mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-08-20 04:30:01 +00:00
update module structure
This commit is contained in:
parent
566c7be71d
commit
d4721a0b79
2
.gitignore
vendored
2
.gitignore
vendored
@ -5,7 +5,7 @@ dev/
|
||||
*.pyc
|
||||
__pycache__/
|
||||
*.log
|
||||
|
||||
.idea/
|
||||
/target
|
||||
|
||||
data/
|
@ -402,7 +402,7 @@ fn timeseries_list_to_dataframe(
|
||||
timeseries_list: Vec<DQTimeSeries>,
|
||||
dropna: bool,
|
||||
) -> Result<DataFrame, Box<dyn Error>> {
|
||||
let mut output_df = DataFrame::new(vec![]).expect("Failed to create DataFrame");
|
||||
let mut output_df: DataFrame;
|
||||
|
||||
if let Some((first, rest)) = timeseries_list.split_first() {
|
||||
// Convert the first timeseries to DataFrame and clone it to avoid modifying the original
|
||||
@ -438,7 +438,7 @@ fn timeseries_list_to_dataframe(
|
||||
|
||||
output_df = result_df.clone();
|
||||
} else {
|
||||
println!("No timeseries provided.");
|
||||
return Err("No timeseries provided".into());
|
||||
}
|
||||
|
||||
// drop rows where all values are NA
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::download::oauth_client::OAuthClient;
|
||||
use crate::download::helpers::DQTimeseriesRequestArgs;
|
||||
use crate::download::oauth_client::OAuthClient;
|
||||
use futures::future;
|
||||
use reqwest::header::{HeaderMap, HeaderName, HeaderValue};
|
||||
use std::error::Error;
|
||||
|
@ -1,4 +1,4 @@
|
||||
#![doc = include_str!("../README.md")]
|
||||
|
||||
pub mod download;
|
||||
pub mod utils;
|
||||
pub mod utils;
|
||||
|
116
src/main.rs
116
src/main.rs
@ -1,5 +1,9 @@
|
||||
use msyrs::download::jpmaqsdownload::{JPMaQSDownload, JPMaQSDownloadGetIndicatorArgs};
|
||||
use msyrs::utils::dftools as msyrs_dftools;
|
||||
// use msyrs::utils::qdf::load::*;
|
||||
// use msyrs::utils::qdf::dftools::*;
|
||||
// use msyrs::utils::qdf::core::*;
|
||||
use msyrs::utils::qdf::*;
|
||||
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn download_stuff() {
|
||||
@ -42,7 +46,7 @@ fn download_stuff() {
|
||||
start.elapsed()
|
||||
);
|
||||
|
||||
if !msyrs_dftools::is_quantamental_dataframe(&res_df) {
|
||||
if !is_quantamental_dataframe(&res_df) {
|
||||
println!("DataFrame is not a quantamental DataFrame");
|
||||
} else {
|
||||
println!("DataFrame is a quantamental DataFrame");
|
||||
@ -56,16 +60,110 @@ fn main() {
|
||||
// println!("{:?}", df);
|
||||
// load_quantamental_dataframe_from_download_bank
|
||||
// let st_pth = "E:/Work/ruzt/msyrs/data/JPMaQSData/";
|
||||
let st_pth = "E:/Work/jpmaqs-isc-git/jpmaqs-iscs";
|
||||
|
||||
let df = msyrs_dftools::load_quantamental_dataframe_from_download_bank(
|
||||
let start = std::time::Instant::now();
|
||||
let st_pth = "E:\\Work\\jpmaqs-data\\data";
|
||||
|
||||
let mega_df = load_quantamental_dataframe_from_download_bank(
|
||||
st_pth,
|
||||
Some(vec!["AUD", "USD", "GBP", "JPY", "EUR", "CAD", "CHF", "INR", "CNY"]),
|
||||
Some(vec!["EQXR_NSA", "FXXR_NSA", "RIR_NSA", "ALLIFCDSGDP_NSA"]),
|
||||
// Some(vec!["AUD", "USD", "GBP", "JPY"]),
|
||||
// Some(vec!["RIR_NSA", "EQXR_NSA"]),
|
||||
None,
|
||||
None,
|
||||
// Some(vec!["EQXR_NSA", "RIR_NSA"]),
|
||||
// None
|
||||
Some(vec![
|
||||
"AUD_EQXR_NSA",
|
||||
"USD_EQXR_NSA",
|
||||
"GBP_EQXR_NSA",
|
||||
"JPY_EQXR_NSA",
|
||||
"AUD_RIR_NSA",
|
||||
"USD_RIR_NSA",
|
||||
"GBP_RIR_NSA",
|
||||
"JPY_RIR_NSA",
|
||||
]),
|
||||
)
|
||||
.unwrap();
|
||||
println!("{:?}", df);
|
||||
.unwrap();
|
||||
|
||||
// download_stuff();
|
||||
let end = start.elapsed();
|
||||
println!("Loaded Mega DataFrame in {:?}", end);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let df_new = reduce_dataframe(
|
||||
mega_df.clone(),
|
||||
Some(vec![
|
||||
"GBP".to_string(),
|
||||
"AUD".to_string(),
|
||||
"USD".to_string(),
|
||||
]),
|
||||
Some(vec!["RIR_NSA".to_string(), "EQXR_NSA".to_string()]),
|
||||
None,
|
||||
Some("2010-01-20"),
|
||||
None,
|
||||
false,
|
||||
)
|
||||
.unwrap();
|
||||
let end = start.elapsed();
|
||||
println!("Reduced Mega DataFrame in {:?}", end);
|
||||
|
||||
// FOUND TICKERs
|
||||
let start = std::time::Instant::now();
|
||||
let found_tickers = get_unique_tickers(&df_new);
|
||||
let end = start.elapsed();
|
||||
println!(
|
||||
"Found {:?} unique tickers in df_new",
|
||||
found_tickers.unwrap()
|
||||
);
|
||||
println!("Found unique tickers in {:?}", end);
|
||||
|
||||
let end = start.elapsed();
|
||||
println!("Loaded DataFrame in {:?}", end);
|
||||
let start = std::time::Instant::now();
|
||||
let df_gbp = reduce_dataframe(
|
||||
df_new.clone(),
|
||||
Some(vec!["GBP".to_string()]),
|
||||
Some(vec!["RIR_NSA".to_string()]),
|
||||
None,
|
||||
Some("2024-11-12"),
|
||||
None,
|
||||
false,
|
||||
)
|
||||
.unwrap();
|
||||
let end = start.elapsed();
|
||||
println!("Reduced DataFrame in {:?}", end);
|
||||
// println!("{:?}", df_gbp.head(Some(10)));
|
||||
|
||||
// FOUND TICKERs
|
||||
let start = std::time::Instant::now();
|
||||
let found_tickers = get_unique_tickers(&mega_df);
|
||||
let end = start.elapsed();
|
||||
println!(
|
||||
"Found {:?} unique tickers in Mega DataFrame",
|
||||
found_tickers.unwrap()
|
||||
);
|
||||
println!("Found unique tickers in {:?}", end);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let df_aud = reduce_dataframe(
|
||||
df_new.clone(),
|
||||
Some(vec!["USD".to_string()]),
|
||||
// Some(vec!["EQXR_NSA".to_string(), "RIR_NSA".to_string()]),
|
||||
Some(vec!["EQXR_NSA".to_string()]),
|
||||
None,
|
||||
Some("2024-11-13"),
|
||||
None,
|
||||
true,
|
||||
)
|
||||
.unwrap();
|
||||
let end = start.elapsed();
|
||||
println!("Reduced DataFrame in {:?}", end);
|
||||
// dimenstions reduced from to
|
||||
println!("{:?} from {:?}", df_aud.shape(), df_new.shape());
|
||||
// println!("{:?}", df_aud.head(Some(10)));
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let up_df = update_dataframe(&df_gbp, &df_aud).unwrap();
|
||||
let end = start.elapsed();
|
||||
println!("Updated DataFrame in {:?}", end);
|
||||
println!("{:?}", up_df.head(Some(10)));
|
||||
}
|
||||
|
@ -1,443 +0,0 @@
|
||||
use crate::utils::misc::*;
|
||||
use anyhow;
|
||||
use polars::datatypes::DataType;
|
||||
use polars::prelude::*;
|
||||
use rayon::prelude::*;
|
||||
use std::error::Error;
|
||||
use std::fs;
|
||||
|
||||
/// The standard metrics provided by JPMaQS (`value`, `grading`, `eop_lag`, `mop_lag`).
|
||||
pub const DEFAULT_JPMAQS_METRICS: [&str; 4] = ["value", "grading", "eop_lag", "mop_lag"];
|
||||
|
||||
/// The required columns for a Quantamental DataFrame.
|
||||
pub const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
|
||||
|
||||
/// Check if a DataFrame is a quantamental DataFrame.
|
||||
/// A standard Quantamental DataFrame has the following columns:
|
||||
/// - `real_date`: Date column as a date type
|
||||
/// - `cid`: Column of cross-sectional identifiers
|
||||
/// - `xcat`: Column of extended categories
|
||||
///
|
||||
/// Additionally, the DataFrame should have atleast 1 more column.
|
||||
/// Typically, this is one (or more) of the default JPMaQS metics.
|
||||
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
|
||||
let expected_cols = ["real_date", "cid", "xcat"];
|
||||
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
|
||||
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
|
||||
let col = df.column(col);
|
||||
if col.is_err() {
|
||||
return Err(format!("Column {:?} not found", col).into());
|
||||
}
|
||||
let col = col?;
|
||||
if col.dtype() != dtype {
|
||||
return Err(format!("Column {:?} has wrong dtype", col).into());
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Check if a DataFrame is a quantamental DataFrame.
|
||||
/// Returns true if the DataFrame is a quantamental DataFrame, false otherwise.
|
||||
/// Uses the `check_quantamental_dataframe` function to check if the DataFrame is a quantamental DataFrame.
|
||||
pub fn is_quantamental_dataframe(df: &DataFrame) -> bool {
|
||||
check_quantamental_dataframe(df).is_ok()
|
||||
}
|
||||
|
||||
pub fn sort_qdf_columns(qdf: &mut DataFrame) -> Result<(), Box<dyn Error>> {
|
||||
let index_columns = ["real_date", "cid", "xcat"];
|
||||
let known_metrics = ["value", "grading", "eop_lag", "mop_lag"];
|
||||
|
||||
let df_columns = qdf
|
||||
.get_column_names()
|
||||
.into_iter()
|
||||
.map(|s| s.clone().into_string())
|
||||
.collect::<Vec<String>>();
|
||||
|
||||
let mut unknown_metrics: Vec<String> = df_columns
|
||||
.iter()
|
||||
.filter(|&m| !known_metrics.contains(&m.as_str()))
|
||||
.filter(|&m| !index_columns.contains(&m.as_str()))
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
let mut new_columns: Vec<String> = vec![];
|
||||
new_columns.extend(index_columns.iter().map(|s| s.to_string()));
|
||||
for &colname in &known_metrics {
|
||||
if df_columns.contains(&colname.into()) {
|
||||
new_columns.push(colname.to_string());
|
||||
}
|
||||
}
|
||||
|
||||
unknown_metrics.sort();
|
||||
new_columns.extend(unknown_metrics);
|
||||
*qdf = qdf
|
||||
.select(new_columns.clone())
|
||||
.expect("Failed to select columns");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn _file_base_name(file_path: String) -> String {
|
||||
std::path::Path::new(&file_path.clone())
|
||||
.file_stem()
|
||||
.unwrap()
|
||||
.to_str()
|
||||
.unwrap()
|
||||
.to_string()
|
||||
}
|
||||
|
||||
/// Load a Quantamental DataFrame from a CSV file.
|
||||
/// The CSV must be named in the format `cid_xcat.csv` (`ticker.csv`).
|
||||
/// The DataFrame must have a `real_date` column along with additional value columns.
|
||||
pub fn load_quantamental_dataframe(
|
||||
file_path: &str,
|
||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||
// get the file base name
|
||||
let base_file_name = _file_base_name(file_path.into());
|
||||
|
||||
// if filename does not have _ then it is not a Quantamental DataFrame
|
||||
if !base_file_name.contains('_') {
|
||||
return Err("The file name must be in the format `cid_xcat.csv` (`ticker.csv`)".into());
|
||||
}
|
||||
|
||||
let ticker = base_file_name.split('.').collect::<Vec<&str>>()[0];
|
||||
let (cid, xcat) = split_ticker(ticker.to_string())?;
|
||||
|
||||
let mut df = CsvReadOptions::default()
|
||||
.try_into_reader_with_file_path(Some(file_path.into()))
|
||||
.unwrap()
|
||||
.finish()
|
||||
.unwrap();
|
||||
|
||||
let err = "The dataframe must have a `real_date` column and atleast 1 additional value column";
|
||||
if df.column("real_date").is_err() || df.width() < 2 {
|
||||
return Err(err.into());
|
||||
}
|
||||
|
||||
// check if the first item in the real_date column has a dash or not
|
||||
let has_dashes = df
|
||||
.column("real_date")
|
||||
.unwrap()
|
||||
.cast(&DataType::String)?
|
||||
.get(0)
|
||||
.unwrap()
|
||||
.to_string()
|
||||
.contains('-');
|
||||
|
||||
let date_format = if has_dashes { "%Y-%m-%d" } else { "%Y%m%d" };
|
||||
// let real_date_col = df
|
||||
// .column("real_date".into())
|
||||
// .unwrap()
|
||||
// .cast(&DataType::Date)?;
|
||||
let real_date_col = df
|
||||
.column("real_date")
|
||||
.unwrap()
|
||||
// .str()?
|
||||
.cast(&DataType::String)?
|
||||
.str()?
|
||||
.as_date(Some(date_format), false)
|
||||
.map_err(|e| format!("Failed to parse date with format {}: {}", date_format, e))?;
|
||||
|
||||
df.with_column(real_date_col)?;
|
||||
df.with_column(Series::new("cid".into(), vec![cid; df.height()]))?;
|
||||
df.with_column(Series::new("xcat".into(), vec![xcat; df.height()]))?;
|
||||
|
||||
sort_qdf_columns(&mut df)?;
|
||||
|
||||
Ok(df)
|
||||
}
|
||||
|
||||
fn _load_qdf_thread_safe(file_path: &str) -> Result<DataFrame, Box<dyn Error + Send + Sync>> {
|
||||
let res = load_quantamental_dataframe(file_path);
|
||||
res.map_err(|e| {
|
||||
anyhow::Error::msg(e.to_string())
|
||||
.context("Failed to load quantamental dataframe")
|
||||
.into()
|
||||
})
|
||||
}
|
||||
pub fn load_quantamental_dataframe_from_download_bank(
|
||||
folder_path: &str,
|
||||
cids: Option<Vec<&str>>,
|
||||
xcats: Option<Vec<&str>>,
|
||||
tickers: Option<Vec<&str>>,
|
||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||
let rcids = cids.unwrap_or_else(|| Vec::new());
|
||||
let rxcats = xcats.unwrap_or_else(|| Vec::new());
|
||||
let rtickers = tickers.unwrap_or_else(|| Vec::new());
|
||||
|
||||
// recursively read list of all files in the folder as a vector of strings
|
||||
let files = fs::read_dir(folder_path)?
|
||||
.map(|res| res.map(|e| e.path().display().to_string()))
|
||||
.collect::<Result<Vec<String>, std::io::Error>>()?;
|
||||
|
||||
// print number of files found
|
||||
|
||||
// filter files that are not csv files
|
||||
let files = files
|
||||
.iter()
|
||||
.filter(|f| f.ends_with(".csv"))
|
||||
.collect::<Vec<&String>>();
|
||||
|
||||
// print number of csv files found
|
||||
|
||||
let mut rel_files = Vec::new();
|
||||
for file in files {
|
||||
let base_file_name: String = _file_base_name(file.into())
|
||||
.split('.')
|
||||
.collect::<Vec<&str>>()[0]
|
||||
.into();
|
||||
let (cid, xcat) = match split_ticker(base_file_name.clone()) {
|
||||
Ok((cid, xcat)) => (cid, xcat),
|
||||
Err(_) => continue,
|
||||
};
|
||||
rel_files.push((file, cid, xcat));
|
||||
}
|
||||
|
||||
// print number of relevant ticker files found
|
||||
|
||||
let load_files = rel_files
|
||||
.iter()
|
||||
.filter(|(_, cid, xcat)| {
|
||||
let f1 = rcids.len() > 0 && rcids.contains(&cid.as_str());
|
||||
let f2 = rxcats.len() > 0 && rxcats.contains(&xcat.as_str());
|
||||
let f3 = rtickers.len() > 0 && rtickers.contains(&create_ticker(cid, xcat).as_str());
|
||||
f1 | f2 | f3
|
||||
})
|
||||
.map(|(file, _, _)| *file)
|
||||
.collect::<Vec<&String>>();
|
||||
|
||||
// print number of files to load
|
||||
println!("Loading {} files", load_files.len());
|
||||
|
||||
if load_files.len() == 0 {
|
||||
return Err("No files to load".into());
|
||||
}
|
||||
if load_files.len() == 1 {
|
||||
let dfx = load_quantamental_dataframe(load_files[0]).unwrap();
|
||||
return Ok(dfx);
|
||||
}
|
||||
|
||||
let load_files = load_files.iter().map(|s| s.as_str()).collect::<Vec<&str>>();
|
||||
let qdf_batches = load_files.chunks(500).collect::<Vec<&[&str]>>();
|
||||
|
||||
let mut results = Vec::new();
|
||||
let mut curr_batch = 1;
|
||||
let total_batches = qdf_batches.len();
|
||||
for batch in qdf_batches {
|
||||
let qdf_list = batch
|
||||
.par_iter()
|
||||
.map(|file| _load_qdf_thread_safe(file).unwrap())
|
||||
.collect::<Vec<DataFrame>>();
|
||||
results.extend(qdf_list);
|
||||
curr_batch += 1;
|
||||
}
|
||||
|
||||
println!("Loaded {} files", results.len());
|
||||
|
||||
let mut res_df: DataFrame = results.pop().unwrap();
|
||||
while let Some(df) = results.pop() {
|
||||
res_df = res_df.vstack(&df).unwrap();
|
||||
}
|
||||
|
||||
Ok(res_df)
|
||||
}
|
||||
|
||||
/// Get intersecting cross-sections from a DataFrame.
|
||||
pub fn get_intersecting_cids(
|
||||
df: &DataFrame,
|
||||
xcats: &Option<Vec<String>>,
|
||||
) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
let rel_xcats = xcats
|
||||
.clone()
|
||||
.unwrap_or_else(|| get_unique_xcats(df).unwrap());
|
||||
let found_tickers = get_unique_tickers(df)?;
|
||||
let found_cids = get_unique_cids(df)?;
|
||||
let keep_cids = get_intersecting_cids_str_func(&found_cids, &rel_xcats, &found_tickers);
|
||||
Ok(keep_cids)
|
||||
}
|
||||
|
||||
/// Get intersecting tickers from a DataFrame.
|
||||
#[allow(dead_code)]
|
||||
fn get_tickers_interesecting_on_xcat(
|
||||
df: &DataFrame,
|
||||
xcats: &Option<Vec<String>>,
|
||||
) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
let rel_cids = get_intersecting_cids(df, xcats)?;
|
||||
let rel_xcats = xcats
|
||||
.clone()
|
||||
.unwrap_or_else(|| get_unique_xcats(df).unwrap());
|
||||
let rel_cids_str: Vec<&str> = rel_cids.iter().map(AsRef::as_ref).collect();
|
||||
let rel_xcats_str: Vec<&str> = rel_xcats.iter().map(AsRef::as_ref).collect();
|
||||
Ok(create_interesecting_tickers(&rel_cids_str, &rel_xcats_str))
|
||||
}
|
||||
|
||||
/// Get the unique tickers from a Quantamental DataFrame.
|
||||
pub fn get_ticker_column_for_quantamental_dataframe(
|
||||
df: &DataFrame,
|
||||
) -> Result<Column, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
let mut ticker_df =
|
||||
DataFrame::new(vec![df.column("cid")?.clone(), df.column("xcat")?.clone()])?
|
||||
.lazy()
|
||||
.select([concat_str([col("cid"), col("xcat")], "_", true)])
|
||||
.collect()?;
|
||||
|
||||
Ok(ticker_df
|
||||
.rename("cid", "ticker".into())
|
||||
.unwrap()
|
||||
.column("ticker")
|
||||
.unwrap()
|
||||
.clone())
|
||||
}
|
||||
|
||||
/// Get the unique tickers from a DataFrame.
|
||||
/// Returns a Vec of unique tickers.
|
||||
pub fn get_unique_tickers(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
let ticker_col = get_ticker_column_for_quantamental_dataframe(df)?;
|
||||
_get_unique_strs_from_str_column_object(&ticker_col)
|
||||
}
|
||||
|
||||
/// Get the unique cross-sectional identifiers (`cids`) from a DataFrame.
|
||||
pub fn get_unique_cids(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
get_unique_from_str_column(df, "cid")
|
||||
}
|
||||
|
||||
/// Get the unique extended categories (`xcats`) from a DataFrame.
|
||||
pub fn get_unique_xcats(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
get_unique_from_str_column(df, "xcat")
|
||||
}
|
||||
|
||||
/// Filter a dataframe based on the given parameters.
|
||||
/// - `cids`: Filter by cross-sectional identifiers
|
||||
/// - `xcats`: Filter by extended categories
|
||||
/// - `metrics`: Filter by metrics
|
||||
/// - `start`: Filter by start date
|
||||
/// - `end`: Filter by end date
|
||||
/// - `intersect`: If true, intersect only return `cids` that are present for all `xcats`.
|
||||
/// Returns a new DataFrame with the filtered data, without modifying the original DataFrame.
|
||||
/// If no filters are provided, the original DataFrame is returned.
|
||||
pub fn reduce_dataframe(
|
||||
df: &DataFrame,
|
||||
cids: Option<Vec<String>>,
|
||||
xcats: Option<Vec<String>>,
|
||||
metrics: Option<Vec<String>>,
|
||||
start: Option<&str>,
|
||||
end: Option<&str>,
|
||||
intersect: bool,
|
||||
) -> Result<DataFrame, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
|
||||
let mut new_df: DataFrame = df.clone();
|
||||
|
||||
let ticker_col: Column = get_ticker_column_for_quantamental_dataframe(&new_df)?;
|
||||
|
||||
// if cids is not provided, get all unique cids
|
||||
let u_cids: Vec<String> = get_unique_cids(&new_df)?;
|
||||
let u_xcats: Vec<String> = get_unique_xcats(&new_df)?;
|
||||
let u_tickers: Vec<String> = _get_unique_strs_from_str_column_object(&ticker_col)?;
|
||||
|
||||
let specified_cids: Vec<String> = cids.unwrap_or_else(|| u_cids.clone());
|
||||
let specified_xcats: Vec<String> = xcats.unwrap_or_else(|| u_xcats.clone());
|
||||
let specified_metrics: Vec<String> = metrics.unwrap_or_else(|| {
|
||||
DEFAULT_JPMAQS_METRICS
|
||||
.iter()
|
||||
.map(|&s| s.to_string())
|
||||
.collect()
|
||||
});
|
||||
let specified_tickers: Vec<String> = create_interesecting_tickers(
|
||||
&specified_cids
|
||||
.iter()
|
||||
.map(AsRef::as_ref)
|
||||
.collect::<Vec<&str>>(),
|
||||
&specified_xcats
|
||||
.iter()
|
||||
.map(AsRef::as_ref)
|
||||
.collect::<Vec<&str>>(),
|
||||
);
|
||||
|
||||
let keep_tickers: Vec<String> = match intersect {
|
||||
true => get_intersecting_cids_str_func(&u_cids, &u_xcats, &u_tickers),
|
||||
false => specified_tickers.clone(),
|
||||
};
|
||||
let kticks: Vec<&str> = keep_tickers
|
||||
.iter()
|
||||
.map(AsRef::as_ref)
|
||||
.collect::<Vec<&str>>();
|
||||
|
||||
// Create a boolean mask to filter rows based on the tickers
|
||||
let mut mask = vec![false; ticker_col.len()];
|
||||
for (i, ticker) in ticker_col.str()?.iter().enumerate() {
|
||||
if let Some(t) = ticker {
|
||||
if kticks.contains(&t) {
|
||||
mask[i] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
let mask = BooleanChunked::from_slice("mask".into(), &mask);
|
||||
new_df = new_df.filter(&mask)?;
|
||||
|
||||
// Apply date filtering if `start` or `end` is provided
|
||||
if let Some(start_date) = start {
|
||||
new_df = new_df
|
||||
.lazy()
|
||||
.filter(col("real_date").gt_eq(start_date))
|
||||
.collect()?;
|
||||
}
|
||||
if let Some(end_date) = end {
|
||||
new_df = new_df
|
||||
.lazy()
|
||||
.filter(col("real_date").lt_eq(end_date))
|
||||
.collect()?;
|
||||
}
|
||||
|
||||
// Filter based on metrics if provided
|
||||
assert!(specified_metrics.len() > 0);
|
||||
|
||||
// remove columns that are not in the specified metrics
|
||||
let mut cols_to_remove = Vec::new();
|
||||
for col in new_df.get_column_names() {
|
||||
if !specified_metrics.contains(&col.to_string()) {
|
||||
cols_to_remove.push(col);
|
||||
}
|
||||
}
|
||||
new_df = new_df.drop_many(
|
||||
cols_to_remove
|
||||
.iter()
|
||||
.map(|s| s.to_string())
|
||||
.collect::<Vec<String>>(),
|
||||
);
|
||||
|
||||
Ok(new_df)
|
||||
}
|
||||
|
||||
/// Update a Quantamental DataFrame with new data.
|
||||
/// - `df`: The original DataFrame
|
||||
/// - `df_add`: The new DataFrame to add
|
||||
///
|
||||
pub fn update_dataframe(
|
||||
df: &DataFrame,
|
||||
df_add: &DataFrame,
|
||||
// xcat_replace: Option<&str>,
|
||||
) -> Result<DataFrame, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
check_quantamental_dataframe(df_add)?;
|
||||
if df.is_empty() {
|
||||
return Ok(df_add.clone());
|
||||
} else if df_add.is_empty() {
|
||||
return Ok(df.clone());
|
||||
};
|
||||
|
||||
// vstack and drop duplicates keeping last
|
||||
let mut new_df = df.vstack(df_add)?;
|
||||
// help?
|
||||
let idx_cols_vec = QDF_INDEX_COLUMNS
|
||||
.iter()
|
||||
.map(|s| s.to_string())
|
||||
.collect::<Vec<String>>();
|
||||
|
||||
new_df = new_df.unique_stable(Some(&idx_cols_vec), UniqueKeepStrategy::Last, None)?;
|
||||
|
||||
Ok(new_df)
|
||||
}
|
@ -63,21 +63,29 @@ pub fn get_intersecting_cids_str_func(
|
||||
xcats: &Vec<String>,
|
||||
found_tickers: &Vec<String>,
|
||||
) -> Vec<String> {
|
||||
let mut keep_cids = cids.clone();
|
||||
// make a hashmap of cids to xcats
|
||||
let mut cid_xcat_map = HashMap::new();
|
||||
for ticker in found_tickers {
|
||||
let (cid, xcat) = split_ticker(ticker.clone()).unwrap();
|
||||
cid_xcat_map.insert(cid.to_string(), xcat.to_string());
|
||||
}
|
||||
|
||||
// filter out cids that are not present in all xcats
|
||||
for (cid, xcats_for_cid) in cid_xcat_map.iter() {
|
||||
// if the all xcats are not present, remove the cid
|
||||
if !xcats.iter().all(|xcat| xcats_for_cid.contains(xcat)) {
|
||||
keep_cids.retain(|x| x != cid);
|
||||
// if the cid is not in the map, add it
|
||||
if !cid_xcat_map.contains_key(&cid) {
|
||||
cid_xcat_map.insert(cid.clone(), vec![xcat.clone()]);
|
||||
} else {
|
||||
cid_xcat_map.get_mut(&cid).unwrap().push(xcat.clone());
|
||||
}
|
||||
}
|
||||
|
||||
keep_cids
|
||||
let mut found_cids: Vec<String> = cid_xcat_map.keys().map(|x| x.clone()).collect();
|
||||
found_cids.retain(|x| cids.contains(x));
|
||||
|
||||
let mut new_keep_cids: Vec<String> = Vec::new();
|
||||
for cid in found_cids {
|
||||
let xcats_for_cid = cid_xcat_map.get(&cid).unwrap();
|
||||
let mut found_xcats: Vec<String> = xcats_for_cid.iter().map(|x| x.clone()).collect();
|
||||
found_xcats.retain(|x| xcats.contains(x));
|
||||
if found_xcats.len() > 0 {
|
||||
new_keep_cids.push(cid);
|
||||
}
|
||||
}
|
||||
new_keep_cids
|
||||
}
|
||||
|
@ -1,2 +1,2 @@
|
||||
pub mod dftools;
|
||||
pub mod misc;
|
||||
pub mod qdf;
|
||||
pub mod misc;
|
||||
|
143
src/utils/qdf/core.rs
Normal file
143
src/utils/qdf/core.rs
Normal file
@ -0,0 +1,143 @@
|
||||
use crate::utils::misc::{
|
||||
_get_unique_strs_from_str_column_object, create_interesecting_tickers,
|
||||
get_intersecting_cids_str_func, get_unique_from_str_column,
|
||||
};
|
||||
use polars::datatypes::DataType;
|
||||
use polars::prelude::*;
|
||||
use std::error::Error;
|
||||
|
||||
/// Check if a DataFrame is a quantamental DataFrame.
|
||||
/// A standard Quantamental DataFrame has the following columns:
|
||||
/// - `real_date`: Date column as a date type
|
||||
/// - `cid`: Column of cross-sectional identifiers
|
||||
/// - `xcat`: Column of extended categories
|
||||
///
|
||||
/// Additionally, the DataFrame should have atleast 1 more column.
|
||||
/// Typically, this is one (or more) of the default JPMaQS metics.
|
||||
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
|
||||
let expected_cols = ["real_date", "cid", "xcat"];
|
||||
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
|
||||
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
|
||||
let col = df.column(col);
|
||||
if col.is_err() {
|
||||
return Err(format!("Column {:?} not found", col).into());
|
||||
}
|
||||
let col = col?;
|
||||
if col.dtype() != dtype {
|
||||
return Err(format!("Column {:?} has wrong dtype", col).into());
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Check if a DataFrame is a quantamental DataFrame.
|
||||
/// Returns true if the DataFrame is a quantamental DataFrame, false otherwise.
|
||||
/// Uses the `check_quantamental_dataframe` function to check if the DataFrame is a quantamental DataFrame.
|
||||
pub fn is_quantamental_dataframe(df: &DataFrame) -> bool {
|
||||
check_quantamental_dataframe(df).is_ok()
|
||||
}
|
||||
|
||||
/// Sort the columns of a Quantamental DataFrame.
|
||||
/// The first columns are `real_date`, `cid`, and `xcat`.
|
||||
/// These are followed by any available JPMAQS metrics, 'value', 'grading', 'eop_lag', 'mop_lag',
|
||||
/// (**in that order**), followed by any other metrics (in alphabetical order).
|
||||
pub fn sort_qdf_columns(qdf: &mut DataFrame) -> Result<(), Box<dyn Error>> {
|
||||
let index_columns = ["real_date", "cid", "xcat"];
|
||||
let known_metrics = ["value", "grading", "eop_lag", "mop_lag"];
|
||||
|
||||
let df_columns = qdf
|
||||
.get_column_names()
|
||||
.into_iter()
|
||||
.map(|s| s.clone().into_string())
|
||||
.collect::<Vec<String>>();
|
||||
|
||||
let mut unknown_metrics: Vec<String> = df_columns
|
||||
.iter()
|
||||
.filter(|&m| !known_metrics.contains(&m.as_str()))
|
||||
.filter(|&m| !index_columns.contains(&m.as_str()))
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
let mut new_columns: Vec<String> = vec![];
|
||||
new_columns.extend(index_columns.iter().map(|s| s.to_string()));
|
||||
for &colname in &known_metrics {
|
||||
if df_columns.contains(&colname.into()) {
|
||||
new_columns.push(colname.to_string());
|
||||
}
|
||||
}
|
||||
|
||||
unknown_metrics.sort();
|
||||
new_columns.extend(unknown_metrics);
|
||||
*qdf = qdf
|
||||
.select(new_columns.clone())
|
||||
.expect("Failed to select columns");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Get intersecting cross-sections from a DataFrame.
|
||||
pub fn get_intersecting_cids(
|
||||
df: &DataFrame,
|
||||
xcats: &Option<Vec<String>>,
|
||||
) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
let rel_xcats = xcats
|
||||
.clone()
|
||||
.unwrap_or_else(|| get_unique_xcats(df).unwrap());
|
||||
let found_tickers = get_unique_tickers(df)?;
|
||||
let found_cids = get_unique_cids(df)?;
|
||||
let keep_cids = get_intersecting_cids_str_func(&found_cids, &rel_xcats, &found_tickers);
|
||||
Ok(keep_cids)
|
||||
}
|
||||
|
||||
/// Get intersecting tickers from a DataFrame.
|
||||
#[allow(dead_code)]
|
||||
fn get_tickers_interesecting_on_xcat(
|
||||
df: &DataFrame,
|
||||
xcats: &Option<Vec<String>>,
|
||||
) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
let rel_cids = get_intersecting_cids(df, xcats)?;
|
||||
let rel_xcats = xcats
|
||||
.clone()
|
||||
.unwrap_or_else(|| get_unique_xcats(df).unwrap());
|
||||
let rel_cids_str: Vec<&str> = rel_cids.iter().map(AsRef::as_ref).collect();
|
||||
let rel_xcats_str: Vec<&str> = rel_xcats.iter().map(AsRef::as_ref).collect();
|
||||
Ok(create_interesecting_tickers(&rel_cids_str, &rel_xcats_str))
|
||||
}
|
||||
|
||||
/// Get the unique tickers from a Quantamental DataFrame.
|
||||
pub fn get_ticker_column_for_quantamental_dataframe(
|
||||
df: &DataFrame,
|
||||
) -> Result<Column, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
let mut ticker_df =
|
||||
DataFrame::new(vec![df.column("cid")?.clone(), df.column("xcat")?.clone()])?
|
||||
.lazy()
|
||||
.select([concat_str([col("cid"), col("xcat")], "_", true)])
|
||||
.collect()?;
|
||||
|
||||
Ok(ticker_df
|
||||
.rename("cid", "ticker".into())
|
||||
.unwrap()
|
||||
.column("ticker")
|
||||
.unwrap()
|
||||
.clone())
|
||||
}
|
||||
|
||||
/// Get the unique tickers from a DataFrame.
|
||||
/// Returns a Vec of unique tickers.
|
||||
pub fn get_unique_tickers(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
let ticker_col = get_ticker_column_for_quantamental_dataframe(df)?;
|
||||
_get_unique_strs_from_str_column_object(&ticker_col)
|
||||
}
|
||||
|
||||
/// Get the unique cross-sectional identifiers (`cids`) from a DataFrame.
|
||||
pub fn get_unique_cids(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
get_unique_from_str_column(df, "cid")
|
||||
}
|
||||
|
||||
/// Get the unique extended categories (`xcats`) from a DataFrame.
|
||||
pub fn get_unique_xcats(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
get_unique_from_str_column(df, "xcat")
|
||||
}
|
198
src/utils/qdf/load.rs
Normal file
198
src/utils/qdf/load.rs
Normal file
@ -0,0 +1,198 @@
|
||||
use crate::utils::misc::{create_ticker, split_ticker};
|
||||
use crate::utils::qdf::*;
|
||||
use anyhow;
|
||||
use log;
|
||||
use polars::datatypes::DataType;
|
||||
use polars::prelude::*;
|
||||
use rayon::prelude::*;
|
||||
use std::error::Error;
|
||||
|
||||
/// The number of concurrent file loads to perform.
|
||||
const CONCURRENT_FILE_LOADS: usize = 500;
|
||||
|
||||
fn _file_base_name(file_path: String) -> String {
|
||||
std::path::Path::new(&file_path.clone())
|
||||
.file_stem()
|
||||
.unwrap()
|
||||
.to_str()
|
||||
.unwrap()
|
||||
.to_string()
|
||||
}
|
||||
|
||||
/// Load a Quantamental DataFrame from a CSV file.
|
||||
/// The CSV must be named in the format `cid_xcat.csv` (`ticker.csv`).
|
||||
/// The DataFrame must have a `real_date` column along with additional value columns.
|
||||
pub fn load_quantamental_dataframe(
|
||||
file_path: &str,
|
||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||
// get the file base name
|
||||
let base_file_name = _file_base_name(file_path.into());
|
||||
|
||||
// if filename does not have _ then it is not a Quantamental DataFrame
|
||||
if !base_file_name.contains('_') {
|
||||
return Err("The file name must be in the format `cid_xcat.csv` (`ticker.csv`)".into());
|
||||
}
|
||||
|
||||
let ticker = base_file_name.split('.').collect::<Vec<&str>>()[0];
|
||||
let (cid, xcat) = split_ticker(ticker.to_string())?;
|
||||
|
||||
let mut df = CsvReadOptions::default()
|
||||
.try_into_reader_with_file_path(Some(file_path.into()))
|
||||
.unwrap()
|
||||
.finish()
|
||||
.unwrap();
|
||||
|
||||
let err = "The dataframe must have a `real_date` column and atleast 1 additional value column";
|
||||
if df.column("real_date").is_err() || df.width() < 2 {
|
||||
return Err(err.into());
|
||||
}
|
||||
|
||||
// check if the first item in the real_date column has a dash or not
|
||||
let has_dashes = df
|
||||
.column("real_date")
|
||||
.unwrap()
|
||||
.cast(&DataType::String)?
|
||||
.get(0)
|
||||
.unwrap()
|
||||
.to_string()
|
||||
.contains('-');
|
||||
|
||||
let date_format = if has_dashes { "%Y-%m-%d" } else { "%Y%m%d" };
|
||||
// let real_date_col = df
|
||||
// .column("real_date".into())
|
||||
// .unwrap()
|
||||
// .cast(&DataType::Date)?;
|
||||
let real_date_col = df
|
||||
.column("real_date")
|
||||
.unwrap()
|
||||
// .str()?
|
||||
.cast(&DataType::String)?
|
||||
.str()?
|
||||
.as_date(Some(date_format), false)
|
||||
.map_err(|e| format!("Failed to parse date with format {}: {}", date_format, e))?;
|
||||
|
||||
df.with_column(real_date_col)?;
|
||||
df.with_column(Series::new("cid".into(), vec![cid; df.height()]))?;
|
||||
df.with_column(Series::new("xcat".into(), vec![xcat; df.height()]))?;
|
||||
|
||||
sort_qdf_columns(&mut df)?;
|
||||
|
||||
Ok(df)
|
||||
}
|
||||
|
||||
fn collect_paths_recursively<P: AsRef<std::path::Path>>(path: P) -> std::io::Result<Vec<String>> {
|
||||
let mut paths = Vec::new();
|
||||
|
||||
for entry in std::fs::read_dir(path)? {
|
||||
let entry = entry?;
|
||||
let path = entry.path();
|
||||
|
||||
if path.is_dir() {
|
||||
// Recurse into the directory and append the results
|
||||
paths.extend(collect_paths_recursively(&path)?);
|
||||
}
|
||||
// Add the path to the vector
|
||||
paths.push(path.to_string_lossy().to_string());
|
||||
}
|
||||
|
||||
Ok(paths)
|
||||
}
|
||||
|
||||
fn _load_qdf_thread_safe(file_path: &str) -> Result<DataFrame, Box<dyn Error + Send + Sync>> {
|
||||
let res = load_quantamental_dataframe(file_path);
|
||||
res.map_err(|e| {
|
||||
anyhow::Error::msg(e.to_string())
|
||||
.context("Failed to load quantamental dataframe")
|
||||
.into()
|
||||
})
|
||||
}
|
||||
pub fn load_quantamental_dataframe_from_download_bank(
|
||||
folder_path: &str,
|
||||
cids: Option<Vec<&str>>,
|
||||
xcats: Option<Vec<&str>>,
|
||||
tickers: Option<Vec<&str>>,
|
||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||
let rcids = cids.unwrap_or_else(|| Vec::new());
|
||||
let rxcats = xcats.unwrap_or_else(|| Vec::new());
|
||||
let rtickers = tickers.unwrap_or_else(|| Vec::new());
|
||||
|
||||
let files = collect_paths_recursively(folder_path)?;
|
||||
log::info!("Found {} files", files.len());
|
||||
|
||||
// filter files that are not csv files
|
||||
let files = files
|
||||
.iter()
|
||||
.filter(|f| f.ends_with(".csv"))
|
||||
.collect::<Vec<&String>>();
|
||||
|
||||
log::info!("Found {} csv files", files.len());
|
||||
|
||||
let mut rel_files = Vec::new();
|
||||
for file in files {
|
||||
let base_file_name: String = _file_base_name(file.into())
|
||||
.split('.')
|
||||
.collect::<Vec<&str>>()[0]
|
||||
.into();
|
||||
let (cid, xcat) = match split_ticker(base_file_name.clone()) {
|
||||
Ok((cid, xcat)) => (cid, xcat),
|
||||
Err(_) => continue,
|
||||
};
|
||||
rel_files.push((file, cid, xcat));
|
||||
}
|
||||
|
||||
log::info!("Found {} relevant ticker files", rel_files.len());
|
||||
|
||||
let load_files = rel_files
|
||||
.iter()
|
||||
.filter(|(_, cid, xcat)| {
|
||||
let f1 = rcids.len() > 0 && rcids.contains(&cid.as_str());
|
||||
let f2 = rxcats.len() > 0 && rxcats.contains(&xcat.as_str());
|
||||
let f3 = rtickers.len() > 0 && rtickers.contains(&create_ticker(cid, xcat).as_str());
|
||||
f1 | f2 | f3
|
||||
})
|
||||
.map(|(file, _, _)| *file)
|
||||
.collect::<Vec<&String>>();
|
||||
|
||||
// print number of files to load
|
||||
log::info!("Loading {} files", load_files.len());
|
||||
|
||||
if load_files.len() == 0 {
|
||||
return Err("No files to load".into());
|
||||
}
|
||||
if load_files.len() == 1 {
|
||||
let dfx = load_quantamental_dataframe(load_files[0]).unwrap();
|
||||
return Ok(dfx);
|
||||
}
|
||||
|
||||
let load_files = load_files.iter().map(|s| s.as_str()).collect::<Vec<&str>>();
|
||||
let qdf_batches = load_files
|
||||
.chunks(CONCURRENT_FILE_LOADS)
|
||||
.collect::<Vec<&[&str]>>();
|
||||
|
||||
let mut results = Vec::new();
|
||||
let mut curr_batch = 1;
|
||||
let total_batches = qdf_batches.len();
|
||||
for batch in qdf_batches {
|
||||
let qdf_list = batch
|
||||
.par_iter()
|
||||
.map(|file| _load_qdf_thread_safe(file).unwrap().lazy())
|
||||
.collect::<Vec<LazyFrame>>();
|
||||
results.extend(qdf_list);
|
||||
curr_batch += 1;
|
||||
log::info!("Loaded {}/{} batches", curr_batch, total_batches);
|
||||
}
|
||||
|
||||
log::info!("Loaded {} files", results.len());
|
||||
let res_df = concat(results, UnionArgs::default())
|
||||
.unwrap()
|
||||
.collect()
|
||||
.unwrap();
|
||||
|
||||
log::info!(
|
||||
"Loaded dataframe with {} rows and {} columns",
|
||||
res_df.height(),
|
||||
res_df.width()
|
||||
);
|
||||
|
||||
Ok(res_df)
|
||||
}
|
9
src/utils/qdf/mod.rs
Normal file
9
src/utils/qdf/mod.rs
Normal file
@ -0,0 +1,9 @@
|
||||
pub mod core;
|
||||
pub mod update_df;
|
||||
pub mod load;
|
||||
pub mod reduce_df;
|
||||
// Re-export submodules for easier access
|
||||
pub use core::*;
|
||||
pub use update_df::*;
|
||||
pub use load::*;
|
||||
pub use reduce_df::*;
|
151
src/utils/qdf/reduce_df.rs
Normal file
151
src/utils/qdf/reduce_df.rs
Normal file
@ -0,0 +1,151 @@
|
||||
use crate::utils::misc::*;
|
||||
use crate::utils::qdf::core::*;
|
||||
use polars::prelude::*;
|
||||
use std::error::Error;
|
||||
|
||||
/// The required columns for a Quantamental DataFrame.
|
||||
const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
|
||||
|
||||
/// Filter a dataframe based on the given parameters.
|
||||
/// - `cids`: Filter by cross-sectional identifiers
|
||||
/// - `xcats`: Filter by extended categories
|
||||
/// - `metrics`: Filter by metrics
|
||||
/// - `start`: Filter by start date
|
||||
/// - `end`: Filter by end date
|
||||
/// - `intersect`: If true, intersect only return `cids` that are present for all `xcats`.
|
||||
/// Returns a new DataFrame with the filtered data, without modifying the original DataFrame.
|
||||
/// If no filters are provided, the original DataFrame is returned.
|
||||
pub fn reduce_dataframe(
|
||||
df: DataFrame,
|
||||
cids: Option<Vec<String>>,
|
||||
xcats: Option<Vec<String>>,
|
||||
metrics: Option<Vec<String>>,
|
||||
start: Option<&str>,
|
||||
end: Option<&str>,
|
||||
intersect: bool,
|
||||
) -> Result<DataFrame, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(&df)?;
|
||||
// df_size
|
||||
let df_size = df.shape();
|
||||
let mut new_df = df.clone();
|
||||
|
||||
let ticker_col: Column = get_ticker_column_for_quantamental_dataframe(&new_df)?;
|
||||
|
||||
// if cids is not provided, get all unique cids
|
||||
let u_cids: Vec<String> = get_unique_cids(&new_df)?;
|
||||
let u_xcats: Vec<String> = get_unique_xcats(&new_df)?;
|
||||
let u_tickers: Vec<String> = _get_unique_strs_from_str_column_object(&ticker_col)?;
|
||||
|
||||
let specified_cids: Vec<String> = cids.unwrap_or_else(|| u_cids.clone());
|
||||
let specified_xcats: Vec<String> = xcats.unwrap_or_else(|| u_xcats.clone());
|
||||
|
||||
let non_idx_cols: Vec<String> = new_df
|
||||
.get_column_names()
|
||||
.iter()
|
||||
.filter(|&col| !QDF_INDEX_COLUMNS.contains(&col.as_str()))
|
||||
.map(|s| s.to_string())
|
||||
.collect();
|
||||
|
||||
let specified_metrics: Vec<String> =
|
||||
metrics.unwrap_or_else(|| non_idx_cols.iter().map(|s| s.to_string()).collect());
|
||||
|
||||
let specified_tickers: Vec<String> = create_interesecting_tickers(
|
||||
&specified_cids
|
||||
.iter()
|
||||
.map(AsRef::as_ref)
|
||||
.collect::<Vec<&str>>(),
|
||||
&specified_xcats
|
||||
.iter()
|
||||
.map(AsRef::as_ref)
|
||||
.collect::<Vec<&str>>(),
|
||||
);
|
||||
|
||||
let keep_tickers: Vec<String> = match intersect {
|
||||
// true => get_intersecting_cids_str_func(&specified_cids, &specified_xcats, &u_tickers),
|
||||
true => {
|
||||
let int_cids =
|
||||
get_intersecting_cids_str_func(&specified_cids, &specified_xcats, &u_tickers);
|
||||
create_interesecting_tickers(
|
||||
&int_cids.iter().map(AsRef::as_ref).collect::<Vec<&str>>(),
|
||||
&specified_xcats
|
||||
.iter()
|
||||
.map(AsRef::as_ref)
|
||||
.collect::<Vec<&str>>(),
|
||||
)
|
||||
}
|
||||
false => specified_tickers.clone(),
|
||||
};
|
||||
|
||||
let kticks: Vec<&str> = keep_tickers
|
||||
.iter()
|
||||
.map(AsRef::as_ref)
|
||||
.collect::<Vec<&str>>();
|
||||
|
||||
// Create a boolean mask to filter rows based on the tickers
|
||||
let mut mask = vec![false; ticker_col.len()];
|
||||
for (i, ticker) in ticker_col.str()?.iter().enumerate() {
|
||||
if let Some(t) = ticker {
|
||||
if kticks.contains(&t) {
|
||||
mask[i] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
let mask = BooleanChunked::from_slice("mask".into(), &mask);
|
||||
new_df = new_df.filter(&mask)?;
|
||||
|
||||
// Apply date filtering if `start` or `end` is provided
|
||||
|
||||
if let Some(start) = start {
|
||||
let start_date = chrono::NaiveDate::parse_from_str(start, "%Y-%m-%d")?;
|
||||
new_df = new_df
|
||||
.lazy()
|
||||
.filter(
|
||||
col("real_date")
|
||||
.gt_eq(lit(start_date))
|
||||
.alias("real_date")
|
||||
.into(),
|
||||
)
|
||||
.collect()?;
|
||||
}
|
||||
|
||||
if let Some(end) = end {
|
||||
let end_date = chrono::NaiveDate::parse_from_str(end, "%Y-%m-%d")?;
|
||||
new_df = new_df
|
||||
.lazy()
|
||||
.filter(
|
||||
col("real_date")
|
||||
.lt_eq(lit(end_date))
|
||||
.alias("real_date")
|
||||
.into(),
|
||||
)
|
||||
.collect()?;
|
||||
}
|
||||
|
||||
// Filter based on metrics if provided
|
||||
assert!(specified_metrics.len() > 0);
|
||||
|
||||
// remove columns that are not in the specified metrics
|
||||
let mut cols_to_remove = Vec::new();
|
||||
for col in new_df.get_column_names() {
|
||||
if !specified_metrics.contains(&col.to_string())
|
||||
&& !QDF_INDEX_COLUMNS.contains(&col.as_str())
|
||||
{
|
||||
cols_to_remove.push(col);
|
||||
}
|
||||
}
|
||||
new_df = new_df.drop_many(
|
||||
cols_to_remove
|
||||
.iter()
|
||||
.map(|s| s.to_string())
|
||||
.collect::<Vec<String>>(),
|
||||
);
|
||||
// check if the df is still the same size
|
||||
let new_df_size = new_df.shape();
|
||||
if df_size != new_df_size {
|
||||
println!(
|
||||
"Reduced DataFrame from {} to {} rows",
|
||||
df_size.0, new_df_size.0
|
||||
);
|
||||
}
|
||||
Ok(new_df)
|
||||
}
|
35
src/utils/qdf/update_df.rs
Normal file
35
src/utils/qdf/update_df.rs
Normal file
@ -0,0 +1,35 @@
|
||||
use crate::utils::qdf::core::*;
|
||||
use polars::prelude::*;
|
||||
use std::error::Error;
|
||||
|
||||
const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
|
||||
|
||||
/// Update a Quantamental DataFrame with new data.
|
||||
/// - `df`: The original DataFrame
|
||||
/// - `df_add`: The new DataFrame to add
|
||||
///
|
||||
pub fn update_dataframe(
|
||||
df: &DataFrame,
|
||||
df_add: &DataFrame,
|
||||
// xcat_replace: Option<&str>,
|
||||
) -> Result<DataFrame, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
check_quantamental_dataframe(df_add)?;
|
||||
if df.is_empty() {
|
||||
return Ok(df_add.clone());
|
||||
} else if df_add.is_empty() {
|
||||
return Ok(df.clone());
|
||||
};
|
||||
|
||||
// vstack and drop duplicates keeping last
|
||||
let mut new_df = df.vstack(df_add)?;
|
||||
// help?
|
||||
let idx_cols_vec = QDF_INDEX_COLUMNS
|
||||
.iter()
|
||||
.map(|s| s.to_string())
|
||||
.collect::<Vec<String>>();
|
||||
|
||||
new_df = new_df.unique_stable(Some(&idx_cols_vec), UniqueKeepStrategy::Last, None)?;
|
||||
|
||||
Ok(new_df)
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user