# Compute Features The `compute` module hosts numerical routines for exploratory data analysis. It covers descriptive statistics, correlations, probability distributions and some basic inferential tests. ## Basic Statistics ```rust # extern crate rustframe; use rustframe::compute::stats::{mean, mean_vertical, stddev, median}; use rustframe::matrix::Matrix; let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2); assert_eq!(mean(&m), 2.5); assert_eq!(stddev(&m), 1.118033988749895); assert_eq!(median(&m), 2.5); // column averages returned as 1 x n matrix let col_means = mean_vertical(&m); assert_eq!(col_means.data(), &[1.5, 3.5]); ``` ## Correlation Correlation functions help measure linear relationships between datasets. ```rust # extern crate rustframe; use rustframe::compute::stats::{pearson, covariance}; use rustframe::matrix::Matrix; let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2); let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2); let corr = pearson(&x, &y); let cov = covariance(&x, &y); assert!((corr - 1.0).abs() < 1e-8); assert!((cov - 2.5).abs() < 1e-8); ``` ## Distributions Probability distribution helpers are available for common PDFs and CDFs. ```rust # extern crate rustframe; use rustframe::compute::stats::distributions::normal_pdf; use rustframe::matrix::Matrix; let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2); let pdf = normal_pdf(x, 0.0, 1.0); assert_eq!(pdf.data().len(), 2); ``` With the basics covered, explore predictive models in the [machine learning](./machine-learning.md) chapter.