mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00
279 lines
8.5 KiB
Rust
279 lines
8.5 KiB
Rust
// Combined benchmarks
|
|
use chrono::NaiveDate;
|
|
use criterion::{criterion_group, criterion_main, Criterion};
|
|
|
|
use rustframe::{
|
|
frame::{Frame, RowIndex},
|
|
matrix::{BoolMatrix, Matrix, SeriesOps},
|
|
utils::{BDateFreq, BDatesList},
|
|
};
|
|
use std::time::Duration;
|
|
|
|
// Define size categories
|
|
const SIZES_SMALL: [usize; 1] = [1];
|
|
const SIZES_MEDIUM: [usize; 3] = [100, 250, 500];
|
|
const SIZES_LARGE: [usize; 1] = [1000];
|
|
|
|
// Modified benchmark functions to accept a slice of sizes
|
|
fn bool_matrix_operations_benchmark(c: &mut Criterion, sizes: &[usize]) {
|
|
for &size in sizes {
|
|
let data1: Vec<bool> = (0..size * size).map(|x| x % 2 == 0).collect();
|
|
let data2: Vec<bool> = (0..size * size).map(|x| x % 3 == 0).collect();
|
|
let bm1 = BoolMatrix::from_vec(data1.clone(), size, size);
|
|
let bm2 = BoolMatrix::from_vec(data2.clone(), size, size);
|
|
|
|
c.bench_function(&format!("bool_matrix_and ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &bm1 & &bm2;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("bool_matrix_or ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &bm1 | &bm2;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("bool_matrix_xor ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &bm1 ^ &bm2;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("bool_matrix_not ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = !&bm1;
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
fn matrix_boolean_operations_benchmark(c: &mut Criterion, sizes: &[usize]) {
|
|
for &size in sizes {
|
|
let data1: Vec<bool> = (0..size * size).map(|x| x % 2 == 0).collect();
|
|
let data2: Vec<bool> = (0..size * size).map(|x| x % 3 == 0).collect();
|
|
let bm1 = BoolMatrix::from_vec(data1.clone(), size, size);
|
|
let bm2 = BoolMatrix::from_vec(data2.clone(), size, size);
|
|
|
|
c.bench_function(&format!("boolean AND ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &bm1 & &bm2;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("boolean OR ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &bm1 | &bm2;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("boolean XOR ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &bm1 ^ &bm2;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("boolean NOT ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = !&bm1;
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
fn matrix_operations_benchmark(c: &mut Criterion, sizes: &[usize]) {
|
|
for &size in sizes {
|
|
let data: Vec<f64> = (0..size * size).map(|x| x as f64).collect();
|
|
let ma = Matrix::from_vec(data.clone(), size, size);
|
|
|
|
c.bench_function(&format!("scalar add ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &ma + 1.0;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("scalar subtract ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &ma - 1.0;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("scalar multiply ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &ma * 2.0;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("scalar divide ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &ma / 2.0;
|
|
});
|
|
});
|
|
}
|
|
|
|
for &size in sizes {
|
|
let data1: Vec<f64> = (0..size * size).map(|x| x as f64).collect();
|
|
let data2: Vec<f64> = (0..size * size).map(|x| (x + 1) as f64).collect();
|
|
let ma = Matrix::from_vec(data1.clone(), size, size);
|
|
let mb = Matrix::from_vec(data2.clone(), size, size);
|
|
|
|
c.bench_function(&format!("matrix add ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &ma + &mb;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("matrix subtract ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &ma - &mb;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("matrix multiply ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &ma * &mb;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("matrix divide ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &ma / &mb;
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
fn generate_frame(size: usize) -> Frame<f64> {
|
|
let data: Vec<f64> = (0..size * size).map(|x| x as f64).collect();
|
|
let dates: Vec<NaiveDate> =
|
|
BDatesList::from_n_periods("2000-01-01".to_string(), BDateFreq::Daily, size)
|
|
.unwrap()
|
|
.list()
|
|
.unwrap();
|
|
let col_names: Vec<String> = (1..=size).map(|i| format!("col_{}", i)).collect();
|
|
Frame::new(
|
|
Matrix::from_vec(data.clone(), size, size),
|
|
col_names,
|
|
Some(RowIndex::Date(dates)),
|
|
)
|
|
}
|
|
|
|
fn benchmark_frame_operations(c: &mut Criterion, sizes: &[usize]) {
|
|
for &size in sizes {
|
|
let fa = generate_frame(size);
|
|
let fb = generate_frame(size);
|
|
|
|
c.bench_function(&format!("frame add ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &fa + &fb;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("frame subtract ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &fa - &fb;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("frame multiply ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &fa * &fb;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("frame divide ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = &fa / &fb;
|
|
});
|
|
});
|
|
|
|
c.bench_function(&format!("frame sum_horizontal ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = fa.sum_horizontal();
|
|
});
|
|
});
|
|
c.bench_function(&format!("frame sum_vertical ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = fa.sum_vertical();
|
|
});
|
|
});
|
|
c.bench_function(&format!("frame prod_horizontal ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = fa.prod_horizontal();
|
|
});
|
|
});
|
|
c.bench_function(&format!("frame prod_vertical ({}x{})", size, size), |b| {
|
|
b.iter(|| {
|
|
let _result = fa.prod_vertical();
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
// Runner functions for each size category
|
|
fn run_benchmarks_small(c: &mut Criterion) {
|
|
bool_matrix_operations_benchmark(c, &SIZES_SMALL);
|
|
matrix_boolean_operations_benchmark(c, &SIZES_SMALL);
|
|
matrix_operations_benchmark(c, &SIZES_SMALL);
|
|
benchmark_frame_operations(c, &SIZES_SMALL);
|
|
}
|
|
|
|
fn run_benchmarks_medium(c: &mut Criterion) {
|
|
bool_matrix_operations_benchmark(c, &SIZES_MEDIUM);
|
|
matrix_boolean_operations_benchmark(c, &SIZES_MEDIUM);
|
|
matrix_operations_benchmark(c, &SIZES_MEDIUM);
|
|
benchmark_frame_operations(c, &SIZES_MEDIUM);
|
|
}
|
|
|
|
fn run_benchmarks_large(c: &mut Criterion) {
|
|
bool_matrix_operations_benchmark(c, &SIZES_LARGE);
|
|
matrix_boolean_operations_benchmark(c, &SIZES_LARGE);
|
|
matrix_operations_benchmark(c, &SIZES_LARGE);
|
|
benchmark_frame_operations(c, &SIZES_LARGE);
|
|
}
|
|
|
|
// Configuration functions for different size categories
|
|
fn config_small_arrays() -> Criterion {
|
|
Criterion::default()
|
|
.sample_size(500)
|
|
.measurement_time(Duration::from_millis(100))
|
|
.warm_up_time(Duration::from_millis(5))
|
|
}
|
|
|
|
fn config_medium_arrays() -> Criterion {
|
|
Criterion::default()
|
|
.sample_size(100)
|
|
.measurement_time(Duration::from_millis(2000))
|
|
.warm_up_time(Duration::from_millis(100))
|
|
}
|
|
|
|
fn config_large_arrays() -> Criterion {
|
|
Criterion::default()
|
|
.sample_size(50)
|
|
.measurement_time(Duration::from_millis(5000))
|
|
.warm_up_time(Duration::from_millis(200))
|
|
}
|
|
|
|
|
|
criterion_group!(
|
|
name = benches_small_arrays;
|
|
config = config_small_arrays();
|
|
targets = run_benchmarks_small
|
|
);
|
|
criterion_group!(
|
|
name = benches_medium_arrays;
|
|
config = config_medium_arrays();
|
|
targets = run_benchmarks_medium
|
|
);
|
|
criterion_group!(
|
|
name = benches_large_arrays;
|
|
config = config_large_arrays();
|
|
targets = run_benchmarks_large
|
|
);
|
|
|
|
criterion_main!(
|
|
benches_small_arrays,
|
|
benches_medium_arrays,
|
|
benches_large_arrays
|
|
);
|