pl(
|
||||||
start_date: String,
|
start_date: String,
|
||||||
end_date: String,
|
end_date: String,
|
||||||
freq: BDateFreq,
|
freq: BDateFreq,
|
||||||
) -> Result<Series, Box<dyn Error>> {
|
) -> Result<Series, Box<dyn Error>> {
|
||||||
let bdates_list = get_bdates_list_with_freq(&start_date, &end_date, freq)?;
|
let business_days = get_bdates_list(start_date, end_date)?;
|
||||||
let bdates_series = Series::new("bdates".into(), bdates_list);
|
let group_keys: Vec<String> = business_days
|
||||||
Ok(bdates_series)
|
.iter()
|
||||||
|
.map(|&d| compute_group_key(d, freq))
|
||||||
|
.collect();
|
||||||
|
|
||||||
|
let df = DataFrame::new(vec![
|
||||||
|
Column::new("bdates".into(), business_days),
|
||||||
|
Column::new("group".into(), group_keys),
|
||||||
|
])?;
|
||||||
|
let gb = df.lazy().group_by(["group"]);
|
||||||
|
let aggx = match freq.agg_type() {
|
||||||
|
bdates::AggregationType::Start => gb.agg([col("bdates").first()]),
|
||||||
|
bdates::AggregationType::End => gb.agg([col("bdates").last()]),
|
||||||
|
};
|
||||||
|
let result = aggx.collect()?;
|
||||||
|
let result = result
|
||||||
|
.column("bdates")?
|
||||||
|
.as_series()
|
||||||
|
.ok_or("Column 'bdates' not found")?
|
||||||
|
.clone();
|
||||||
|
let result = result.sort(SortOptions {
|
||||||
|
descending: false,
|
||||||
|
nulls_last: false,
|
||||||
|
multithreaded: false,
|
||||||
|
maintain_order: false,
|
||||||
|
})?;
|
||||||
|
|
||||||
|
Ok(result)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the business dates from a date column in a DataFrame.
|
/// Get the business dates from a date column in a DataFrame.
|
||||||
|
|||||||
373
src/utils/qdf/blacklist.rs
Normal file
373
src/utils/qdf/blacklist.rs
Normal file
@@ -0,0 +1,373 @@
|
|||||||
|
use crate::utils::bdates::{get_bdates_list_with_freq, BDateFreq};
|
||||||
|
use crate::utils::dateutils::get_min_max_real_dates;
|
||||||
|
use crate::utils::misc::get_cid;
|
||||||
|
use crate::utils::qdf::core::check_quantamental_dataframe;
|
||||||
|
use chrono::NaiveDate;
|
||||||
|
use polars::prelude::*;
|
||||||
|
use std::collections::{BTreeMap, HashMap};
|
||||||
|
use std::error::Error;
|
||||||
|
|
||||||
|
use crate::utils::qdf::get_unique_metrics;
|
||||||
|
|
||||||
|
// struct Blacklist which is a wrapper around hashmap and btreemap
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct Blacklist {
|
||||||
|
pub blacklist: BTreeMap<String, (String, String)>,
|
||||||
|
}
|
||||||
|
|
||||||
|
// impl hashmap into
|
||||||
|
impl Blacklist {
|
||||||
|
pub fn into_hashmap(self) -> HashMap<String, (String, String)> {
|
||||||
|
self.blacklist.into_iter().collect()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Apply a blacklist to a Quantamental DataFrame.
|
||||||
|
///
|
||||||
|
/// * `blacklist` is a map from any “ticker‑like” key to a tuple of
|
||||||
|
/// `(start_date, end_date)` in **inclusive** `"YYYY‑MM‑DD"` format.
|
||||||
|
/// * `metrics` – if `None`, every metric from `get_unique_metrics(df)`
|
||||||
|
/// is used.
|
||||||
|
/// * `group_by_cid = Some(false)` is not implemented yet.
|
||||||
|
pub fn apply_blacklist(
|
||||||
|
df: &mut DataFrame,
|
||||||
|
blacklist: &BTreeMap<String, (String, String)>,
|
||||||
|
metrics: Option<Vec<String>>,
|
||||||
|
group_by_cid: Option<bool>,
|
||||||
|
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||||
|
check_quantamental_dataframe(df)?;
|
||||||
|
// dataframe is like:
|
||||||
|
// | cid | xcat | real_date | metric1 | metric2 |
|
||||||
|
// |-----|------|-----------|---------|---------|
|
||||||
|
// | A | B | 2023-01-01| 1.0 | 2.0 |
|
||||||
|
// | A | B | 2023-01-02| 1.0 | 2.0 |
|
||||||
|
// | A | C | 2023-01-01| 1.0 | 2.0 |
|
||||||
|
// | A | C | 2023-01-02| 1.0 | 2.0 |
|
||||||
|
// | D | E | 2023-01-01| 1.0 | 2.0 |
|
||||||
|
// | D | E | 2023-01-02| 1.0 | 2.0 |
|
||||||
|
|
||||||
|
// (real date column is Naive date)
|
||||||
|
|
||||||
|
// blacklist is like:
|
||||||
|
// {'A_B_1': ('2023-01-02', '2023-01-03'),
|
||||||
|
// 'A_B_2': ('2023-01-04', '2023-01-05'),
|
||||||
|
// 'A_C_1': ('2023-01-02', '2023-01-03'), }
|
||||||
|
|
||||||
|
// get_cid('A_B_1') = 'A'
|
||||||
|
// get_cid('A_B_2') = 'A'
|
||||||
|
// get_cid('D_E_1') = 'D'
|
||||||
|
|
||||||
|
Ok(df.clone())
|
||||||
|
}
|
||||||
|
/// Create a blacklist from a Quantamental DataFrame.
|
||||||
|
/// The blacklist is a mapping of tickers to date ranges where the specified metrics are null or NaN.
|
||||||
|
/// # Arguments:
|
||||||
|
/// * `df` - The Quantamental DataFrame.
|
||||||
|
/// * `group_by_cid` - If true, group the blacklist by `cid`. Defaults to true.
|
||||||
|
/// * `blacklist_name` - The name of the blacklist. Defaults to "BLACKLIST".
|
||||||
|
/// * `metrics` - The metrics to check for null or NaN values. If None, all metrics are used.
|
||||||
|
pub fn create_blacklist_from_qdf(
|
||||||
|
df: &DataFrame,
|
||||||
|
group_by_cid: Option<bool>,
|
||||||
|
blacklist_name: Option<String>,
|
||||||
|
metrics: Option<Vec<String>>,
|
||||||
|
) -> Result<BTreeMap<String, (String, String)>, Box<dyn Error>> {
|
||||||
|
check_quantamental_dataframe(df)?;
|
||||||
|
let metrics = metrics.unwrap_or_else(|| get_unique_metrics(df).unwrap());
|
||||||
|
let blacklist_name = blacklist_name.unwrap_or_else(|| "BLACKLIST".into());
|
||||||
|
let group_by_cid = group_by_cid.unwrap_or(true);
|
||||||
|
|
||||||
|
let (min_date, max_date) = get_min_max_real_dates(df, "real_date".into())?;
|
||||||
|
let min_date_str = min_date.format("%Y-%m-%d").to_string();
|
||||||
|
let max_date_str = max_date.format("%Y-%m-%d").to_string();
|
||||||
|
// let all_bdates = get_bdates_series_default_opt(min_date_str, max_date_str, None)?;
|
||||||
|
let all_bdates = get_bdates_list_with_freq(
|
||||||
|
min_date_str.clone().as_str(),
|
||||||
|
max_date_str.clone().as_str(),
|
||||||
|
BDateFreq::Daily,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
// if none of the metrics are null or NaN, return an empty blacklist
|
||||||
|
if !metrics.iter().any(|metric| {
|
||||||
|
df.column(metric)
|
||||||
|
.map(|col| col.is_null().any())
|
||||||
|
.unwrap_or(false)
|
||||||
|
}) {
|
||||||
|
return Ok(BTreeMap::new());
|
||||||
|
}
|
||||||
|
|
||||||
|
// let null_mask = get_nan_mask(df, metrics)?;
|
||||||
|
// let df = df.filter(&null_mask)?.clone();
|
||||||
|
|
||||||
|
let df = df
|
||||||
|
.clone()
|
||||||
|
.lazy()
|
||||||
|
.with_columns([
|
||||||
|
(cols(metrics.clone()).is_null().or(cols(metrics).is_nan())).alias("null_mask")
|
||||||
|
])
|
||||||
|
.filter(col("null_mask"))
|
||||||
|
// if is now empty, return an empty blacklist
|
||||||
|
.sort(
|
||||||
|
["cid", "xcat"],
|
||||||
|
SortMultipleOptions::default().with_maintain_order(true),
|
||||||
|
)
|
||||||
|
.group_by([col("cid"), col("xcat")])
|
||||||
|
// .agg([col("real_date").sort(SortOptions::default())])
|
||||||
|
.agg([col("real_date")
|
||||||
|
.dt()
|
||||||
|
.strftime("%Y-%m-%d")
|
||||||
|
.sort(SortOptions::default())])
|
||||||
|
.select([
|
||||||
|
concat_str([col("cid"), col("xcat")], "_", true).alias("ticker"),
|
||||||
|
col("real_date").alias("real_dates"),
|
||||||
|
])
|
||||||
|
.collect()?;
|
||||||
|
|
||||||
|
// assert!(0 == 1, "{:?}", df);
|
||||||
|
|
||||||
|
let ticker_vec = df
|
||||||
|
.column("ticker")?
|
||||||
|
.str()?
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt.map(|s| s.to_string()))
|
||||||
|
.collect::<Vec<String>>();
|
||||||
|
|
||||||
|
let rdt = get_vec_of_vec_of_dates_from_df(df)?;
|
||||||
|
|
||||||
|
let mut blk: HashMap<String, Vec<String>> = HashMap::new();
|
||||||
|
for (tkr, dates) in ticker_vec.iter().zip(rdt.iter()) {
|
||||||
|
if group_by_cid {
|
||||||
|
let _cid = get_cid(tkr.clone())?;
|
||||||
|
if blk.contains_key(&_cid) {
|
||||||
|
blk.get_mut(&_cid).unwrap().extend(dates.iter().cloned());
|
||||||
|
} else {
|
||||||
|
blk.insert(_cid, dates.clone());
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
blk.insert(tkr.to_string(), dates.clone());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (_key, vals) in blk.iter_mut() {
|
||||||
|
// order is important - dedup depends on the vec being sorted
|
||||||
|
vals.sort();
|
||||||
|
vals.dedup();
|
||||||
|
}
|
||||||
|
|
||||||
|
let all_bdates_strs = all_bdates
|
||||||
|
.iter()
|
||||||
|
.map(|date| date.format("%Y-%m-%d").to_string())
|
||||||
|
.collect::<Vec<String>>();
|
||||||
|
|
||||||
|
let mut blacklist: HashMap<String, (String, String)> = HashMap::new();
|
||||||
|
for (tkr, dates) in blk.iter() {
|
||||||
|
let date_ranges = convert_dates_list_to_date_ranges(dates.clone(), all_bdates_strs.clone());
|
||||||
|
for (rng_idx, (start_date, end_date)) in date_ranges.iter() {
|
||||||
|
let range_key = format!("{}_{}_{}", tkr, blacklist_name.clone(), rng_idx);
|
||||||
|
blacklist.insert(range_key, (start_date.clone(), end_date.clone()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Ok(blacklist)
|
||||||
|
|
||||||
|
let mut btree_map: BTreeMap<String, (String, String)> = BTreeMap::new();
|
||||||
|
for (key, (start_date, end_date)) in blacklist.iter() {
|
||||||
|
btree_map.insert(key.clone(), (start_date.clone(), end_date.clone()));
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(btree_map)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get a mask of NaN values for the specified metrics in the DataFrame.
|
||||||
|
#[allow(dead_code)]
|
||||||
|
fn get_nan_mask(
|
||||||
|
df: &DataFrame,
|
||||||
|
metrics: Vec<String>,
|
||||||
|
) -> Result<ChunkedArray<BooleanType>, Box<dyn Error>> {
|
||||||
|
let null_masks: Vec<ChunkedArray<BooleanType>> = metrics
|
||||||
|
.iter()
|
||||||
|
.map(|metric| {
|
||||||
|
let null_mask = df.column(metric.as_str())?.is_null();
|
||||||
|
let nan_mask = df.column(metric.as_str())?.is_nan()?;
|
||||||
|
Ok(null_mask | nan_mask)
|
||||||
|
})
|
||||||
|
.collect::<Result<_, Box<dyn Error>>>()?;
|
||||||
|
let null_mask = null_masks
|
||||||
|
.into_iter()
|
||||||
|
.reduce(|acc, mask| acc | mask)
|
||||||
|
.unwrap_or_else(|| BooleanChunked::full_null("null_mask".into(), df.height()));
|
||||||
|
Ok(null_mask)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn convert_dates_list_to_date_ranges(
|
||||||
|
blacklist: Vec<String>,
|
||||||
|
all_bdates_strs: Vec<String>,
|
||||||
|
) -> HashMap<String, (String, String)> {
|
||||||
|
// Step 1: Map every date in all_bdates_strs to its index
|
||||||
|
let mut all_map: HashMap<String, usize> = HashMap::new();
|
||||||
|
for (i, d) in all_bdates_strs.iter().enumerate() {
|
||||||
|
all_map.insert(d.clone(), i);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Step 2: Convert each blacklisted date into its index, if it exists
|
||||||
|
let mut blacklisted_indices: Vec<usize> = Vec::new();
|
||||||
|
for dt in blacklist {
|
||||||
|
if let Some(&idx) = all_map.get(&dt) {
|
||||||
|
blacklisted_indices.push(idx);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Step 3: Sort the blacklisted indices
|
||||||
|
blacklisted_indices.sort_unstable();
|
||||||
|
|
||||||
|
// Step 4: Traverse and group consecutive indices into ranges
|
||||||
|
let mut result: HashMap<i64, (String, String)> = HashMap::new();
|
||||||
|
let mut string_result: HashMap<String, (String, String)> = HashMap::new();
|
||||||
|
|
||||||
|
if blacklisted_indices.is_empty() {
|
||||||
|
return string_result;
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut range_idx: i64 = 0;
|
||||||
|
let mut start_idx = blacklisted_indices[0];
|
||||||
|
let mut end_idx = start_idx;
|
||||||
|
|
||||||
|
for &cur_idx in blacklisted_indices.iter().skip(1) {
|
||||||
|
if cur_idx == end_idx + 1 {
|
||||||
|
// We are still in a contiguous run
|
||||||
|
end_idx = cur_idx;
|
||||||
|
} else {
|
||||||
|
// We hit a break in contiguity, so store the last range
|
||||||
|
result.insert(
|
||||||
|
range_idx,
|
||||||
|
(
|
||||||
|
all_bdates_strs[start_idx].clone(),
|
||||||
|
all_bdates_strs[end_idx].clone(),
|
||||||
|
),
|
||||||
|
);
|
||||||
|
range_idx += 1;
|
||||||
|
|
||||||
|
// Start a new range
|
||||||
|
start_idx = cur_idx;
|
||||||
|
end_idx = cur_idx;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Don't forget to store the final range after the loop
|
||||||
|
result.insert(
|
||||||
|
range_idx,
|
||||||
|
(
|
||||||
|
all_bdates_strs[start_idx].clone(),
|
||||||
|
all_bdates_strs[end_idx].clone(),
|
||||||
|
),
|
||||||
|
);
|
||||||
|
|
||||||
|
let max_digits = result.keys().max().unwrap_or(&-1).to_string().len();
|
||||||
|
for (key, (start_date, end_date)) in result.iter() {
|
||||||
|
let new_key = format!("{:0width$}", key, width = max_digits);
|
||||||
|
string_result.insert(new_key, (start_date.clone(), end_date.clone()));
|
||||||
|
}
|
||||||
|
|
||||||
|
string_result
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_vec_of_vec_of_dates_from_df(df: DataFrame) -> Result<Vec<Vec<String>>, Box<dyn Error>> {
|
||||||
|
let rdt = df
|
||||||
|
.column("real_dates")?
|
||||||
|
// .clone()
|
||||||
|
.as_series()
|
||||||
|
.unwrap()
|
||||||
|
.list()?
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt)
|
||||||
|
.collect::<Vec<Series>>()
|
||||||
|
.iter()
|
||||||
|
.map(|s| {
|
||||||
|
s.str()
|
||||||
|
.unwrap()
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt.map(|s| s.to_string()))
|
||||||
|
.collect::<Vec<String>>()
|
||||||
|
})
|
||||||
|
.collect::<Vec<Vec<String>>>();
|
||||||
|
Ok(rdt)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(dead_code)]
|
||||||
|
fn get_vec_of_vec_of_naivedates_from_df(
|
||||||
|
df: DataFrame,
|
||||||
|
) -> Result<Vec<Vec<NaiveDate>>, Box<dyn Error>> {
|
||||||
|
let rdt = df
|
||||||
|
.column("real_dates")?
|
||||||
|
// .clone()
|
||||||
|
.as_series()
|
||||||
|
.unwrap()
|
||||||
|
.list()?
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt)
|
||||||
|
.collect::<Vec<Series>>()
|
||||||
|
.iter()
|
||||||
|
.map(|s| {
|
||||||
|
s.date()
|
||||||
|
.unwrap()
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt.and_then(|date| NaiveDate::from_num_days_from_ce_opt(date)))
|
||||||
|
.collect::<Vec<NaiveDate>>()
|
||||||
|
})
|
||||||
|
.collect::<Vec<Vec<NaiveDate>>>();
|
||||||
|
Ok(rdt)
|
||||||
|
}
|
||||||
|
|
||||||
|
// fn get_vec_of_vec_of_dates_from_df(df: DataFrame) -> Result<Vec<Vec<String>>, Box<dyn Error>> {
|
||||||
|
// let real_dates_column = df.column("real_dates")?.clone();
|
||||||
|
// let series = real_dates_column.as_series().unwrap().clone();
|
||||||
|
// let rdt = series.list()?.clone();
|
||||||
|
// let rdt = rdt
|
||||||
|
// .into_iter()
|
||||||
|
// .filter_map(|opt| opt)
|
||||||
|
// .collect::<Vec<Series>>();
|
||||||
|
// let rdt = rdt
|
||||||
|
// .iter()
|
||||||
|
// .map(|s| {
|
||||||
|
// s.str()
|
||||||
|
// .unwrap()
|
||||||
|
// .into_iter()
|
||||||
|
// .filter_map(|opt| opt.map(|s| s.to_string()))
|
||||||
|
// .collect::<Vec<String>>()
|
||||||
|
// })
|
||||||
|
// .collect::<Vec<Vec<String>>>();
|
||||||
|
// Ok(rdt)
|
||||||
|
// }
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_convert_dates_list_to_date_ranges() {
|
||||||
|
let all_dates = vec![
|
||||||
|
"2023-01-01".to_string(),
|
||||||
|
"2023-01-02".to_string(),
|
||||||
|
"2023-01-03".to_string(),
|
||||||
|
"2023-01-04".to_string(),
|
||||||
|
"2023-01-05".to_string(),
|
||||||
|
"2023-01-06".to_string(),
|
||||||
|
];
|
||||||
|
let blacklist = vec![
|
||||||
|
"2023-01-02".to_string(),
|
||||||
|
"2023-01-03".to_string(),
|
||||||
|
"2023-01-05".to_string(),
|
||||||
|
];
|
||||||
|
|
||||||
|
let result = convert_dates_list_to_date_ranges(blacklist, all_dates);
|
||||||
|
// Expect two ranges:
|
||||||
|
// range 0 => ("2023-01-02", "2023-01-03")
|
||||||
|
// range 1 => ("2023-01-05", "2023-01-05")
|
||||||
|
assert_eq!(
|
||||||
|
result["0"],
|
||||||
|
("2023-01-02".to_string(), "2023-01-03".to_string())
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
result["1"],
|
||||||
|
("2023-01-05".to_string(), "2023-01-05".to_string())
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -17,14 +17,15 @@ use std::error::Error;
|
|||||||
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
|
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
|
||||||
let expected_cols = ["real_date", "cid", "xcat"];
|
let expected_cols = ["real_date", "cid", "xcat"];
|
||||||
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
|
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
|
||||||
|
let err = "Quantamental DataFrame must have at least 4 columns: 'real_date', 'cid', 'xcat' and one or more metrics.";
|
||||||
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
|
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
|
||||||
let col = df.column(col);
|
let col = df.column(col);
|
||||||
if col.is_err() {
|
if col.is_err() {
|
||||||
return Err(format!("Column {:?} not found", col).into());
|
return Err(format!("{} Column {:?} not found", err, col).into());
|
||||||
}
|
}
|
||||||
let col = col?;
|
let col = col?;
|
||||||
if col.dtype() != dtype {
|
if col.dtype() != dtype {
|
||||||
return Err(format!("Column {:?} has wrong dtype", col).into());
|
return Err(format!("{} Column {:?} has wrong dtype", err, col).into());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
|
|||||||
@@ -1,11 +1,12 @@
|
|||||||
|
pub mod blacklist;
|
||||||
pub mod core;
|
pub mod core;
|
||||||
pub mod update_df;
|
|
||||||
pub mod load;
|
pub mod load;
|
||||||
pub mod reduce_df;
|
|
||||||
pub mod pivots;
|
pub mod pivots;
|
||||||
|
pub mod reduce_df;
|
||||||
|
pub mod update_df;
|
||||||
|
|
||||||
// Re-export submodules for easier access
|
// Re-export submodules for easier access
|
||||||
pub use core::*;
|
pub use core::*;
|
||||||
pub use update_df::*;
|
|
||||||
pub use load::*;
|
pub use load::*;
|
||||||
pub use reduce_df::*;
|
pub use reduce_df::*;
|
||||||
|
pub use update_df::*;
|
||||||
@@ -30,12 +30,12 @@ pub fn reduce_dataframe(
|
|||||||
let df_size = df.shape();
|
let df_size = df.shape();
|
||||||
let mut new_df = df.clone();
|
let mut new_df = df.clone();
|
||||||
|
|
||||||
let ticker_col: Column = get_ticker_column_for_quantamental_dataframe(&new_df)?;
|
let ticker_col = get_ticker_column_for_quantamental_dataframe(&new_df)?;
|
||||||
|
|
||||||
// if cids is not provided, get all unique cids
|
// if cids is not provided, get all unique cids
|
||||||
let u_cids: Vec<String> = get_unique_cids(&new_df)?;
|
let u_cids = get_unique_cids(&new_df)?;
|
||||||
let u_xcats: Vec<String> = get_unique_xcats(&new_df)?;
|
let u_xcats = get_unique_xcats(&new_df)?;
|
||||||
let u_tickers: Vec<String> = _get_unique_strs_from_str_column_object(&ticker_col)?;
|
let u_tickers = _get_unique_strs_from_str_column_object(&ticker_col)?;
|
||||||
|
|
||||||
let cids_vec = cids.unwrap_or_else(|| u_cids.clone());
|
let cids_vec = cids.unwrap_or_else(|| u_cids.clone());
|
||||||
let specified_cids: Vec<&str> = cids_vec.iter().map(AsRef::as_ref).collect();
|
let specified_cids: Vec<&str> = cids_vec.iter().map(AsRef::as_ref).collect();
|
||||||
|
|||||||
Reference in New Issue
Block a user