rustframe/src/compute/stats/descriptive.rs

391 lines
13 KiB
Rust

use crate::matrix::{Axis, Matrix, SeriesOps};
pub fn mean(x: &Matrix<f64>) -> f64 {
x.data().iter().sum::<f64>() / (x.rows() * x.cols()) as f64
}
pub fn mean_vertical(x: &Matrix<f64>) -> Matrix<f64> {
let m = x.rows() as f64;
Matrix::from_vec(x.sum_vertical(), 1, x.cols()) / m
}
pub fn mean_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
let n = x.cols() as f64;
Matrix::from_vec(x.sum_horizontal(), x.rows(), 1) / n
}
fn population_or_sample_variance(x: &Matrix<f64>, population: bool) -> f64 {
let m = (x.rows() * x.cols()) as f64;
let mean_val = mean(x);
x.data()
.iter()
.map(|&v| (v - mean_val).powi(2))
.sum::<f64>()
/ if population { m } else { m - 1.0 }
}
pub fn population_variance(x: &Matrix<f64>) -> f64 {
population_or_sample_variance(x, true)
}
pub fn sample_variance(x: &Matrix<f64>) -> f64 {
population_or_sample_variance(x, false)
}
fn _population_or_sample_variance_axis(
x: &Matrix<f64>,
axis: Axis,
population: bool,
) -> Matrix<f64> {
match axis {
Axis::Row => {
// Calculate variance for each column (vertical variance)
let num_rows = x.rows() as f64;
let mean_of_cols = mean_vertical(x); // 1 x cols matrix
let mut result_data = vec![0.0; x.cols()];
for c in 0..x.cols() {
let mean_val = mean_of_cols.get(0, c); // Mean for current column
let mut sum_sq_diff = 0.0;
for r in 0..x.rows() {
let diff = x.get(r, c) - mean_val;
sum_sq_diff += diff * diff;
}
result_data[c] = sum_sq_diff / (if population { num_rows } else { num_rows - 1.0 });
}
Matrix::from_vec(result_data, 1, x.cols())
}
Axis::Col => {
// Calculate variance for each row (horizontal variance)
let num_cols = x.cols() as f64;
let mean_of_rows = mean_horizontal(x); // rows x 1 matrix
let mut result_data = vec![0.0; x.rows()];
for r in 0..x.rows() {
let mean_val = mean_of_rows.get(r, 0); // Mean for current row
let mut sum_sq_diff = 0.0;
for c in 0..x.cols() {
let diff = x.get(r, c) - mean_val;
sum_sq_diff += diff * diff;
}
result_data[r] = sum_sq_diff / (if population { num_cols } else { num_cols - 1.0 });
}
Matrix::from_vec(result_data, x.rows(), 1)
}
}
}
pub fn population_variance_vertical(x: &Matrix<f64>) -> Matrix<f64> {
_population_or_sample_variance_axis(x, Axis::Row, true)
}
pub fn population_variance_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
_population_or_sample_variance_axis(x, Axis::Col, true)
}
pub fn sample_variance_vertical(x: &Matrix<f64>) -> Matrix<f64> {
_population_or_sample_variance_axis(x, Axis::Row, false)
}
pub fn sample_variance_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
_population_or_sample_variance_axis(x, Axis::Col, false)
}
pub fn stddev(x: &Matrix<f64>) -> f64 {
population_variance(x).sqrt()
}
pub fn stddev_vertical(x: &Matrix<f64>) -> Matrix<f64> {
population_variance_vertical(x).map(|v| v.sqrt())
}
pub fn stddev_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
population_variance_horizontal(x).map(|v| v.sqrt())
}
pub fn median(x: &Matrix<f64>) -> f64 {
let mut data = x.data().to_vec();
data.sort_by(|a, b| a.partial_cmp(b).unwrap());
let mid = data.len() / 2;
if data.len() % 2 == 0 {
(data[mid - 1] + data[mid]) / 2.0
} else {
data[mid]
}
}
fn _median_axis(x: &Matrix<f64>, axis: Axis) -> Matrix<f64> {
let mx = match axis {
Axis::Col => x.clone(),
Axis::Row => x.transpose(),
};
let mut result = Vec::with_capacity(mx.cols());
for c in 0..mx.cols() {
let mut col = mx.column(c).to_vec();
col.sort_by(|a, b| a.partial_cmp(b).unwrap());
let mid = col.len() / 2;
if col.len() % 2 == 0 {
result.push((col[mid - 1] + col[mid]) / 2.0);
} else {
result.push(col[mid]);
}
}
let (r, c) = match axis {
Axis::Col => (1, mx.cols()),
Axis::Row => (mx.cols(), 1),
};
Matrix::from_vec(result, r, c)
}
pub fn median_vertical(x: &Matrix<f64>) -> Matrix<f64> {
_median_axis(x, Axis::Col)
}
pub fn median_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
_median_axis(x, Axis::Row)
}
pub fn percentile(x: &Matrix<f64>, p: f64) -> f64 {
if p < 0.0 || p > 100.0 {
panic!("Percentile must be between 0 and 100");
}
let mut data = x.data().to_vec();
data.sort_by(|a, b| a.partial_cmp(b).unwrap());
let index = ((p / 100.0) * (data.len() as f64 - 1.0)).round() as usize;
data[index]
}
fn _percentile_axis(x: &Matrix<f64>, p: f64, axis: Axis) -> Matrix<f64> {
if p < 0.0 || p > 100.0 {
panic!("Percentile must be between 0 and 100");
}
let mx: Matrix<f64> = match axis {
Axis::Col => x.clone(),
Axis::Row => x.transpose(),
};
let mut result = Vec::with_capacity(mx.cols());
for c in 0..mx.cols() {
let mut col = mx.column(c).to_vec();
col.sort_by(|a, b| a.partial_cmp(b).unwrap());
let index = ((p / 100.0) * (col.len() as f64 - 1.0)).round() as usize;
result.push(col[index]);
}
let (r, c) = match axis {
Axis::Col => (1, mx.cols()),
Axis::Row => (mx.cols(), 1),
};
Matrix::from_vec(result, r, c)
}
pub fn percentile_vertical(x: &Matrix<f64>, p: f64) -> Matrix<f64> {
_percentile_axis(x, p, Axis::Col)
}
pub fn percentile_horizontal(x: &Matrix<f64>, p: f64) -> Matrix<f64> {
_percentile_axis(x, p, Axis::Row)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::matrix::Matrix;
const EPSILON: f64 = 1e-8;
#[test]
fn test_descriptive_stats_regular_values() {
let data = vec![1.0, 2.0, 3.0, 4.0, 5.0];
let x = Matrix::from_vec(data, 1, 5);
// Mean
assert!((mean(&x) - 3.0).abs() < EPSILON);
// Variance
assert!((population_variance(&x) - 2.0).abs() < EPSILON);
// Standard Deviation
assert!((stddev(&x) - 1.4142135623730951).abs() < EPSILON);
// Median
assert!((median(&x) - 3.0).abs() < EPSILON);
// Percentile
assert!((percentile(&x, 0.0) - 1.0).abs() < EPSILON);
assert!((percentile(&x, 25.0) - 2.0).abs() < EPSILON);
assert!((percentile(&x, 50.0) - 3.0).abs() < EPSILON);
assert!((percentile(&x, 75.0) - 4.0).abs() < EPSILON);
assert!((percentile(&x, 100.0) - 5.0).abs() < EPSILON);
let data_even = vec![1.0, 2.0, 3.0, 4.0];
let x_even = Matrix::from_vec(data_even, 1, 4);
assert!((median(&x_even) - 2.5).abs() < EPSILON);
}
#[test]
fn test_descriptive_stats_outlier() {
let data = vec![1.0, 2.0, 3.0, 4.0, 100.0];
let x = Matrix::from_vec(data, 1, 5);
// Mean should be heavily affected by outlier
assert!((mean(&x) - 22.0).abs() < EPSILON);
// Variance should be heavily affected by outlier
assert!((population_variance(&x) - 1522.0).abs() < EPSILON);
// Standard Deviation should be heavily affected by outlier
assert!((stddev(&x) - 39.0128183970461).abs() < EPSILON);
// Median should be robust to outlier
assert!((median(&x) - 3.0).abs() < EPSILON);
}
#[test]
#[should_panic(expected = "Percentile must be between 0 and 100")]
fn test_percentile_panic_low() {
let data = vec![1.0, 2.0, 3.0];
let x = Matrix::from_vec(data, 1, 3);
percentile(&x, -1.0);
}
#[test]
#[should_panic(expected = "Percentile must be between 0 and 100")]
fn test_percentile_panic_high() {
let data = vec![1.0, 2.0, 3.0];
let x = Matrix::from_vec(data, 1, 3);
percentile(&x, 101.0);
}
#[test]
fn test_mean_vertical_horizontal() {
// 2x3 matrix:
let data = vec![1.0, 4.0, 2.0, 5.0, 3.0, 6.0];
let x = Matrix::from_vec(data, 2, 3);
// Vertical means (per column): [(1+4)/2, (2+5)/2, (3+6)/2]
let mv = mean_vertical(&x);
assert!((mv.get(0, 0) - 2.5).abs() < EPSILON);
assert!((mv.get(0, 1) - 3.5).abs() < EPSILON);
assert!((mv.get(0, 2) - 4.5).abs() < EPSILON);
// Horizontal means (per row): [(1+2+3)/3, (4+5+6)/3]
let mh = mean_horizontal(&x);
assert!((mh.get(0, 0) - 2.0).abs() < EPSILON);
assert!((mh.get(1, 0) - 5.0).abs() < EPSILON);
}
#[test]
fn test_variance_vertical_horizontal() {
let data = vec![1.0, 4.0, 2.0, 5.0, 3.0, 6.0];
let x = Matrix::from_vec(data, 2, 3);
// cols: {1,4}, {2,5}, {3,6} all give 2.25
let vv = population_variance_vertical(&x);
for c in 0..3 {
assert!((vv.get(0, c) - 2.25).abs() < EPSILON);
}
let vh = population_variance_horizontal(&x);
assert!((vh.get(0, 0) - (2.0 / 3.0)).abs() < EPSILON);
assert!((vh.get(1, 0) - (2.0 / 3.0)).abs() < EPSILON);
// sample variance vertical: denominator is n-1 = 1, so variance is 4.5
let svv = sample_variance_vertical(&x);
for c in 0..3 {
assert!((svv.get(0, c) - 4.5).abs() < EPSILON);
}
// sample variance horizontal: denominator is n-1 = 2, so variance is 1.0
let svh = sample_variance_horizontal(&x);
assert!((svh.get(0, 0) - 1.0).abs() < EPSILON);
assert!((svh.get(1, 0) - 1.0).abs() < EPSILON);
}
#[test]
fn test_stddev_vertical_horizontal() {
let data = vec![1.0, 4.0, 2.0, 5.0, 3.0, 6.0];
let x = Matrix::from_vec(data, 2, 3);
// Stddev is sqrt of variance
let sv = stddev_vertical(&x);
for c in 0..3 {
assert!((sv.get(0, c) - 1.5).abs() < EPSILON);
}
let sh = stddev_horizontal(&x);
// sqrt(2/3) ≈ 0.816497
let expected = (2.0 / 3.0 as f64).sqrt();
assert!((sh.get(0, 0) - expected).abs() < EPSILON);
assert!((sh.get(1, 0) - expected).abs() < EPSILON);
// sample stddev vertical: sqrt(4.5) ≈ 2.12132034
let ssv = sample_variance_vertical(&x).map(|v| v.sqrt());
for c in 0..3 {
assert!((ssv.get(0, c) - 2.1213203435596424).abs() < EPSILON);
}
// sample stddev horizontal: sqrt(1.0) = 1.0
let ssh = sample_variance_horizontal(&x).map(|v| v.sqrt());
assert!((ssh.get(0, 0) - 1.0).abs() < EPSILON);
assert!((ssh.get(1, 0) - 1.0).abs() < EPSILON);
}
#[test]
fn test_median_vertical_horizontal() {
let data = vec![1.0, 4.0, 2.0, 5.0, 3.0, 6.0];
let x = Matrix::from_vec(data, 2, 3);
let mv = median_vertical(&x).row(0);
let expected_v = vec![2.5, 3.5, 4.5];
assert_eq!(mv, expected_v, "{:?} expected: {:?}", expected_v, mv);
let mh = median_horizontal(&x).column(0).to_vec();
let expected_h = vec![2.0, 5.0];
assert_eq!(mh, expected_h, "{:?} expected: {:?}", expected_h, mh);
}
#[test]
fn test_percentile_vertical_horizontal() {
// vec of f64 values 1..24 as a 4x6 matrix
let data: Vec<f64> = (1..=24).map(|x| x as f64).collect();
let x = Matrix::from_vec(data, 4, 6);
// columns:
// 1, 5, 9, 13, 17, 21
// 2, 6, 10, 14, 18, 22
// 3, 7, 11, 15, 19, 23
// 4, 8, 12, 16, 20, 24
let er0 = vec![1., 5., 9., 13., 17., 21.];
let er50 = vec![3., 7., 11., 15., 19., 23.];
let er100 = vec![4., 8., 12., 16., 20., 24.];
assert_eq!(percentile_vertical(&x, 0.0).data(), er0);
assert_eq!(percentile_vertical(&x, 50.0).data(), er50);
assert_eq!(percentile_vertical(&x, 100.0).data(), er100);
let eh0 = vec![1., 2., 3., 4.];
let eh50 = vec![13., 14., 15., 16.];
let eh100 = vec![21., 22., 23., 24.];
assert_eq!(percentile_horizontal(&x, 0.0).data(), eh0);
assert_eq!(percentile_horizontal(&x, 50.0).data(), eh50);
assert_eq!(percentile_horizontal(&x, 100.0).data(), eh100);
}
#[test]
#[should_panic(expected = "Percentile must be between 0 and 100")]
fn test_percentile_out_of_bounds() {
let data = vec![1.0, 2.0, 3.0];
let x = Matrix::from_vec(data, 1, 3);
percentile(&x, -10.0); // Should panic
}
#[test]
#[should_panic(expected = "Percentile must be between 0 and 100")]
fn test_percentile_vertical_out_of_bounds() {
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
let _ = percentile_vertical(&m, -0.1);
}
}