mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 16:40:01 +00:00
106 lines
3.1 KiB
Rust
106 lines
3.1 KiB
Rust
use crate::matrix::Matrix;
|
||
use std::collections::HashMap;
|
||
|
||
pub struct GaussianNB {
|
||
classes: Vec<f64>, // distinct labels
|
||
priors: Vec<f64>, // P(class)
|
||
means: Vec<Matrix<f64>>,
|
||
variances: Vec<Matrix<f64>>,
|
||
eps: f64, // var-smoothing
|
||
}
|
||
|
||
impl GaussianNB {
|
||
pub fn new(var_smoothing: f64) -> Self {
|
||
Self {
|
||
classes: vec![],
|
||
priors: vec![],
|
||
means: vec![],
|
||
variances: vec![],
|
||
eps: var_smoothing,
|
||
}
|
||
}
|
||
|
||
pub fn fit(&mut self, x: &Matrix<f64>, y: &Matrix<f64>) {
|
||
let m = x.rows();
|
||
let n = x.cols();
|
||
assert_eq!(y.rows(), m);
|
||
assert_eq!(y.cols(), 1);
|
||
|
||
// ----- group samples by label -----
|
||
let mut groups: HashMap<i64, Vec<usize>> = HashMap::new();
|
||
for i in 0..m {
|
||
groups.entry(y[(i, 0)] as i64).or_default().push(i);
|
||
}
|
||
|
||
self.classes = groups.keys().cloned().map(|v| v as f64).collect::<Vec<_>>();
|
||
self.classes.sort_by(|a, b| a.partial_cmp(b).unwrap());
|
||
|
||
self.priors.clear();
|
||
self.means.clear();
|
||
self.variances.clear();
|
||
|
||
for &c in &self.classes {
|
||
let idx = &groups[&(c as i64)];
|
||
let count = idx.len();
|
||
self.priors.push(count as f64 / m as f64);
|
||
|
||
let mut mean = Matrix::zeros(1, n);
|
||
let mut var = Matrix::zeros(1, n);
|
||
|
||
// mean
|
||
for &i in idx {
|
||
for j in 0..n {
|
||
mean[(0, j)] += x[(i, j)];
|
||
}
|
||
}
|
||
for j in 0..n {
|
||
mean[(0, j)] /= count as f64;
|
||
}
|
||
|
||
// variance
|
||
for &i in idx {
|
||
for j in 0..n {
|
||
let d = x[(i, j)] - mean[(0, j)];
|
||
var[(0, j)] += d * d;
|
||
}
|
||
}
|
||
for j in 0..n {
|
||
var[(0, j)] = var[(0, j)] / count as f64 + self.eps;
|
||
}
|
||
|
||
self.means.push(mean);
|
||
self.variances.push(var);
|
||
}
|
||
}
|
||
|
||
/// Return class labels (shape m×1) for samples in X.
|
||
pub fn predict(&self, x: &Matrix<f64>) -> Matrix<f64> {
|
||
let m = x.rows();
|
||
let k = self.classes.len();
|
||
let n = x.cols();
|
||
let mut preds = Matrix::zeros(m, 1);
|
||
let ln_2pi = (2.0 * std::f64::consts::PI).ln();
|
||
|
||
for i in 0..m {
|
||
let mut best_class = 0usize;
|
||
let mut best_log_prob = f64::NEG_INFINITY;
|
||
for c in 0..k {
|
||
// log P(y=c) + Σ log N(x_j | μ, σ²)
|
||
let mut log_prob = self.priors[c].ln();
|
||
for j in 0..n {
|
||
let mean = self.means[c][(0, j)];
|
||
let var = self.variances[c][(0, j)];
|
||
let diff = x[(i, j)] - mean;
|
||
log_prob += -0.5 * (diff * diff / var + var.ln() + ln_2pi);
|
||
}
|
||
if log_prob > best_log_prob {
|
||
best_log_prob = log_prob;
|
||
best_class = c;
|
||
}
|
||
}
|
||
preds[(i, 0)] = self.classes[best_class];
|
||
}
|
||
preds
|
||
}
|
||
}
|