mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:19:59 +00:00
460 lines
17 KiB
Rust
460 lines
17 KiB
Rust
//! Conway's Game of Life Example
|
|
//! This example implements Conway's Game of Life using a `BoolMatrix` to represent the game board.
|
|
//! It demonstrates matrix operations like shifting, counting neighbors, and applying game rules.
|
|
//! The game runs in a loop, updating the board state and printing it to the console.
|
|
//! To modify the behaviour of the example, please change the constants at the top of this file.
|
|
//! By default,
|
|
|
|
use rand::{self, Rng};
|
|
use rustframe::matrix::{BoolMatrix, BoolOps, IntMatrix, Matrix};
|
|
use std::{thread, time};
|
|
|
|
const BOARD_SIZE: usize = 20; // Size of the board (50x50)
|
|
const MAX_FRAMES: u32 = 1000;
|
|
|
|
const TICK_DURATION_MS: u64 = 0; // Milliseconds per frame
|
|
const SKIP_FRAMES: u32 = 1;
|
|
const PRINT_BOARD: bool = true; // Set to false to disable printing the board
|
|
|
|
fn main() {
|
|
let args = std::env::args().collect::<Vec<String>>();
|
|
let debug_mode = args.contains(&"--debug".to_string());
|
|
let print_mode = if debug_mode { false } else { PRINT_BOARD };
|
|
|
|
// Initialize the game board.
|
|
// This demonstrates `BoolMatrix::from_vec`.
|
|
let mut current_board =
|
|
BoolMatrix::from_vec(vec![false; BOARD_SIZE * BOARD_SIZE], BOARD_SIZE, BOARD_SIZE);
|
|
|
|
let primes = generate_primes((BOARD_SIZE * BOARD_SIZE) as i32);
|
|
|
|
add_simulated_activity(&mut current_board, BOARD_SIZE);
|
|
|
|
let mut generation_count: u32 = 0;
|
|
// `previous_board_state` will store a clone of the board.
|
|
// This demonstrates `Matrix::clone()` and later `PartialEq` for `Matrix`.
|
|
let mut previous_board_state: Option<BoolMatrix> = None;
|
|
let mut board_hashes = Vec::new();
|
|
// let mut print_board_bool = true;
|
|
let mut print_bool_int = 0;
|
|
|
|
loop {
|
|
// if print_board_bool {
|
|
if print_bool_int % SKIP_FRAMES == 0 {
|
|
print_board(¤t_board, generation_count, print_mode);
|
|
|
|
print_bool_int = 0;
|
|
} else {
|
|
print_bool_int += 1;
|
|
}
|
|
// `current_board.count()` demonstrates a method from `BoolOps`.
|
|
board_hashes.push(hash_board(¤t_board, primes.clone()));
|
|
if detect_stable_state(¤t_board, &previous_board_state) {
|
|
println!(
|
|
"\nStable state detected at generation {}.",
|
|
generation_count
|
|
);
|
|
add_simulated_activity(&mut current_board, BOARD_SIZE);
|
|
}
|
|
if detect_repeating_state(&mut board_hashes) {
|
|
println!(
|
|
"\nRepeating state detected at generation {}.",
|
|
generation_count
|
|
);
|
|
add_simulated_activity(&mut current_board, BOARD_SIZE);
|
|
}
|
|
if !¤t_board.any() {
|
|
println!("\nExtinction at generation {}.", generation_count);
|
|
add_simulated_activity(&mut current_board, BOARD_SIZE);
|
|
}
|
|
|
|
// `current_board.clone()` demonstrates `Clone` for `Matrix`.
|
|
previous_board_state = Some(current_board.clone());
|
|
|
|
// This is the core call to your game logic.
|
|
let next_board = game_of_life_next_frame(¤t_board);
|
|
current_board = next_board;
|
|
|
|
generation_count += 1;
|
|
thread::sleep(time::Duration::from_millis(TICK_DURATION_MS));
|
|
|
|
if (MAX_FRAMES > 0) && (generation_count > MAX_FRAMES) {
|
|
println!("\nReached generation limit.");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Prints the Game of Life board to the console.
|
|
///
|
|
/// - `board`: A reference to the `BoolMatrix` representing the current game state.
|
|
/// This function demonstrates `board.rows()`, `board.cols()`, and `board[(r, c)]` (Index trait).
|
|
fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
|
|
if !print_mode {
|
|
return;
|
|
}
|
|
|
|
print!("{}[2J", 27 as char);
|
|
println!("Conway's Game of Life - Generation: {}", generation_count);
|
|
let mut print_str = String::new();
|
|
print_str.push_str("+");
|
|
for _ in 0..board.cols() {
|
|
print_str.push_str("--");
|
|
}
|
|
print_str.push_str("+\n");
|
|
for r in 0..board.rows() {
|
|
print_str.push_str("| ");
|
|
for c in 0..board.cols() {
|
|
if board[(r, c)] {
|
|
// Using Index trait for Matrix<bool>
|
|
print_str.push_str("██");
|
|
} else {
|
|
print_str.push_str(" ");
|
|
}
|
|
}
|
|
print_str.push_str(" |\n");
|
|
}
|
|
print_str.push_str("+");
|
|
for _ in 0..board.cols() {
|
|
print_str.push_str("--");
|
|
}
|
|
print_str.push_str("+\n\n");
|
|
print!("{}", print_str);
|
|
|
|
println!("Alive cells: {}", board.count());
|
|
}
|
|
|
|
/// Helper function to create a shifted version of the game board.
|
|
/// (Using the version provided by the user)
|
|
///
|
|
/// - `game`: The current state of the Game of Life as a `BoolMatrix`.
|
|
/// - `dr`: The row shift (delta row). Positive shifts down, negative shifts up.
|
|
/// - `dc`: The column shift (delta column). Positive shifts right, negative shifts left.
|
|
///
|
|
/// Returns an `IntMatrix` of the same dimensions as `game`.
|
|
/// - Cells in the shifted matrix get value `1` if the corresponding source cell in `game` was `true` (alive).
|
|
/// - Cells that would source from outside `game`'s bounds (due to the shift) get value `0`.
|
|
fn get_shifted_neighbor_layer(game: &BoolMatrix, dr: isize, dc: isize) -> IntMatrix {
|
|
let rows = game.rows();
|
|
let cols = game.cols();
|
|
|
|
if rows == 0 || cols == 0 {
|
|
// Handle 0x0 case, other 0-dim cases panic in Matrix::from_vec
|
|
return IntMatrix::from_vec(vec![], 0, 0);
|
|
}
|
|
|
|
// Initialize with a matrix of 0s using from_vec.
|
|
// This demonstrates creating an IntMatrix and then populating it.
|
|
let mut shifted_layer = IntMatrix::from_vec(vec![0i32; rows * cols], rows, cols);
|
|
|
|
for r_target in 0..rows {
|
|
// Iterate over cells in the *new* (target) shifted matrix
|
|
for c_target in 0..cols {
|
|
// Calculate where this target cell would have come from in the *original* game matrix
|
|
let r_source = r_target as isize - dr;
|
|
let c_source = c_target as isize - dc;
|
|
|
|
// Check if the source coordinates are within the bounds of the original game matrix
|
|
if r_source >= 0
|
|
&& r_source < rows as isize
|
|
&& c_source >= 0
|
|
&& c_source < cols as isize
|
|
{
|
|
// If the source cell in the original game was alive...
|
|
if game[(r_source as usize, c_source as usize)] {
|
|
// Demonstrates Index access on BoolMatrix
|
|
// ...then this cell in the shifted layer is 1.
|
|
shifted_layer[(r_target, c_target)] = 1; // Demonstrates IndexMut access on IntMatrix
|
|
}
|
|
}
|
|
// Else (source is out of bounds): it remains 0, as initialized.
|
|
}
|
|
}
|
|
shifted_layer // Return the constructed IntMatrix
|
|
}
|
|
|
|
/// Calculates the next generation of Conway's Game of Life.
|
|
///
|
|
/// This implementation uses a broadcast-like approach by creating shifted layers
|
|
/// for each neighbor and summing them up, then applying rules element-wise.
|
|
///
|
|
/// - `current_game`: A `&BoolMatrix` representing the current state (true=alive).
|
|
///
|
|
/// Returns: A new `BoolMatrix` for the next generation.
|
|
pub fn game_of_life_next_frame(current_game: &BoolMatrix) -> BoolMatrix {
|
|
let rows = current_game.rows();
|
|
let cols = current_game.cols();
|
|
|
|
if rows == 0 && cols == 0 {
|
|
return BoolMatrix::from_vec(vec![], 0, 0); // Return an empty BoolMatrix
|
|
}
|
|
// Assuming valid non-empty dimensions (e.g., 25x25) as per typical GOL.
|
|
// Your Matrix::from_vec would panic for other invalid 0-dim cases.
|
|
|
|
// Define the 8 neighbor offsets (row_delta, col_delta)
|
|
let neighbor_offsets: [(isize, isize); 8] = [
|
|
(-1, -1),
|
|
(-1, 0),
|
|
(-1, 1), // Top row (NW, N, NE)
|
|
(0, -1),
|
|
(0, 1), // Middle row (W, E)
|
|
(1, -1),
|
|
(1, 0),
|
|
(1, 1), // Bottom row (SW, S, SE)
|
|
];
|
|
|
|
// 1. Initialize `neighbor_counts` with the first shifted layer.
|
|
// This demonstrates creating an IntMatrix from a function and using it as a base.
|
|
let (first_dr, first_dc) = neighbor_offsets[0];
|
|
let mut neighbor_counts = get_shifted_neighbor_layer(current_game, first_dr, first_dc);
|
|
|
|
// 2. Add the remaining 7 neighbor layers.
|
|
// This demonstrates element-wise addition of matrices (`Matrix + Matrix`).
|
|
for i in 1..neighbor_offsets.len() {
|
|
let (dr, dc) = neighbor_offsets[i];
|
|
let next_neighbor_layer = get_shifted_neighbor_layer(current_game, dr, dc);
|
|
// `neighbor_counts` (owned IntMatrix) + `next_neighbor_layer` (owned IntMatrix)
|
|
// uses `impl Add for Matrix`, consumes both, returns new owned `IntMatrix`.
|
|
neighbor_counts = neighbor_counts + next_neighbor_layer;
|
|
}
|
|
|
|
// 3. Apply Game of Life rules using element-wise operations.
|
|
|
|
// Rule: Survival or Birth based on neighbor counts.
|
|
// A cell is alive in the next generation if:
|
|
// (it's currently alive AND has 2 or 3 neighbors) OR
|
|
// (it's currently dead AND has exactly 3 neighbors)
|
|
|
|
// `neighbor_counts.eq_elem(scalar)`:
|
|
// Demonstrates element-wise comparison of a Matrix with a scalar (broadcast).
|
|
// Returns an owned `BoolMatrix`.
|
|
let has_2_neighbors = neighbor_counts.eq_elem(2);
|
|
let has_3_neighbors = neighbor_counts.eq_elem(3); // This will be reused
|
|
|
|
// `has_2_neighbors | has_3_neighbors`:
|
|
// Demonstrates element-wise OR (`Matrix<bool> | Matrix<bool>`).
|
|
// Consumes both operands, returns an owned `BoolMatrix`.
|
|
let has_2_or_3_neighbors = has_2_neighbors | has_3_neighbors.clone(); // Clone has_3_neighbors as it's used again
|
|
|
|
// `current_game & &has_2_or_3_neighbors`:
|
|
// `current_game` is `&BoolMatrix`. `has_2_or_3_neighbors` is owned.
|
|
// Demonstrates element-wise AND (`&Matrix<bool> & &Matrix<bool>`).
|
|
// Borrows both operands, returns an owned `BoolMatrix`.
|
|
let survives = current_game & &has_2_or_3_neighbors;
|
|
|
|
// `!current_game`:
|
|
// Demonstrates element-wise NOT (`!&Matrix<bool>`).
|
|
// Borrows operand, returns an owned `BoolMatrix`.
|
|
let is_dead = !current_game;
|
|
|
|
// `is_dead & &has_3_neighbors`:
|
|
// `is_dead` is owned. `has_3_neighbors` is owned.
|
|
// Demonstrates element-wise AND (`Matrix<bool> & &Matrix<bool>`).
|
|
// Consumes `is_dead`, borrows `has_3_neighbors`, returns an owned `BoolMatrix`.
|
|
let births = is_dead & &has_3_neighbors;
|
|
|
|
// `survives | births`:
|
|
// Demonstrates element-wise OR (`Matrix<bool> | Matrix<bool>`).
|
|
// Consumes both operands, returns an owned `BoolMatrix`.
|
|
let next_frame_game = survives | births;
|
|
|
|
next_frame_game
|
|
}
|
|
|
|
pub fn generate_glider(board: &mut BoolMatrix, board_size: usize) {
|
|
// Initialize with a Glider pattern.
|
|
// It demonstrates how to set specific cells in the matrix.
|
|
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
|
let mut rng = rand::rng();
|
|
let r_offset = rng.random_range(0..(board_size - 3));
|
|
let c_offset = rng.random_range(0..(board_size - 3));
|
|
if board.rows() >= r_offset + 3 && board.cols() >= c_offset + 3 {
|
|
board[(r_offset + 0, c_offset + 1)] = true;
|
|
board[(r_offset + 1, c_offset + 2)] = true;
|
|
board[(r_offset + 2, c_offset + 0)] = true;
|
|
board[(r_offset + 2, c_offset + 1)] = true;
|
|
board[(r_offset + 2, c_offset + 2)] = true;
|
|
}
|
|
}
|
|
|
|
pub fn generate_pulsar(board: &mut BoolMatrix, board_size: usize) {
|
|
// Initialize with a Pulsar pattern.
|
|
// This demonstrates how to set specific cells in the matrix.
|
|
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
|
let mut rng = rand::rng();
|
|
let r_offset = rng.random_range(0..(board_size - 17));
|
|
let c_offset = rng.random_range(0..(board_size - 17));
|
|
if board.rows() >= r_offset + 17 && board.cols() >= c_offset + 17 {
|
|
let pulsar_coords = [
|
|
(2, 4),
|
|
(2, 5),
|
|
(2, 6),
|
|
(2, 10),
|
|
(2, 11),
|
|
(2, 12),
|
|
(4, 2),
|
|
(4, 7),
|
|
(4, 9),
|
|
(4, 14),
|
|
(5, 2),
|
|
(5, 7),
|
|
(5, 9),
|
|
(5, 14),
|
|
(6, 2),
|
|
(6, 7),
|
|
(6, 9),
|
|
(6, 14),
|
|
(7, 4),
|
|
(7, 5),
|
|
(7, 6),
|
|
(7, 10),
|
|
(7, 11),
|
|
(7, 12),
|
|
];
|
|
for &(dr, dc) in pulsar_coords.iter() {
|
|
board[(r_offset + dr, c_offset + dc)] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn detect_stable_state(
|
|
current_board: &BoolMatrix,
|
|
previous_board_state: &Option<BoolMatrix>,
|
|
) -> bool {
|
|
if let Some(ref prev_board) = previous_board_state {
|
|
// `*prev_board == current_board` demonstrates `PartialEq` for `Matrix`.
|
|
return *prev_board == *current_board;
|
|
}
|
|
false
|
|
}
|
|
|
|
pub fn hash_board(board: &BoolMatrix, primes: Vec<i32>) -> usize {
|
|
let board_ints_vec = board
|
|
.data()
|
|
.iter()
|
|
.map(|&cell| if cell { 1 } else { 0 })
|
|
.collect::<Vec<i32>>();
|
|
|
|
let ints_board = Matrix::from_vec(board_ints_vec, board.rows(), board.cols());
|
|
|
|
let primes_board = Matrix::from_vec(primes, ints_board.rows(), ints_board.cols());
|
|
|
|
let result = ints_board * primes_board;
|
|
let result: i32 = result.data().iter().sum();
|
|
result as usize
|
|
}
|
|
|
|
pub fn detect_repeating_state(board_hashes: &mut Vec<usize>) -> bool {
|
|
// so - detect alternating states. if 0==2, 1==3, 2==4, 3==5, 4==6, 5==7
|
|
if board_hashes.len() < 4 {
|
|
return false;
|
|
}
|
|
let mut result = false;
|
|
if (board_hashes[0] == board_hashes[2]) && (board_hashes[0] == board_hashes[2]) {
|
|
result = true;
|
|
}
|
|
// remove the 0th item
|
|
board_hashes.remove(0);
|
|
result
|
|
}
|
|
|
|
pub fn add_simulated_activity(current_board: &mut BoolMatrix, board_size: usize) {
|
|
for _ in 0..20 {
|
|
generate_glider(current_board, board_size);
|
|
}
|
|
|
|
// Generate a Pulsar pattern
|
|
for _ in 0..10 {
|
|
generate_pulsar(current_board, board_size);
|
|
}
|
|
}
|
|
|
|
// generate prime numbers
|
|
pub fn generate_primes(n: i32) -> Vec<i32> {
|
|
// I want to generate the first n primes
|
|
let mut primes = Vec::new();
|
|
let mut count = 0;
|
|
let mut num = 2; // Start checking for primes from 2
|
|
while count < n {
|
|
let mut is_prime = true;
|
|
for i in 2..=((num as f64).sqrt() as i32) {
|
|
if num % i == 0 {
|
|
is_prime = false;
|
|
break;
|
|
}
|
|
}
|
|
if is_prime {
|
|
primes.push(num);
|
|
count += 1;
|
|
}
|
|
num += 1;
|
|
}
|
|
primes
|
|
}
|
|
|
|
// --- Tests from previous example (can be kept or adapted) ---
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use rustframe::matrix::{BoolMatrix, BoolOps}; // Assuming BoolOps is available for .count()
|
|
|
|
#[test]
|
|
fn test_blinker_oscillator() {
|
|
let initial_data = vec![false, true, false, false, true, false, false, true, false];
|
|
let game1 = BoolMatrix::from_vec(initial_data.clone(), 3, 3);
|
|
let expected_frame2_data = vec![false, false, false, true, true, true, false, false, false];
|
|
let expected_game2 = BoolMatrix::from_vec(expected_frame2_data, 3, 3);
|
|
let game2 = game_of_life_next_frame(&game1);
|
|
assert_eq!(
|
|
game2.data(),
|
|
expected_game2.data(),
|
|
"Frame 1 to Frame 2 failed for blinker"
|
|
);
|
|
let expected_game3 = BoolMatrix::from_vec(initial_data, 3, 3);
|
|
let game3 = game_of_life_next_frame(&game2);
|
|
assert_eq!(
|
|
game3.data(),
|
|
expected_game3.data(),
|
|
"Frame 2 to Frame 3 failed for blinker"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_empty_board_remains_empty() {
|
|
let board_3x3_all_false = BoolMatrix::from_vec(vec![false; 9], 3, 3);
|
|
let next_frame = game_of_life_next_frame(&board_3x3_all_false);
|
|
assert_eq!(
|
|
next_frame.count(),
|
|
0,
|
|
"All-false board should result in all-false"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_zero_size_board() {
|
|
let board_0x0 = BoolMatrix::from_vec(vec![], 0, 0);
|
|
let next_frame = game_of_life_next_frame(&board_0x0);
|
|
assert_eq!(next_frame.rows(), 0);
|
|
assert_eq!(next_frame.cols(), 0);
|
|
assert!(
|
|
next_frame.data().is_empty(),
|
|
"0x0 board should result in 0x0 board"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_still_life_block() {
|
|
let block_data = vec![
|
|
true, true, false, false, true, true, false, false, false, false, false, false, false,
|
|
false, false, false,
|
|
];
|
|
let game_block = BoolMatrix::from_vec(block_data.clone(), 4, 4);
|
|
let next_frame_block = game_of_life_next_frame(&game_block);
|
|
assert_eq!(
|
|
next_frame_block.data(),
|
|
game_block.data(),
|
|
"Block still life should remain unchanged"
|
|
);
|
|
}
|
|
}
|