msyrs/notebooks/funcwise/bdate_range_util.ipynb
2025-04-13 11:16:03 +01:00

361 lines
12 KiB
Plaintext
Vendored
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# ! uv pip install E:\\Work\\ruzt\\msyrs --upgrade"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Python packages\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import macrosynergy\n",
"import pandas as pd\n",
"import numpy as np\n",
"import polars as pl\n",
"import os\n",
"import time\n",
"\n",
"from macrosynergy.panel import view_timelines\n",
"from macrosynergy.management.types import QuantamentalDataFrame\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Python bindings - `msyrs`\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import msyrs"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>bdates</th>\n",
" <th>0</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2000-01-03</td>\n",
" <td>2000-01-03</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2000-01-10</td>\n",
" <td>2000-01-10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2000-01-17</td>\n",
" <td>2000-01-17</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2000-01-24</td>\n",
" <td>2000-01-24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2000-01-31</td>\n",
" <td>2000-01-31</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1056</th>\n",
" <td>2020-03-30</td>\n",
" <td>2020-03-30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1057</th>\n",
" <td>2020-04-06</td>\n",
" <td>2020-04-06</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1058</th>\n",
" <td>2020-04-13</td>\n",
" <td>2020-04-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1059</th>\n",
" <td>2020-04-20</td>\n",
" <td>2020-04-20</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1060</th>\n",
" <td>2020-04-27</td>\n",
" <td>2020-04-27</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1061 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
" bdates 0\n",
"0 2000-01-03 2000-01-03\n",
"1 2000-01-10 2000-01-10\n",
"2 2000-01-17 2000-01-17\n",
"3 2000-01-24 2000-01-24\n",
"4 2000-01-31 2000-01-31\n",
"... ... ...\n",
"1056 2020-03-30 2020-03-30\n",
"1057 2020-04-06 2020-04-06\n",
"1058 2020-04-13 2020-04-13\n",
"1059 2020-04-20 2020-04-20\n",
"1060 2020-04-27 2020-04-27\n",
"\n",
"[1061 rows x 2 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='W').to_pandas()\n",
"y = pd.Series(pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='W-MON'))\n",
"\n",
"pd.concat([x, y], axis=1)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Results for M\t & \tBMS\t are exactly the same\n",
"Results for Q\t & \tBQS\t are exactly the same\n",
"Results for W\t & \tW-MON\t are exactly the same\n",
"Results for WF\t & \tW-FRI\t are exactly the same\n"
]
}
],
"source": [
"for rs_freq, pd_freq in [('M', 'BMS'), ('Q', 'BQS'), ('W', 'W-MON'), ('WF', 'W-FRI')]:\n",
"\n",
"\n",
" x = msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq=rs_freq).to_pandas()\n",
" y = pd.Series(pd.bdate_range(start='2000-01-01', end='2020-05-01', freq=pd_freq))\n",
"\n",
" e = x == y\n",
" res = e.all()\n",
" non_matching_df = pd.concat([x[~e], y[~e]], axis=1)\n",
" assert res, f\"Results for {rs_freq}\\t and \\t{pd_freq}\\t are not the same\\n{non_matching_df}\"\n",
" print(f\"Results for {rs_freq}\\t & \\t{pd_freq}\\t are exactly the same\")\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"23.5 μs ± 1.02 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
"67.4 μs ± 979 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
"1.97 ms ± 57.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
"4.65 ms ± 170 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
"28.3 ms ± 898 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n",
"93.8 ms ± 2.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='D')\n",
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='D')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='D')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='D')\n",
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='B')\n",
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='B')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"7.95 μs ± 146 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
"17.9 μs ± 108 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
"1.73 ms ± 20.8 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
"4 ms ± 69.3 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
"5.69 ms ± 139 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
"19.1 ms ± 268 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='WF')\n",
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='WF')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='WF')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='WF')\n",
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='W-FRI')\n",
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='W-FRI')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"6.9 μs ± 126 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
"13.1 μs ± 93.3 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
"1.73 ms ± 29.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
"4.2 ms ± 81.5 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
"931 μs ± 14.2 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
"3.05 ms ± 47.5 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='ME')\n",
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='ME')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='ME')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='ME')\n",
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BME')\n",
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BME')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.65 μs ± 69.1 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
"4.78 μs ± 38.7 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
"1.73 ms ± 122 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
"4.16 ms ± 286 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
"340 μs ± 11.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
"1.1 ms ± 11.5 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
]
}
],
"source": [
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='Q')\n",
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='Q')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='Q')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='Q')\n",
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BQS')\n",
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BQS')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.21 μs ± 83.4 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
"3.66 μs ± 198 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
"2.67 ms ± 459 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
"3.71 ms ± 143 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
"98.7 μs ± 1.47 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
"289 μs ± 15.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
]
}
],
"source": [
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='YE')\n",
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='YE')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='YE')\n",
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='YE')\n",
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BYE')\n",
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BYE')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}