mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-11-19 08:16:10 +00:00
Compare commits
14 Commits
8f5f276efd
...
rawdf
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
19e91cfe47 | ||
| 4e4d1c6625 | |||
|
|
cfbd54be7a | ||
|
|
a4645dbc93 | ||
|
|
658eb0d121 | ||
|
|
93f88ab537 | ||
|
|
39d1a1b632 | ||
|
|
b4d42c1dda | ||
|
|
2b969f4eaf | ||
|
|
1d301b45b7 | ||
|
|
4f60e31d55 | ||
|
|
d938d9adc3 | ||
|
|
5a5bd4777d | ||
|
|
cf2779c5a1 |
360
notebooks/funcwise/bdate_range_util.ipynb
Normal file
360
notebooks/funcwise/bdate_range_util.ipynb
Normal file
@@ -0,0 +1,360 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# ! uv pip install E:\\Work\\ruzt\\msyrs --upgrade"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Import Python packages\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import macrosynergy\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import polars as pl\n",
|
||||
"import os\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"from macrosynergy.panel import view_timelines\n",
|
||||
"from macrosynergy.management.types import QuantamentalDataFrame\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Import Python bindings - `msyrs`\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import msyrs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>bdates</th>\n",
|
||||
" <th>0</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>2000-01-03</td>\n",
|
||||
" <td>2000-01-03</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2000-01-10</td>\n",
|
||||
" <td>2000-01-10</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2000-01-17</td>\n",
|
||||
" <td>2000-01-17</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>2000-01-24</td>\n",
|
||||
" <td>2000-01-24</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>2000-01-31</td>\n",
|
||||
" <td>2000-01-31</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>...</th>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1056</th>\n",
|
||||
" <td>2020-03-30</td>\n",
|
||||
" <td>2020-03-30</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1057</th>\n",
|
||||
" <td>2020-04-06</td>\n",
|
||||
" <td>2020-04-06</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1058</th>\n",
|
||||
" <td>2020-04-13</td>\n",
|
||||
" <td>2020-04-13</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1059</th>\n",
|
||||
" <td>2020-04-20</td>\n",
|
||||
" <td>2020-04-20</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1060</th>\n",
|
||||
" <td>2020-04-27</td>\n",
|
||||
" <td>2020-04-27</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>1061 rows × 2 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" bdates 0\n",
|
||||
"0 2000-01-03 2000-01-03\n",
|
||||
"1 2000-01-10 2000-01-10\n",
|
||||
"2 2000-01-17 2000-01-17\n",
|
||||
"3 2000-01-24 2000-01-24\n",
|
||||
"4 2000-01-31 2000-01-31\n",
|
||||
"... ... ...\n",
|
||||
"1056 2020-03-30 2020-03-30\n",
|
||||
"1057 2020-04-06 2020-04-06\n",
|
||||
"1058 2020-04-13 2020-04-13\n",
|
||||
"1059 2020-04-20 2020-04-20\n",
|
||||
"1060 2020-04-27 2020-04-27\n",
|
||||
"\n",
|
||||
"[1061 rows x 2 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"x = msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='W').to_pandas()\n",
|
||||
"y = pd.Series(pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='W-MON'))\n",
|
||||
"\n",
|
||||
"pd.concat([x, y], axis=1)\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Results for M\t & \tBMS\t are exactly the same\n",
|
||||
"Results for Q\t & \tBQS\t are exactly the same\n",
|
||||
"Results for W\t & \tW-MON\t are exactly the same\n",
|
||||
"Results for WF\t & \tW-FRI\t are exactly the same\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for rs_freq, pd_freq in [('M', 'BMS'), ('Q', 'BQS'), ('W', 'W-MON'), ('WF', 'W-FRI')]:\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" x = msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq=rs_freq).to_pandas()\n",
|
||||
" y = pd.Series(pd.bdate_range(start='2000-01-01', end='2020-05-01', freq=pd_freq))\n",
|
||||
"\n",
|
||||
" e = x == y\n",
|
||||
" res = e.all()\n",
|
||||
" non_matching_df = pd.concat([x[~e], y[~e]], axis=1)\n",
|
||||
" assert res, f\"Results for {rs_freq}\\t and \\t{pd_freq}\\t are not the same\\n{non_matching_df}\"\n",
|
||||
" print(f\"Results for {rs_freq}\\t & \\t{pd_freq}\\t are exactly the same\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"23.5 μs ± 1.02 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
|
||||
"67.4 μs ± 979 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
|
||||
"1.97 ms ± 57.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||
"4.65 ms ± 170 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||
"28.3 ms ± 898 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n",
|
||||
"93.8 ms ± 2.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='D')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='D')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='D')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='D')\n",
|
||||
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='B')\n",
|
||||
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='B')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"7.95 μs ± 146 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||
"17.9 μs ± 108 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||
"1.73 ms ± 20.8 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||
"4 ms ± 69.3 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||
"5.69 ms ± 139 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||
"19.1 ms ± 268 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='WF')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='WF')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='WF')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='WF')\n",
|
||||
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='W-FRI')\n",
|
||||
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='W-FRI')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"6.9 μs ± 126 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||
"13.1 μs ± 93.3 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||
"1.73 ms ± 29.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||
"4.2 ms ± 81.5 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||
"931 μs ± 14.2 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||
"3.05 ms ± 47.5 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='ME')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='ME')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='ME')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='ME')\n",
|
||||
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BME')\n",
|
||||
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BME')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"3.65 μs ± 69.1 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||
"4.78 μs ± 38.7 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||
"1.73 ms ± 122 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||
"4.16 ms ± 286 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||
"340 μs ± 11.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
||||
"1.1 ms ± 11.5 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='Q')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='Q')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='Q')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='Q')\n",
|
||||
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BQS')\n",
|
||||
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BQS')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"3.21 μs ± 83.4 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||
"3.66 μs ± 198 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n",
|
||||
"2.67 ms ± 459 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||
"3.71 ms ± 143 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
||||
"98.7 μs ± 1.47 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n",
|
||||
"289 μs ± 15.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='2000-01-01', end_date='2020-05-01', freq='YE')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_opt(start_date='1971-01-01', end_date='2040-05-01', freq='YE')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='2000-01-01', end_date='2020-05-01', freq='YE')\n",
|
||||
"%timeit msyrs.utils.get_bdates_series_default_pl(start_date='1971-01-01', end_date='2040-05-01', freq='YE')\n",
|
||||
"%timeit pd.bdate_range(start='2000-01-01', end='2020-05-01', freq='BYE')\n",
|
||||
"%timeit pd.bdate_range(start='1971-01-01', end='2040-05-01', freq='BYE')"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -5,18 +5,31 @@ use pyo3_polars::{PyDataFrame, PySeries};
|
||||
#[allow(deprecated)]
|
||||
#[pymodule]
|
||||
pub fn utils(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||
m.add_function(wrap_pyfunction!(get_bdates_series_default, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(get_bdates_series_default_pl, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(get_bdates_series_default_opt, m)?)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[pyfunction]
|
||||
pub fn get_bdates_series_default(
|
||||
pub fn get_bdates_series_default_pl(
|
||||
start_date: String,
|
||||
end_date: String,
|
||||
freq: Option<String>,
|
||||
) -> PyResult<PySeries> {
|
||||
Ok(PySeries(
|
||||
crate::utils::dateutils::get_bdates_series_default(start_date, end_date, freq)
|
||||
crate::utils::dateutils::get_bdates_series_default_pl(start_date, end_date, freq)
|
||||
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?,
|
||||
))
|
||||
}
|
||||
|
||||
#[pyfunction]
|
||||
pub fn get_bdates_series_default_opt(
|
||||
start_date: String,
|
||||
end_date: String,
|
||||
freq: Option<String>,
|
||||
) -> PyResult<PySeries> {
|
||||
Ok(PySeries(
|
||||
crate::utils::dateutils::get_bdates_series_default_opt(start_date, end_date, freq)
|
||||
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?,
|
||||
))
|
||||
}
|
||||
|
||||
281
src/core/dateseries.rs
Normal file
281
src/core/dateseries.rs
Normal file
@@ -0,0 +1,281 @@
|
||||
//! # DateSeries and BDateSeries Implementations
|
||||
//!
|
||||
//! This module provides two date-handling types using the [`chrono`](https://docs.rs/chrono) crate:
|
||||
//!
|
||||
//! - [`DateSeries`]: Stores any set of calendar dates and allows adding/subtracting *calendar days*.
|
||||
//! - [`BDateSeries`]: Stores only Monday–Friday business days and interprets add/sub as *business day* shifts,
|
||||
//! skipping weekends (e.g., adding 1 to Friday goes to Monday).
|
||||
//!
|
||||
//! Both types also provide a [`from_iso8601_range`](#method.from_iso8601_range) constructor
|
||||
//! that builds a date series (or business‑date series) from a start/end string (YYYY‑MM‑DD).
|
||||
|
||||
use chrono::{Datelike, Duration, NaiveDate, ParseResult};
|
||||
use std::ops::{Add, Sub};
|
||||
|
||||
/// Determines if the date is Saturday or Sunday.
|
||||
fn is_weekend(date: NaiveDate) -> bool {
|
||||
matches!(date.weekday(), chrono::Weekday::Sat | chrono::Weekday::Sun)
|
||||
}
|
||||
|
||||
/// A `DateSeries` stores a list of [`NaiveDate`] values and shifts by **calendar days**.
|
||||
///
|
||||
/// ## Example Usage
|
||||
///
|
||||
/// ```
|
||||
/// use chrono::NaiveDate;
|
||||
/// use msyrs::core::dateseries::DateSeries;
|
||||
///
|
||||
/// // Create from explicit dates
|
||||
/// let ds = DateSeries::new(vec![
|
||||
/// NaiveDate::from_ymd_opt(2023, 7, 14).unwrap(), // a Friday
|
||||
/// NaiveDate::from_ymd_opt(2023, 7, 15).unwrap(), // a Saturday
|
||||
/// ]);
|
||||
///
|
||||
/// // Shift forward by 5 calendar days
|
||||
/// let ds_plus = ds + 5;
|
||||
/// // 2023-07-14 + 5 => 2023-07-19 (Wednesday)
|
||||
/// // 2023-07-15 + 5 => 2023-07-20 (Thursday)
|
||||
///
|
||||
/// assert_eq!(ds_plus.data()[0], NaiveDate::from_ymd_opt(2023, 7, 19).unwrap());
|
||||
/// assert_eq!(ds_plus.data()[1], NaiveDate::from_ymd_opt(2023, 7, 20).unwrap());
|
||||
/// ```
|
||||
///
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DateSeries {
|
||||
data: Vec<NaiveDate>,
|
||||
}
|
||||
|
||||
impl DateSeries {
|
||||
/// Creates a new `DateSeries` from a vector of [`NaiveDate`] values.
|
||||
///
|
||||
/// # Panics
|
||||
/// - Does not panic on invalid weekend or anything; this type accepts all valid dates.
|
||||
pub fn new(data: Vec<NaiveDate>) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
|
||||
/// Constructs a `DateSeries` by parsing an ISO‑8601 start/end string (YYYY‑MM‑DD)
|
||||
/// and including **every calendar date** from start to end (inclusive).
|
||||
///
|
||||
/// # Errors
|
||||
/// - Returns a [`chrono::ParseError`](chrono::ParseError) if parsing fails.
|
||||
/// - Panics if `start` > `end` chronologically.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use msyrs::core::dateseries::DateSeries;
|
||||
/// # fn main() -> Result<(), chrono::ParseError> {
|
||||
/// let ds = DateSeries::from_iso8601_range("2023-07-14", "2023-07-16")?;
|
||||
/// assert_eq!(ds.data().len(), 3);
|
||||
/// # Ok(())
|
||||
/// # }
|
||||
/// ```
|
||||
pub fn from_iso8601_range(start: &str, end: &str) -> ParseResult<Self> {
|
||||
let start_date = NaiveDate::parse_from_str(start, "%Y-%m-%d")?;
|
||||
let end_date = NaiveDate::parse_from_str(end, "%Y-%m-%d")?;
|
||||
assert!(
|
||||
start_date <= end_date,
|
||||
"start date cannot be after end date"
|
||||
);
|
||||
|
||||
let mut dates = Vec::new();
|
||||
let mut current = start_date;
|
||||
while current <= end_date {
|
||||
dates.push(current);
|
||||
current = current
|
||||
.checked_add_signed(Duration::days(1))
|
||||
.expect("Date overflow in from_iso8601_range");
|
||||
}
|
||||
Ok(Self::new(dates))
|
||||
}
|
||||
|
||||
/// Returns a reference to the underlying slice of dates.
|
||||
pub fn data(&self) -> &[NaiveDate] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
/// Internal helper applying a function to each date.
|
||||
fn apply<F>(&self, op: F) -> Self
|
||||
where
|
||||
F: Fn(NaiveDate) -> NaiveDate,
|
||||
{
|
||||
let new_data = self.data.iter().map(|&date| op(date)).collect();
|
||||
Self { data: new_data }
|
||||
}
|
||||
}
|
||||
|
||||
/// Implements adding calendar days to each `NaiveDate`.
|
||||
///
|
||||
/// If the shifted date goes out of chrono's valid range, it panics.
|
||||
impl Add<i64> for DateSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: i64) -> Self::Output {
|
||||
self.apply(|date| {
|
||||
date.checked_add_signed(Duration::days(rhs))
|
||||
.expect("Overflow in date addition")
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Implements subtracting calendar days from each `NaiveDate`.
|
||||
///
|
||||
/// If the shifted date goes out of chrono's valid range, it panics.
|
||||
impl Sub<i64> for DateSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: i64) -> Self::Output {
|
||||
self.apply(|date| {
|
||||
date.checked_sub_signed(Duration::days(rhs))
|
||||
.expect("Overflow in date subtraction")
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// A “Business Date Series” for Monday–Friday only.
|
||||
///
|
||||
/// 1. The constructor disallows weekend dates (panics if any date is Sat/Sun).
|
||||
/// 2. Adding or subtracting an `i64` interprets that integer as *business days*, skipping weekends.
|
||||
/// For example, adding 1 to a Friday yields the following Monday.
|
||||
///
|
||||
/// ## Example Usage
|
||||
///
|
||||
/// ```
|
||||
/// use chrono::NaiveDate;
|
||||
/// use msyrs::core::dateseries::BDateSeries;
|
||||
///
|
||||
/// // Friday
|
||||
/// let friday = NaiveDate::from_ymd_opt(2023, 7, 14).unwrap();
|
||||
/// let mut bds = BDateSeries::new(vec![friday]);
|
||||
///
|
||||
/// // Adding 1 “business day” => next Monday, 2023-07-17
|
||||
/// bds = bds + 1;
|
||||
/// assert_eq!(bds.data()[0], NaiveDate::from_ymd_opt(2023, 7, 17).unwrap());
|
||||
/// ```
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BDateSeries {
|
||||
data: Vec<NaiveDate>,
|
||||
}
|
||||
|
||||
impl BDateSeries {
|
||||
/// Creates a new `BDateSeries`, panicking if any of the supplied dates is on Saturday/Sunday.
|
||||
pub fn new(data: Vec<NaiveDate>) -> Self {
|
||||
for &d in &data {
|
||||
if is_weekend(d) {
|
||||
panic!("BDateSeries cannot contain weekend dates: {}", d);
|
||||
}
|
||||
}
|
||||
Self { data }
|
||||
}
|
||||
|
||||
/// Constructs a `BDateSeries` by parsing an ISO‑8601 start/end string (YYYY‑MM‑DD).
|
||||
///
|
||||
/// Only Monday–Friday dates within `[start, end]` are included in the series.
|
||||
///
|
||||
/// # Errors
|
||||
/// - Returns a [`chrono::ParseError`](chrono::ParseError) if parsing fails.
|
||||
/// - Panics if `start` > `end` chronologically.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use msyrs::core::dateseries::BDateSeries;
|
||||
/// # fn main() -> Result<(), chrono::ParseError> {
|
||||
/// let bds = BDateSeries::from_iso8601_range("2023-07-14", "2023-07-18")?;
|
||||
/// // 2023-07-14 (Friday), 2023-07-15 (Saturday) => skipped,
|
||||
/// // 2023-07-16 (Sunday) => skipped,
|
||||
/// // 2023-07-17 (Monday), 2023-07-18 (Tuesday)
|
||||
/// // so total 3 valid business days
|
||||
/// assert_eq!(bds.data().len(), 3);
|
||||
/// # Ok(())
|
||||
/// # }
|
||||
/// ```
|
||||
pub fn from_iso8601_range(start: &str, end: &str) -> ParseResult<Self> {
|
||||
let start_date = NaiveDate::parse_from_str(start, "%Y-%m-%d")?;
|
||||
let end_date = NaiveDate::parse_from_str(end, "%Y-%m-%d")?;
|
||||
assert!(
|
||||
start_date <= end_date,
|
||||
"start date cannot be after end date"
|
||||
);
|
||||
|
||||
let mut dates = Vec::new();
|
||||
let mut current = start_date;
|
||||
while current <= end_date {
|
||||
if !is_weekend(current) {
|
||||
dates.push(current);
|
||||
}
|
||||
current = current
|
||||
.checked_add_signed(Duration::days(1))
|
||||
.expect("Date overflow in from_iso8601_range");
|
||||
}
|
||||
Ok(Self::new(dates))
|
||||
}
|
||||
|
||||
/// Returns a reference to the underlying slice of dates.
|
||||
pub fn data(&self) -> &[NaiveDate] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
/// Internal helper that tries to shift a date forward or backward by one day at a time,
|
||||
/// skipping weekends, for a total of `delta` business days.
|
||||
fn shift_business_days(date: NaiveDate, delta: i64) -> NaiveDate {
|
||||
if delta == 0 {
|
||||
return date;
|
||||
}
|
||||
|
||||
let step = if delta > 0 { 1 } else { -1 };
|
||||
let abs_delta = delta.abs();
|
||||
|
||||
let mut new_date = date;
|
||||
for _ in 0..abs_delta {
|
||||
// Move by 1 day in the correct direction
|
||||
new_date = new_date
|
||||
.checked_add_signed(Duration::days(step))
|
||||
.expect("Overflow in BDateSeries add/sub");
|
||||
// If we land on weekend, keep moving until Monday..Friday
|
||||
while is_weekend(new_date) {
|
||||
new_date = new_date
|
||||
.checked_add_signed(Duration::days(step))
|
||||
.expect("Overflow in BDateSeries skipping weekend");
|
||||
}
|
||||
}
|
||||
new_date
|
||||
}
|
||||
|
||||
/// Internal helper to apply a shift of `delta` business days to each date.
|
||||
fn apply(&self, delta: i64) -> Self {
|
||||
let new_data = self
|
||||
.data
|
||||
.iter()
|
||||
.map(|&date| Self::shift_business_days(date, delta))
|
||||
.collect();
|
||||
Self { data: new_data }
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement *business day* addition for `BDateSeries`.
|
||||
///
|
||||
/// # Panics
|
||||
/// - If the resulting date(s) overflow `NaiveDate` range.
|
||||
/// - `BDateSeries` is guaranteed to remain Monday..Friday after the shift.
|
||||
impl Add<i64> for BDateSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: i64) -> Self::Output {
|
||||
self.apply(rhs)
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement *business day* subtraction for `BDateSeries`.
|
||||
///
|
||||
/// # Panics
|
||||
/// - If the resulting date(s) overflow `NaiveDate`.
|
||||
/// - `BDateSeries` is guaranteed to remain Monday..Friday after the shift.
|
||||
impl Sub<i64> for BDateSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: i64) -> Self::Output {
|
||||
self.apply(-rhs)
|
||||
}
|
||||
}
|
||||
0
src/core/df.rs
Normal file
0
src/core/df.rs
Normal file
3
src/core/mod.rs
Normal file
3
src/core/mod.rs
Normal file
@@ -0,0 +1,3 @@
|
||||
pub mod df;
|
||||
pub mod xseries;
|
||||
pub mod dateseries;
|
||||
223
src/core/xseries.rs
Normal file
223
src/core/xseries.rs
Normal file
@@ -0,0 +1,223 @@
|
||||
use std::ops::{Add, Div, Mul, Sub};
|
||||
|
||||
//
|
||||
// 1) Define a float series: FSeries
|
||||
//
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct FSeries {
|
||||
data: Vec<f64>,
|
||||
}
|
||||
|
||||
impl FSeries {
|
||||
/// Create a new FSeries from a vector of f64 values.
|
||||
pub fn new(data: Vec<f64>) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
/// Element‑wise helper applying an operation between two FSeries.
|
||||
pub fn apply<F>(&self, other: &Self, op: F) -> Self
|
||||
where
|
||||
F: Fn(f64, f64) -> f64,
|
||||
{
|
||||
assert!(
|
||||
self.len() == other.len(),
|
||||
"FSeries must have the same length to apply operations."
|
||||
);
|
||||
let data = self
|
||||
.data
|
||||
.iter()
|
||||
.zip(other.data.iter())
|
||||
.map(|(&a, &b)| op(a, b))
|
||||
.collect();
|
||||
FSeries { data }
|
||||
}
|
||||
|
||||
/// Access to the underlying data
|
||||
pub fn data(&self) -> &[f64] {
|
||||
&self.data
|
||||
}
|
||||
}
|
||||
|
||||
// Macros for float series arithmetic (element‑wise)
|
||||
macro_rules! impl_fseries_bin_op {
|
||||
($trait:ident, $method:ident, $op:tt) => {
|
||||
impl $trait for FSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn $method(self, rhs: Self) -> Self::Output {
|
||||
self.apply(&rhs, |a, b| a $op b)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_fseries_bin_op!(Add, add, +);
|
||||
impl_fseries_bin_op!(Sub, sub, -);
|
||||
impl_fseries_bin_op!(Mul, mul, *);
|
||||
impl_fseries_bin_op!(Div, div, /);
|
||||
|
||||
macro_rules! impl_fseries_scalar_op {
|
||||
($trait:ident, $method:ident, $op:tt) => {
|
||||
impl $trait<f64> for FSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn $method(mut self, scalar: f64) -> Self::Output {
|
||||
for x in self.data.iter_mut() {
|
||||
*x = *x $op scalar;
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_fseries_scalar_op!(Add, add, +);
|
||||
impl_fseries_scalar_op!(Sub, sub, -);
|
||||
impl_fseries_scalar_op!(Mul, mul, *);
|
||||
impl_fseries_scalar_op!(Div, div, /);
|
||||
|
||||
//
|
||||
// 2) Define an integer series: ISeries
|
||||
//
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ISeries {
|
||||
data: Vec<i64>,
|
||||
}
|
||||
|
||||
impl ISeries {
|
||||
/// Create an ISeries from a vector of i64 values.
|
||||
pub fn new(data: Vec<i64>) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
pub fn data(&self) -> &[i64] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
/// Element‑wise helper for integer series.
|
||||
pub fn apply<F>(&self, other: &Self, op: F) -> Self
|
||||
where
|
||||
F: Fn(i64, i64) -> i64,
|
||||
{
|
||||
assert!(
|
||||
self.len() == other.len(),
|
||||
"ISeries must have the same length to apply operations."
|
||||
);
|
||||
let data = self
|
||||
.data
|
||||
.iter()
|
||||
.zip(other.data.iter())
|
||||
.map(|(&a, &b)| op(a, b))
|
||||
.collect();
|
||||
ISeries { data }
|
||||
}
|
||||
}
|
||||
|
||||
// Macros for integer series arithmetic (element‑wise)
|
||||
macro_rules! impl_iseries_bin_op {
|
||||
($trait:ident, $method:ident, $op:tt) => {
|
||||
impl $trait for ISeries {
|
||||
type Output = Self;
|
||||
|
||||
fn $method(self, rhs: Self) -> Self::Output {
|
||||
self.apply(&rhs, |a, b| a $op b)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_iseries_bin_op!(Add, add, +);
|
||||
impl_iseries_bin_op!(Sub, sub, -);
|
||||
impl_iseries_bin_op!(Mul, mul, *);
|
||||
impl_iseries_bin_op!(Div, div, /); // integer division (floor trunc)
|
||||
|
||||
// Optional scalar operations (for i64)
|
||||
macro_rules! impl_iseries_scalar_op {
|
||||
($trait:ident, $method:ident, $op:tt) => {
|
||||
impl $trait<i64> for ISeries {
|
||||
type Output = Self;
|
||||
|
||||
fn $method(mut self, scalar: i64) -> Self::Output {
|
||||
for x in self.data.iter_mut() {
|
||||
*x = *x $op scalar;
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_iseries_scalar_op!(Add, add, +);
|
||||
impl_iseries_scalar_op!(Sub, sub, -);
|
||||
impl_iseries_scalar_op!(Mul, mul, *);
|
||||
impl_iseries_scalar_op!(Div, div, /); // floor/trunc division by scalar
|
||||
|
||||
/// A boolean series: BSeries
|
||||
///
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BSeries {
|
||||
data: Vec<bool>,
|
||||
}
|
||||
|
||||
impl BSeries {
|
||||
pub fn new(data: Vec<bool>) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
pub fn data(&self) -> &[bool] {
|
||||
&self.data
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an FSeries to ISeries by truncation (floor cast).
|
||||
impl From<FSeries> for ISeries {
|
||||
fn from(fseries: FSeries) -> Self {
|
||||
let data = fseries
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|val| val as i64) // trunc cast
|
||||
.collect();
|
||||
ISeries::new(data)
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement conversion from ISeries to FSeries by casting to f64.
|
||||
impl From<ISeries> for FSeries {
|
||||
fn from(iseries: ISeries) -> Self {
|
||||
let data = iseries.data.into_iter().map(|val| val as f64).collect();
|
||||
FSeries::new(data)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an ISeries to BSeries by checking if each value is non-zero.
|
||||
impl From<ISeries> for BSeries {
|
||||
fn from(iseries: ISeries) -> Self {
|
||||
let data = iseries.data.into_iter().map(|val| val != 0).collect();
|
||||
BSeries::new(data)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<BSeries> for ISeries {
|
||||
fn from(bseries: BSeries) -> Self {
|
||||
let data = bseries
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|val| if val { 1 } else { 0 })
|
||||
.collect();
|
||||
ISeries::new(data)
|
||||
}
|
||||
}
|
||||
@@ -102,7 +102,7 @@ impl Default for JPMaQSDownloadGetIndicatorArgs {
|
||||
/// Struct for downloading data from the JPMaQS data from JPMorgan DataQuery API.
|
||||
///
|
||||
/// ## Example Usage
|
||||
/// ```rust
|
||||
/// ```ignore
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||
/// use polars::prelude::*;
|
||||
@@ -140,7 +140,7 @@ impl Default for JPMaQSDownloadGetIndicatorArgs {
|
||||
/// Ok(_) => println!("Saved indicators to disk"),
|
||||
/// Err(e) => println!("Error saving indicators: {:?}", e),
|
||||
/// }
|
||||
///
|
||||
/// ```
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct JPMaQSDownload {
|
||||
requester: DQRequester,
|
||||
@@ -277,7 +277,7 @@ impl JPMaQSDownload {
|
||||
///
|
||||
/// Usage:
|
||||
///
|
||||
/// ```rust
|
||||
/// ```ignore
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||
/// let mut jpamqs_download = JPMaQSDownload::default();
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
// #![doc = include_str!("../README.md")]
|
||||
// uncomment the above line to include the README.md file in the documentation
|
||||
|
||||
//! # msyrs
|
||||
//!
|
||||
@@ -18,6 +19,9 @@
|
||||
/// Documentation and type-stubs for the `msyrs` Python API.
|
||||
pub mod _py;
|
||||
|
||||
/// Implementation for the `core` module.
|
||||
pub mod core;
|
||||
|
||||
/// Implementation for the `download` module.
|
||||
pub mod download;
|
||||
|
||||
|
||||
@@ -51,6 +51,8 @@ class panel:
|
||||
def linear_composite(*args, **kwargs) -> DataFrame: ...
|
||||
|
||||
class utils:
|
||||
__all__ = ["get_bdates_series_default"]
|
||||
__all__ = ["get_bdates_series_default", "get_bdates_series_default_opt"]
|
||||
@staticmethod
|
||||
def get_bdates_series_default(*args, **kwargs) -> Series: ...
|
||||
def get_bdates_series_default_pl(*args, **kwargs) -> Series: ...
|
||||
@staticmethod
|
||||
def get_bdates_series_default_opt(*args, **kwargs) -> Series: ...
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
use crate::utils::bdates;
|
||||
use crate::utils::bdates::BDateFreq;
|
||||
use chrono::NaiveDate;
|
||||
use chrono::{Datelike, Weekday};
|
||||
use polars::prelude::*;
|
||||
@@ -57,61 +59,6 @@ pub fn get_bdates_list(
|
||||
Ok(business_days)
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum BDateFreq {
|
||||
Daily,
|
||||
WeeklyMonday,
|
||||
MonthStart,
|
||||
QuarterStart,
|
||||
YearStart,
|
||||
MonthEnd,
|
||||
QuarterEnd,
|
||||
WeeklyFriday,
|
||||
YearEnd,
|
||||
}
|
||||
|
||||
impl BDateFreq {
|
||||
pub fn from_string(freq: String) -> Result<Self, Box<dyn Error>> {
|
||||
// use `from_str` to convert the string to a BDateFreq enum
|
||||
Self::from_str(&freq)
|
||||
}
|
||||
pub fn from_str(freq: &str) -> Result<Self, Box<dyn Error>> {
|
||||
match freq {
|
||||
"D" => Ok(BDateFreq::Daily),
|
||||
"W" => Ok(BDateFreq::WeeklyMonday),
|
||||
"M" => Ok(BDateFreq::MonthStart),
|
||||
"Q" => Ok(BDateFreq::QuarterStart),
|
||||
"A" => Ok(BDateFreq::YearStart),
|
||||
"ME" => Ok(BDateFreq::MonthEnd),
|
||||
"QE" => Ok(BDateFreq::QuarterEnd),
|
||||
"WF" => Ok(BDateFreq::WeeklyFriday),
|
||||
"YE" => Ok(BDateFreq::YearEnd),
|
||||
_ => Err("Invalid frequency specified".into()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn agg_type(&self) -> AggregationType {
|
||||
match self {
|
||||
BDateFreq::Daily
|
||||
| BDateFreq::WeeklyMonday
|
||||
| BDateFreq::MonthStart
|
||||
| BDateFreq::QuarterStart
|
||||
| BDateFreq::YearStart => AggregationType::Start,
|
||||
BDateFreq::WeeklyFriday
|
||||
| BDateFreq::MonthEnd
|
||||
| BDateFreq::QuarterEnd
|
||||
| BDateFreq::YearEnd => AggregationType::End,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum AggregationType {
|
||||
Start, // Indicates picking the first date in a group.
|
||||
End, // Indicates picking the last date in a group.
|
||||
}
|
||||
|
||||
// Map a BDateFreq to an AggregationType.
|
||||
fn compute_group_key(d: NaiveDate, freq: BDateFreq) -> String {
|
||||
match freq {
|
||||
// For Daily, each date is its own group.
|
||||
@@ -134,19 +81,32 @@ fn compute_group_key(d: NaiveDate, freq: BDateFreq) -> String {
|
||||
BDateFreq::YearStart | BDateFreq::YearEnd => format!("{}", d.year()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_bdates_series_default(
|
||||
pub fn get_bdates_series_default_opt(
|
||||
start_date: String,
|
||||
end_date: String,
|
||||
freq: Option<String>,
|
||||
) -> Result<Series, Box<dyn Error>> {
|
||||
let freq = freq.unwrap_or_else(|| "D".to_string());
|
||||
let freq = BDateFreq::from_str(&freq)?;
|
||||
get_bdates_series(start_date, end_date, freq)
|
||||
let series = Series::new(
|
||||
"bdates".into(),
|
||||
bdates::get_bdates_list_with_freq(&start_date, &end_date, freq)?,
|
||||
);
|
||||
Ok(series)
|
||||
}
|
||||
|
||||
pub fn get_bdates_series_default_pl(
|
||||
start_date: String,
|
||||
end_date: String,
|
||||
freq: Option<String>,
|
||||
) -> Result<Series, Box<dyn Error>> {
|
||||
let freq = freq.unwrap_or_else(|| "D".to_string());
|
||||
let freq = BDateFreq::from_str(&freq)?;
|
||||
get_bdates_series_pl(start_date, end_date, freq)
|
||||
}
|
||||
|
||||
/// Get the business dates between two dates as a Series.
|
||||
pub fn get_bdates_series(
|
||||
pub fn get_bdates_series_pl(
|
||||
start_date: String,
|
||||
end_date: String,
|
||||
freq: BDateFreq,
|
||||
@@ -163,8 +123,8 @@ pub fn get_bdates_series(
|
||||
])?;
|
||||
let gb = df.lazy().group_by(["group"]);
|
||||
let aggx = match freq.agg_type() {
|
||||
AggregationType::Start => gb.agg([col("bdates").first()]),
|
||||
AggregationType::End => gb.agg([col("bdates").last()]),
|
||||
bdates::AggregationType::Start => gb.agg([col("bdates").first()]),
|
||||
bdates::AggregationType::End => gb.agg([col("bdates").last()]),
|
||||
};
|
||||
let result = aggx.collect()?;
|
||||
let result = result
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
pub mod qdf;
|
||||
pub mod bdates;
|
||||
pub mod dateutils;
|
||||
pub mod misc;
|
||||
pub mod dateutils;
|
||||
pub mod qdf;
|
||||
|
||||
Reference in New Issue
Block a user