update module structure

This commit is contained in:
Palash Tyagi 2024-11-17 02:02:31 +00:00
parent 566c7be71d
commit d4721a0b79
13 changed files with 668 additions and 469 deletions

2
.gitignore vendored
View File

@ -5,7 +5,7 @@ dev/
*.pyc
__pycache__/
*.log
.idea/
/target
data/

View File

@ -402,7 +402,7 @@ fn timeseries_list_to_dataframe(
timeseries_list: Vec<DQTimeSeries>,
dropna: bool,
) -> Result<DataFrame, Box<dyn Error>> {
let mut output_df = DataFrame::new(vec![]).expect("Failed to create DataFrame");
let mut output_df: DataFrame;
if let Some((first, rest)) = timeseries_list.split_first() {
// Convert the first timeseries to DataFrame and clone it to avoid modifying the original
@ -438,7 +438,7 @@ fn timeseries_list_to_dataframe(
output_df = result_df.clone();
} else {
println!("No timeseries provided.");
return Err("No timeseries provided".into());
}
// drop rows where all values are NA

View File

@ -1,5 +1,5 @@
use crate::download::oauth_client::OAuthClient;
use crate::download::helpers::DQTimeseriesRequestArgs;
use crate::download::oauth_client::OAuthClient;
use futures::future;
use reqwest::header::{HeaderMap, HeaderName, HeaderValue};
use std::error::Error;

View File

@ -1,4 +1,4 @@
#![doc = include_str!("../README.md")]
pub mod download;
pub mod utils;
pub mod utils;

View File

@ -1,5 +1,9 @@
use msyrs::download::jpmaqsdownload::{JPMaQSDownload, JPMaQSDownloadGetIndicatorArgs};
use msyrs::utils::dftools as msyrs_dftools;
// use msyrs::utils::qdf::load::*;
// use msyrs::utils::qdf::dftools::*;
// use msyrs::utils::qdf::core::*;
use msyrs::utils::qdf::*;
#[allow(dead_code)]
fn download_stuff() {
@ -42,7 +46,7 @@ fn download_stuff() {
start.elapsed()
);
if !msyrs_dftools::is_quantamental_dataframe(&res_df) {
if !is_quantamental_dataframe(&res_df) {
println!("DataFrame is not a quantamental DataFrame");
} else {
println!("DataFrame is a quantamental DataFrame");
@ -56,16 +60,110 @@ fn main() {
// println!("{:?}", df);
// load_quantamental_dataframe_from_download_bank
// let st_pth = "E:/Work/ruzt/msyrs/data/JPMaQSData/";
let st_pth = "E:/Work/jpmaqs-isc-git/jpmaqs-iscs";
let df = msyrs_dftools::load_quantamental_dataframe_from_download_bank(
let start = std::time::Instant::now();
let st_pth = "E:\\Work\\jpmaqs-data\\data";
let mega_df = load_quantamental_dataframe_from_download_bank(
st_pth,
Some(vec!["AUD", "USD", "GBP", "JPY", "EUR", "CAD", "CHF", "INR", "CNY"]),
Some(vec!["EQXR_NSA", "FXXR_NSA", "RIR_NSA", "ALLIFCDSGDP_NSA"]),
// Some(vec!["AUD", "USD", "GBP", "JPY"]),
// Some(vec!["RIR_NSA", "EQXR_NSA"]),
None,
None,
// Some(vec!["EQXR_NSA", "RIR_NSA"]),
// None
Some(vec![
"AUD_EQXR_NSA",
"USD_EQXR_NSA",
"GBP_EQXR_NSA",
"JPY_EQXR_NSA",
"AUD_RIR_NSA",
"USD_RIR_NSA",
"GBP_RIR_NSA",
"JPY_RIR_NSA",
]),
)
.unwrap();
println!("{:?}", df);
.unwrap();
// download_stuff();
let end = start.elapsed();
println!("Loaded Mega DataFrame in {:?}", end);
let start = std::time::Instant::now();
let df_new = reduce_dataframe(
mega_df.clone(),
Some(vec![
"GBP".to_string(),
"AUD".to_string(),
"USD".to_string(),
]),
Some(vec!["RIR_NSA".to_string(), "EQXR_NSA".to_string()]),
None,
Some("2010-01-20"),
None,
false,
)
.unwrap();
let end = start.elapsed();
println!("Reduced Mega DataFrame in {:?}", end);
// FOUND TICKERs
let start = std::time::Instant::now();
let found_tickers = get_unique_tickers(&df_new);
let end = start.elapsed();
println!(
"Found {:?} unique tickers in df_new",
found_tickers.unwrap()
);
println!("Found unique tickers in {:?}", end);
let end = start.elapsed();
println!("Loaded DataFrame in {:?}", end);
let start = std::time::Instant::now();
let df_gbp = reduce_dataframe(
df_new.clone(),
Some(vec!["GBP".to_string()]),
Some(vec!["RIR_NSA".to_string()]),
None,
Some("2024-11-12"),
None,
false,
)
.unwrap();
let end = start.elapsed();
println!("Reduced DataFrame in {:?}", end);
// println!("{:?}", df_gbp.head(Some(10)));
// FOUND TICKERs
let start = std::time::Instant::now();
let found_tickers = get_unique_tickers(&mega_df);
let end = start.elapsed();
println!(
"Found {:?} unique tickers in Mega DataFrame",
found_tickers.unwrap()
);
println!("Found unique tickers in {:?}", end);
let start = std::time::Instant::now();
let df_aud = reduce_dataframe(
df_new.clone(),
Some(vec!["USD".to_string()]),
// Some(vec!["EQXR_NSA".to_string(), "RIR_NSA".to_string()]),
Some(vec!["EQXR_NSA".to_string()]),
None,
Some("2024-11-13"),
None,
true,
)
.unwrap();
let end = start.elapsed();
println!("Reduced DataFrame in {:?}", end);
// dimenstions reduced from to
println!("{:?} from {:?}", df_aud.shape(), df_new.shape());
// println!("{:?}", df_aud.head(Some(10)));
let start = std::time::Instant::now();
let up_df = update_dataframe(&df_gbp, &df_aud).unwrap();
let end = start.elapsed();
println!("Updated DataFrame in {:?}", end);
println!("{:?}", up_df.head(Some(10)));
}

View File

@ -1,443 +0,0 @@
use crate::utils::misc::*;
use anyhow;
use polars::datatypes::DataType;
use polars::prelude::*;
use rayon::prelude::*;
use std::error::Error;
use std::fs;
/// The standard metrics provided by JPMaQS (`value`, `grading`, `eop_lag`, `mop_lag`).
pub const DEFAULT_JPMAQS_METRICS: [&str; 4] = ["value", "grading", "eop_lag", "mop_lag"];
/// The required columns for a Quantamental DataFrame.
pub const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
/// Check if a DataFrame is a quantamental DataFrame.
/// A standard Quantamental DataFrame has the following columns:
/// - `real_date`: Date column as a date type
/// - `cid`: Column of cross-sectional identifiers
/// - `xcat`: Column of extended categories
///
/// Additionally, the DataFrame should have atleast 1 more column.
/// Typically, this is one (or more) of the default JPMaQS metics.
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
let expected_cols = ["real_date", "cid", "xcat"];
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
let col = df.column(col);
if col.is_err() {
return Err(format!("Column {:?} not found", col).into());
}
let col = col?;
if col.dtype() != dtype {
return Err(format!("Column {:?} has wrong dtype", col).into());
}
}
Ok(())
}
/// Check if a DataFrame is a quantamental DataFrame.
/// Returns true if the DataFrame is a quantamental DataFrame, false otherwise.
/// Uses the `check_quantamental_dataframe` function to check if the DataFrame is a quantamental DataFrame.
pub fn is_quantamental_dataframe(df: &DataFrame) -> bool {
check_quantamental_dataframe(df).is_ok()
}
pub fn sort_qdf_columns(qdf: &mut DataFrame) -> Result<(), Box<dyn Error>> {
let index_columns = ["real_date", "cid", "xcat"];
let known_metrics = ["value", "grading", "eop_lag", "mop_lag"];
let df_columns = qdf
.get_column_names()
.into_iter()
.map(|s| s.clone().into_string())
.collect::<Vec<String>>();
let mut unknown_metrics: Vec<String> = df_columns
.iter()
.filter(|&m| !known_metrics.contains(&m.as_str()))
.filter(|&m| !index_columns.contains(&m.as_str()))
.cloned()
.collect();
let mut new_columns: Vec<String> = vec![];
new_columns.extend(index_columns.iter().map(|s| s.to_string()));
for &colname in &known_metrics {
if df_columns.contains(&colname.into()) {
new_columns.push(colname.to_string());
}
}
unknown_metrics.sort();
new_columns.extend(unknown_metrics);
*qdf = qdf
.select(new_columns.clone())
.expect("Failed to select columns");
Ok(())
}
fn _file_base_name(file_path: String) -> String {
std::path::Path::new(&file_path.clone())
.file_stem()
.unwrap()
.to_str()
.unwrap()
.to_string()
}
/// Load a Quantamental DataFrame from a CSV file.
/// The CSV must be named in the format `cid_xcat.csv` (`ticker.csv`).
/// The DataFrame must have a `real_date` column along with additional value columns.
pub fn load_quantamental_dataframe(
file_path: &str,
) -> Result<DataFrame, Box<dyn std::error::Error>> {
// get the file base name
let base_file_name = _file_base_name(file_path.into());
// if filename does not have _ then it is not a Quantamental DataFrame
if !base_file_name.contains('_') {
return Err("The file name must be in the format `cid_xcat.csv` (`ticker.csv`)".into());
}
let ticker = base_file_name.split('.').collect::<Vec<&str>>()[0];
let (cid, xcat) = split_ticker(ticker.to_string())?;
let mut df = CsvReadOptions::default()
.try_into_reader_with_file_path(Some(file_path.into()))
.unwrap()
.finish()
.unwrap();
let err = "The dataframe must have a `real_date` column and atleast 1 additional value column";
if df.column("real_date").is_err() || df.width() < 2 {
return Err(err.into());
}
// check if the first item in the real_date column has a dash or not
let has_dashes = df
.column("real_date")
.unwrap()
.cast(&DataType::String)?
.get(0)
.unwrap()
.to_string()
.contains('-');
let date_format = if has_dashes { "%Y-%m-%d" } else { "%Y%m%d" };
// let real_date_col = df
// .column("real_date".into())
// .unwrap()
// .cast(&DataType::Date)?;
let real_date_col = df
.column("real_date")
.unwrap()
// .str()?
.cast(&DataType::String)?
.str()?
.as_date(Some(date_format), false)
.map_err(|e| format!("Failed to parse date with format {}: {}", date_format, e))?;
df.with_column(real_date_col)?;
df.with_column(Series::new("cid".into(), vec![cid; df.height()]))?;
df.with_column(Series::new("xcat".into(), vec![xcat; df.height()]))?;
sort_qdf_columns(&mut df)?;
Ok(df)
}
fn _load_qdf_thread_safe(file_path: &str) -> Result<DataFrame, Box<dyn Error + Send + Sync>> {
let res = load_quantamental_dataframe(file_path);
res.map_err(|e| {
anyhow::Error::msg(e.to_string())
.context("Failed to load quantamental dataframe")
.into()
})
}
pub fn load_quantamental_dataframe_from_download_bank(
folder_path: &str,
cids: Option<Vec<&str>>,
xcats: Option<Vec<&str>>,
tickers: Option<Vec<&str>>,
) -> Result<DataFrame, Box<dyn std::error::Error>> {
let rcids = cids.unwrap_or_else(|| Vec::new());
let rxcats = xcats.unwrap_or_else(|| Vec::new());
let rtickers = tickers.unwrap_or_else(|| Vec::new());
// recursively read list of all files in the folder as a vector of strings
let files = fs::read_dir(folder_path)?
.map(|res| res.map(|e| e.path().display().to_string()))
.collect::<Result<Vec<String>, std::io::Error>>()?;
// print number of files found
// filter files that are not csv files
let files = files
.iter()
.filter(|f| f.ends_with(".csv"))
.collect::<Vec<&String>>();
// print number of csv files found
let mut rel_files = Vec::new();
for file in files {
let base_file_name: String = _file_base_name(file.into())
.split('.')
.collect::<Vec<&str>>()[0]
.into();
let (cid, xcat) = match split_ticker(base_file_name.clone()) {
Ok((cid, xcat)) => (cid, xcat),
Err(_) => continue,
};
rel_files.push((file, cid, xcat));
}
// print number of relevant ticker files found
let load_files = rel_files
.iter()
.filter(|(_, cid, xcat)| {
let f1 = rcids.len() > 0 && rcids.contains(&cid.as_str());
let f2 = rxcats.len() > 0 && rxcats.contains(&xcat.as_str());
let f3 = rtickers.len() > 0 && rtickers.contains(&create_ticker(cid, xcat).as_str());
f1 | f2 | f3
})
.map(|(file, _, _)| *file)
.collect::<Vec<&String>>();
// print number of files to load
println!("Loading {} files", load_files.len());
if load_files.len() == 0 {
return Err("No files to load".into());
}
if load_files.len() == 1 {
let dfx = load_quantamental_dataframe(load_files[0]).unwrap();
return Ok(dfx);
}
let load_files = load_files.iter().map(|s| s.as_str()).collect::<Vec<&str>>();
let qdf_batches = load_files.chunks(500).collect::<Vec<&[&str]>>();
let mut results = Vec::new();
let mut curr_batch = 1;
let total_batches = qdf_batches.len();
for batch in qdf_batches {
let qdf_list = batch
.par_iter()
.map(|file| _load_qdf_thread_safe(file).unwrap())
.collect::<Vec<DataFrame>>();
results.extend(qdf_list);
curr_batch += 1;
}
println!("Loaded {} files", results.len());
let mut res_df: DataFrame = results.pop().unwrap();
while let Some(df) = results.pop() {
res_df = res_df.vstack(&df).unwrap();
}
Ok(res_df)
}
/// Get intersecting cross-sections from a DataFrame.
pub fn get_intersecting_cids(
df: &DataFrame,
xcats: &Option<Vec<String>>,
) -> Result<Vec<String>, Box<dyn Error>> {
let rel_xcats = xcats
.clone()
.unwrap_or_else(|| get_unique_xcats(df).unwrap());
let found_tickers = get_unique_tickers(df)?;
let found_cids = get_unique_cids(df)?;
let keep_cids = get_intersecting_cids_str_func(&found_cids, &rel_xcats, &found_tickers);
Ok(keep_cids)
}
/// Get intersecting tickers from a DataFrame.
#[allow(dead_code)]
fn get_tickers_interesecting_on_xcat(
df: &DataFrame,
xcats: &Option<Vec<String>>,
) -> Result<Vec<String>, Box<dyn Error>> {
let rel_cids = get_intersecting_cids(df, xcats)?;
let rel_xcats = xcats
.clone()
.unwrap_or_else(|| get_unique_xcats(df).unwrap());
let rel_cids_str: Vec<&str> = rel_cids.iter().map(AsRef::as_ref).collect();
let rel_xcats_str: Vec<&str> = rel_xcats.iter().map(AsRef::as_ref).collect();
Ok(create_interesecting_tickers(&rel_cids_str, &rel_xcats_str))
}
/// Get the unique tickers from a Quantamental DataFrame.
pub fn get_ticker_column_for_quantamental_dataframe(
df: &DataFrame,
) -> Result<Column, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
let mut ticker_df =
DataFrame::new(vec![df.column("cid")?.clone(), df.column("xcat")?.clone()])?
.lazy()
.select([concat_str([col("cid"), col("xcat")], "_", true)])
.collect()?;
Ok(ticker_df
.rename("cid", "ticker".into())
.unwrap()
.column("ticker")
.unwrap()
.clone())
}
/// Get the unique tickers from a DataFrame.
/// Returns a Vec of unique tickers.
pub fn get_unique_tickers(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
let ticker_col = get_ticker_column_for_quantamental_dataframe(df)?;
_get_unique_strs_from_str_column_object(&ticker_col)
}
/// Get the unique cross-sectional identifiers (`cids`) from a DataFrame.
pub fn get_unique_cids(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
get_unique_from_str_column(df, "cid")
}
/// Get the unique extended categories (`xcats`) from a DataFrame.
pub fn get_unique_xcats(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
get_unique_from_str_column(df, "xcat")
}
/// Filter a dataframe based on the given parameters.
/// - `cids`: Filter by cross-sectional identifiers
/// - `xcats`: Filter by extended categories
/// - `metrics`: Filter by metrics
/// - `start`: Filter by start date
/// - `end`: Filter by end date
/// - `intersect`: If true, intersect only return `cids` that are present for all `xcats`.
/// Returns a new DataFrame with the filtered data, without modifying the original DataFrame.
/// If no filters are provided, the original DataFrame is returned.
pub fn reduce_dataframe(
df: &DataFrame,
cids: Option<Vec<String>>,
xcats: Option<Vec<String>>,
metrics: Option<Vec<String>>,
start: Option<&str>,
end: Option<&str>,
intersect: bool,
) -> Result<DataFrame, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
let mut new_df: DataFrame = df.clone();
let ticker_col: Column = get_ticker_column_for_quantamental_dataframe(&new_df)?;
// if cids is not provided, get all unique cids
let u_cids: Vec<String> = get_unique_cids(&new_df)?;
let u_xcats: Vec<String> = get_unique_xcats(&new_df)?;
let u_tickers: Vec<String> = _get_unique_strs_from_str_column_object(&ticker_col)?;
let specified_cids: Vec<String> = cids.unwrap_or_else(|| u_cids.clone());
let specified_xcats: Vec<String> = xcats.unwrap_or_else(|| u_xcats.clone());
let specified_metrics: Vec<String> = metrics.unwrap_or_else(|| {
DEFAULT_JPMAQS_METRICS
.iter()
.map(|&s| s.to_string())
.collect()
});
let specified_tickers: Vec<String> = create_interesecting_tickers(
&specified_cids
.iter()
.map(AsRef::as_ref)
.collect::<Vec<&str>>(),
&specified_xcats
.iter()
.map(AsRef::as_ref)
.collect::<Vec<&str>>(),
);
let keep_tickers: Vec<String> = match intersect {
true => get_intersecting_cids_str_func(&u_cids, &u_xcats, &u_tickers),
false => specified_tickers.clone(),
};
let kticks: Vec<&str> = keep_tickers
.iter()
.map(AsRef::as_ref)
.collect::<Vec<&str>>();
// Create a boolean mask to filter rows based on the tickers
let mut mask = vec![false; ticker_col.len()];
for (i, ticker) in ticker_col.str()?.iter().enumerate() {
if let Some(t) = ticker {
if kticks.contains(&t) {
mask[i] = true;
}
}
}
let mask = BooleanChunked::from_slice("mask".into(), &mask);
new_df = new_df.filter(&mask)?;
// Apply date filtering if `start` or `end` is provided
if let Some(start_date) = start {
new_df = new_df
.lazy()
.filter(col("real_date").gt_eq(start_date))
.collect()?;
}
if let Some(end_date) = end {
new_df = new_df
.lazy()
.filter(col("real_date").lt_eq(end_date))
.collect()?;
}
// Filter based on metrics if provided
assert!(specified_metrics.len() > 0);
// remove columns that are not in the specified metrics
let mut cols_to_remove = Vec::new();
for col in new_df.get_column_names() {
if !specified_metrics.contains(&col.to_string()) {
cols_to_remove.push(col);
}
}
new_df = new_df.drop_many(
cols_to_remove
.iter()
.map(|s| s.to_string())
.collect::<Vec<String>>(),
);
Ok(new_df)
}
/// Update a Quantamental DataFrame with new data.
/// - `df`: The original DataFrame
/// - `df_add`: The new DataFrame to add
///
pub fn update_dataframe(
df: &DataFrame,
df_add: &DataFrame,
// xcat_replace: Option<&str>,
) -> Result<DataFrame, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
check_quantamental_dataframe(df_add)?;
if df.is_empty() {
return Ok(df_add.clone());
} else if df_add.is_empty() {
return Ok(df.clone());
};
// vstack and drop duplicates keeping last
let mut new_df = df.vstack(df_add)?;
// help?
let idx_cols_vec = QDF_INDEX_COLUMNS
.iter()
.map(|s| s.to_string())
.collect::<Vec<String>>();
new_df = new_df.unique_stable(Some(&idx_cols_vec), UniqueKeepStrategy::Last, None)?;
Ok(new_df)
}

View File

@ -63,21 +63,29 @@ pub fn get_intersecting_cids_str_func(
xcats: &Vec<String>,
found_tickers: &Vec<String>,
) -> Vec<String> {
let mut keep_cids = cids.clone();
// make a hashmap of cids to xcats
let mut cid_xcat_map = HashMap::new();
for ticker in found_tickers {
let (cid, xcat) = split_ticker(ticker.clone()).unwrap();
cid_xcat_map.insert(cid.to_string(), xcat.to_string());
}
// filter out cids that are not present in all xcats
for (cid, xcats_for_cid) in cid_xcat_map.iter() {
// if the all xcats are not present, remove the cid
if !xcats.iter().all(|xcat| xcats_for_cid.contains(xcat)) {
keep_cids.retain(|x| x != cid);
// if the cid is not in the map, add it
if !cid_xcat_map.contains_key(&cid) {
cid_xcat_map.insert(cid.clone(), vec![xcat.clone()]);
} else {
cid_xcat_map.get_mut(&cid).unwrap().push(xcat.clone());
}
}
keep_cids
let mut found_cids: Vec<String> = cid_xcat_map.keys().map(|x| x.clone()).collect();
found_cids.retain(|x| cids.contains(x));
let mut new_keep_cids: Vec<String> = Vec::new();
for cid in found_cids {
let xcats_for_cid = cid_xcat_map.get(&cid).unwrap();
let mut found_xcats: Vec<String> = xcats_for_cid.iter().map(|x| x.clone()).collect();
found_xcats.retain(|x| xcats.contains(x));
if found_xcats.len() > 0 {
new_keep_cids.push(cid);
}
}
new_keep_cids
}

View File

@ -1,2 +1,2 @@
pub mod dftools;
pub mod misc;
pub mod qdf;
pub mod misc;

143
src/utils/qdf/core.rs Normal file
View File

@ -0,0 +1,143 @@
use crate::utils::misc::{
_get_unique_strs_from_str_column_object, create_interesecting_tickers,
get_intersecting_cids_str_func, get_unique_from_str_column,
};
use polars::datatypes::DataType;
use polars::prelude::*;
use std::error::Error;
/// Check if a DataFrame is a quantamental DataFrame.
/// A standard Quantamental DataFrame has the following columns:
/// - `real_date`: Date column as a date type
/// - `cid`: Column of cross-sectional identifiers
/// - `xcat`: Column of extended categories
///
/// Additionally, the DataFrame should have atleast 1 more column.
/// Typically, this is one (or more) of the default JPMaQS metics.
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
let expected_cols = ["real_date", "cid", "xcat"];
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
let col = df.column(col);
if col.is_err() {
return Err(format!("Column {:?} not found", col).into());
}
let col = col?;
if col.dtype() != dtype {
return Err(format!("Column {:?} has wrong dtype", col).into());
}
}
Ok(())
}
/// Check if a DataFrame is a quantamental DataFrame.
/// Returns true if the DataFrame is a quantamental DataFrame, false otherwise.
/// Uses the `check_quantamental_dataframe` function to check if the DataFrame is a quantamental DataFrame.
pub fn is_quantamental_dataframe(df: &DataFrame) -> bool {
check_quantamental_dataframe(df).is_ok()
}
/// Sort the columns of a Quantamental DataFrame.
/// The first columns are `real_date`, `cid`, and `xcat`.
/// These are followed by any available JPMAQS metrics, 'value', 'grading', 'eop_lag', 'mop_lag',
/// (**in that order**), followed by any other metrics (in alphabetical order).
pub fn sort_qdf_columns(qdf: &mut DataFrame) -> Result<(), Box<dyn Error>> {
let index_columns = ["real_date", "cid", "xcat"];
let known_metrics = ["value", "grading", "eop_lag", "mop_lag"];
let df_columns = qdf
.get_column_names()
.into_iter()
.map(|s| s.clone().into_string())
.collect::<Vec<String>>();
let mut unknown_metrics: Vec<String> = df_columns
.iter()
.filter(|&m| !known_metrics.contains(&m.as_str()))
.filter(|&m| !index_columns.contains(&m.as_str()))
.cloned()
.collect();
let mut new_columns: Vec<String> = vec![];
new_columns.extend(index_columns.iter().map(|s| s.to_string()));
for &colname in &known_metrics {
if df_columns.contains(&colname.into()) {
new_columns.push(colname.to_string());
}
}
unknown_metrics.sort();
new_columns.extend(unknown_metrics);
*qdf = qdf
.select(new_columns.clone())
.expect("Failed to select columns");
Ok(())
}
/// Get intersecting cross-sections from a DataFrame.
pub fn get_intersecting_cids(
df: &DataFrame,
xcats: &Option<Vec<String>>,
) -> Result<Vec<String>, Box<dyn Error>> {
let rel_xcats = xcats
.clone()
.unwrap_or_else(|| get_unique_xcats(df).unwrap());
let found_tickers = get_unique_tickers(df)?;
let found_cids = get_unique_cids(df)?;
let keep_cids = get_intersecting_cids_str_func(&found_cids, &rel_xcats, &found_tickers);
Ok(keep_cids)
}
/// Get intersecting tickers from a DataFrame.
#[allow(dead_code)]
fn get_tickers_interesecting_on_xcat(
df: &DataFrame,
xcats: &Option<Vec<String>>,
) -> Result<Vec<String>, Box<dyn Error>> {
let rel_cids = get_intersecting_cids(df, xcats)?;
let rel_xcats = xcats
.clone()
.unwrap_or_else(|| get_unique_xcats(df).unwrap());
let rel_cids_str: Vec<&str> = rel_cids.iter().map(AsRef::as_ref).collect();
let rel_xcats_str: Vec<&str> = rel_xcats.iter().map(AsRef::as_ref).collect();
Ok(create_interesecting_tickers(&rel_cids_str, &rel_xcats_str))
}
/// Get the unique tickers from a Quantamental DataFrame.
pub fn get_ticker_column_for_quantamental_dataframe(
df: &DataFrame,
) -> Result<Column, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
let mut ticker_df =
DataFrame::new(vec![df.column("cid")?.clone(), df.column("xcat")?.clone()])?
.lazy()
.select([concat_str([col("cid"), col("xcat")], "_", true)])
.collect()?;
Ok(ticker_df
.rename("cid", "ticker".into())
.unwrap()
.column("ticker")
.unwrap()
.clone())
}
/// Get the unique tickers from a DataFrame.
/// Returns a Vec of unique tickers.
pub fn get_unique_tickers(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
let ticker_col = get_ticker_column_for_quantamental_dataframe(df)?;
_get_unique_strs_from_str_column_object(&ticker_col)
}
/// Get the unique cross-sectional identifiers (`cids`) from a DataFrame.
pub fn get_unique_cids(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
get_unique_from_str_column(df, "cid")
}
/// Get the unique extended categories (`xcats`) from a DataFrame.
pub fn get_unique_xcats(df: &DataFrame) -> Result<Vec<String>, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
get_unique_from_str_column(df, "xcat")
}

198
src/utils/qdf/load.rs Normal file
View File

@ -0,0 +1,198 @@
use crate::utils::misc::{create_ticker, split_ticker};
use crate::utils::qdf::*;
use anyhow;
use log;
use polars::datatypes::DataType;
use polars::prelude::*;
use rayon::prelude::*;
use std::error::Error;
/// The number of concurrent file loads to perform.
const CONCURRENT_FILE_LOADS: usize = 500;
fn _file_base_name(file_path: String) -> String {
std::path::Path::new(&file_path.clone())
.file_stem()
.unwrap()
.to_str()
.unwrap()
.to_string()
}
/// Load a Quantamental DataFrame from a CSV file.
/// The CSV must be named in the format `cid_xcat.csv` (`ticker.csv`).
/// The DataFrame must have a `real_date` column along with additional value columns.
pub fn load_quantamental_dataframe(
file_path: &str,
) -> Result<DataFrame, Box<dyn std::error::Error>> {
// get the file base name
let base_file_name = _file_base_name(file_path.into());
// if filename does not have _ then it is not a Quantamental DataFrame
if !base_file_name.contains('_') {
return Err("The file name must be in the format `cid_xcat.csv` (`ticker.csv`)".into());
}
let ticker = base_file_name.split('.').collect::<Vec<&str>>()[0];
let (cid, xcat) = split_ticker(ticker.to_string())?;
let mut df = CsvReadOptions::default()
.try_into_reader_with_file_path(Some(file_path.into()))
.unwrap()
.finish()
.unwrap();
let err = "The dataframe must have a `real_date` column and atleast 1 additional value column";
if df.column("real_date").is_err() || df.width() < 2 {
return Err(err.into());
}
// check if the first item in the real_date column has a dash or not
let has_dashes = df
.column("real_date")
.unwrap()
.cast(&DataType::String)?
.get(0)
.unwrap()
.to_string()
.contains('-');
let date_format = if has_dashes { "%Y-%m-%d" } else { "%Y%m%d" };
// let real_date_col = df
// .column("real_date".into())
// .unwrap()
// .cast(&DataType::Date)?;
let real_date_col = df
.column("real_date")
.unwrap()
// .str()?
.cast(&DataType::String)?
.str()?
.as_date(Some(date_format), false)
.map_err(|e| format!("Failed to parse date with format {}: {}", date_format, e))?;
df.with_column(real_date_col)?;
df.with_column(Series::new("cid".into(), vec![cid; df.height()]))?;
df.with_column(Series::new("xcat".into(), vec![xcat; df.height()]))?;
sort_qdf_columns(&mut df)?;
Ok(df)
}
fn collect_paths_recursively<P: AsRef<std::path::Path>>(path: P) -> std::io::Result<Vec<String>> {
let mut paths = Vec::new();
for entry in std::fs::read_dir(path)? {
let entry = entry?;
let path = entry.path();
if path.is_dir() {
// Recurse into the directory and append the results
paths.extend(collect_paths_recursively(&path)?);
}
// Add the path to the vector
paths.push(path.to_string_lossy().to_string());
}
Ok(paths)
}
fn _load_qdf_thread_safe(file_path: &str) -> Result<DataFrame, Box<dyn Error + Send + Sync>> {
let res = load_quantamental_dataframe(file_path);
res.map_err(|e| {
anyhow::Error::msg(e.to_string())
.context("Failed to load quantamental dataframe")
.into()
})
}
pub fn load_quantamental_dataframe_from_download_bank(
folder_path: &str,
cids: Option<Vec<&str>>,
xcats: Option<Vec<&str>>,
tickers: Option<Vec<&str>>,
) -> Result<DataFrame, Box<dyn std::error::Error>> {
let rcids = cids.unwrap_or_else(|| Vec::new());
let rxcats = xcats.unwrap_or_else(|| Vec::new());
let rtickers = tickers.unwrap_or_else(|| Vec::new());
let files = collect_paths_recursively(folder_path)?;
log::info!("Found {} files", files.len());
// filter files that are not csv files
let files = files
.iter()
.filter(|f| f.ends_with(".csv"))
.collect::<Vec<&String>>();
log::info!("Found {} csv files", files.len());
let mut rel_files = Vec::new();
for file in files {
let base_file_name: String = _file_base_name(file.into())
.split('.')
.collect::<Vec<&str>>()[0]
.into();
let (cid, xcat) = match split_ticker(base_file_name.clone()) {
Ok((cid, xcat)) => (cid, xcat),
Err(_) => continue,
};
rel_files.push((file, cid, xcat));
}
log::info!("Found {} relevant ticker files", rel_files.len());
let load_files = rel_files
.iter()
.filter(|(_, cid, xcat)| {
let f1 = rcids.len() > 0 && rcids.contains(&cid.as_str());
let f2 = rxcats.len() > 0 && rxcats.contains(&xcat.as_str());
let f3 = rtickers.len() > 0 && rtickers.contains(&create_ticker(cid, xcat).as_str());
f1 | f2 | f3
})
.map(|(file, _, _)| *file)
.collect::<Vec<&String>>();
// print number of files to load
log::info!("Loading {} files", load_files.len());
if load_files.len() == 0 {
return Err("No files to load".into());
}
if load_files.len() == 1 {
let dfx = load_quantamental_dataframe(load_files[0]).unwrap();
return Ok(dfx);
}
let load_files = load_files.iter().map(|s| s.as_str()).collect::<Vec<&str>>();
let qdf_batches = load_files
.chunks(CONCURRENT_FILE_LOADS)
.collect::<Vec<&[&str]>>();
let mut results = Vec::new();
let mut curr_batch = 1;
let total_batches = qdf_batches.len();
for batch in qdf_batches {
let qdf_list = batch
.par_iter()
.map(|file| _load_qdf_thread_safe(file).unwrap().lazy())
.collect::<Vec<LazyFrame>>();
results.extend(qdf_list);
curr_batch += 1;
log::info!("Loaded {}/{} batches", curr_batch, total_batches);
}
log::info!("Loaded {} files", results.len());
let res_df = concat(results, UnionArgs::default())
.unwrap()
.collect()
.unwrap();
log::info!(
"Loaded dataframe with {} rows and {} columns",
res_df.height(),
res_df.width()
);
Ok(res_df)
}

9
src/utils/qdf/mod.rs Normal file
View File

@ -0,0 +1,9 @@
pub mod core;
pub mod update_df;
pub mod load;
pub mod reduce_df;
// Re-export submodules for easier access
pub use core::*;
pub use update_df::*;
pub use load::*;
pub use reduce_df::*;

151
src/utils/qdf/reduce_df.rs Normal file
View File

@ -0,0 +1,151 @@
use crate::utils::misc::*;
use crate::utils::qdf::core::*;
use polars::prelude::*;
use std::error::Error;
/// The required columns for a Quantamental DataFrame.
const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
/// Filter a dataframe based on the given parameters.
/// - `cids`: Filter by cross-sectional identifiers
/// - `xcats`: Filter by extended categories
/// - `metrics`: Filter by metrics
/// - `start`: Filter by start date
/// - `end`: Filter by end date
/// - `intersect`: If true, intersect only return `cids` that are present for all `xcats`.
/// Returns a new DataFrame with the filtered data, without modifying the original DataFrame.
/// If no filters are provided, the original DataFrame is returned.
pub fn reduce_dataframe(
df: DataFrame,
cids: Option<Vec<String>>,
xcats: Option<Vec<String>>,
metrics: Option<Vec<String>>,
start: Option<&str>,
end: Option<&str>,
intersect: bool,
) -> Result<DataFrame, Box<dyn Error>> {
check_quantamental_dataframe(&df)?;
// df_size
let df_size = df.shape();
let mut new_df = df.clone();
let ticker_col: Column = get_ticker_column_for_quantamental_dataframe(&new_df)?;
// if cids is not provided, get all unique cids
let u_cids: Vec<String> = get_unique_cids(&new_df)?;
let u_xcats: Vec<String> = get_unique_xcats(&new_df)?;
let u_tickers: Vec<String> = _get_unique_strs_from_str_column_object(&ticker_col)?;
let specified_cids: Vec<String> = cids.unwrap_or_else(|| u_cids.clone());
let specified_xcats: Vec<String> = xcats.unwrap_or_else(|| u_xcats.clone());
let non_idx_cols: Vec<String> = new_df
.get_column_names()
.iter()
.filter(|&col| !QDF_INDEX_COLUMNS.contains(&col.as_str()))
.map(|s| s.to_string())
.collect();
let specified_metrics: Vec<String> =
metrics.unwrap_or_else(|| non_idx_cols.iter().map(|s| s.to_string()).collect());
let specified_tickers: Vec<String> = create_interesecting_tickers(
&specified_cids
.iter()
.map(AsRef::as_ref)
.collect::<Vec<&str>>(),
&specified_xcats
.iter()
.map(AsRef::as_ref)
.collect::<Vec<&str>>(),
);
let keep_tickers: Vec<String> = match intersect {
// true => get_intersecting_cids_str_func(&specified_cids, &specified_xcats, &u_tickers),
true => {
let int_cids =
get_intersecting_cids_str_func(&specified_cids, &specified_xcats, &u_tickers);
create_interesecting_tickers(
&int_cids.iter().map(AsRef::as_ref).collect::<Vec<&str>>(),
&specified_xcats
.iter()
.map(AsRef::as_ref)
.collect::<Vec<&str>>(),
)
}
false => specified_tickers.clone(),
};
let kticks: Vec<&str> = keep_tickers
.iter()
.map(AsRef::as_ref)
.collect::<Vec<&str>>();
// Create a boolean mask to filter rows based on the tickers
let mut mask = vec![false; ticker_col.len()];
for (i, ticker) in ticker_col.str()?.iter().enumerate() {
if let Some(t) = ticker {
if kticks.contains(&t) {
mask[i] = true;
}
}
}
let mask = BooleanChunked::from_slice("mask".into(), &mask);
new_df = new_df.filter(&mask)?;
// Apply date filtering if `start` or `end` is provided
if let Some(start) = start {
let start_date = chrono::NaiveDate::parse_from_str(start, "%Y-%m-%d")?;
new_df = new_df
.lazy()
.filter(
col("real_date")
.gt_eq(lit(start_date))
.alias("real_date")
.into(),
)
.collect()?;
}
if let Some(end) = end {
let end_date = chrono::NaiveDate::parse_from_str(end, "%Y-%m-%d")?;
new_df = new_df
.lazy()
.filter(
col("real_date")
.lt_eq(lit(end_date))
.alias("real_date")
.into(),
)
.collect()?;
}
// Filter based on metrics if provided
assert!(specified_metrics.len() > 0);
// remove columns that are not in the specified metrics
let mut cols_to_remove = Vec::new();
for col in new_df.get_column_names() {
if !specified_metrics.contains(&col.to_string())
&& !QDF_INDEX_COLUMNS.contains(&col.as_str())
{
cols_to_remove.push(col);
}
}
new_df = new_df.drop_many(
cols_to_remove
.iter()
.map(|s| s.to_string())
.collect::<Vec<String>>(),
);
// check if the df is still the same size
let new_df_size = new_df.shape();
if df_size != new_df_size {
println!(
"Reduced DataFrame from {} to {} rows",
df_size.0, new_df_size.0
);
}
Ok(new_df)
}

View File

@ -0,0 +1,35 @@
use crate::utils::qdf::core::*;
use polars::prelude::*;
use std::error::Error;
const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
/// Update a Quantamental DataFrame with new data.
/// - `df`: The original DataFrame
/// - `df_add`: The new DataFrame to add
///
pub fn update_dataframe(
df: &DataFrame,
df_add: &DataFrame,
// xcat_replace: Option<&str>,
) -> Result<DataFrame, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
check_quantamental_dataframe(df_add)?;
if df.is_empty() {
return Ok(df_add.clone());
} else if df_add.is_empty() {
return Ok(df.clone());
};
// vstack and drop duplicates keeping last
let mut new_df = df.vstack(df_add)?;
// help?
let idx_cols_vec = QDF_INDEX_COLUMNS
.iter()
.map(|s| s.to_string())
.collect::<Vec<String>>();
new_df = new_df.unique_stable(Some(&idx_cols_vec), UniqueKeepStrategy::Last, None)?;
Ok(new_df)
}