use crate::matrix::{Axis, Matrix, SeriesOps}; pub fn mean(x: &Matrix) -> f64 { x.data().iter().sum::() / (x.rows() * x.cols()) as f64 } pub fn mean_vertical(x: &Matrix) -> Matrix { let m = x.rows() as f64; Matrix::from_vec(x.sum_vertical(), 1, x.cols()) / m } pub fn mean_horizontal(x: &Matrix) -> Matrix { let n = x.cols() as f64; Matrix::from_vec(x.sum_horizontal(), x.rows(), 1) / n } pub fn variance(x: &Matrix) -> f64 { let m = (x.rows() * x.cols()) as f64; let mean_val = mean(x); x.data() .iter() .map(|&v| (v - mean_val).powi(2)) .sum::() / m } fn _variance_axis(x: &Matrix, axis: Axis) -> Matrix { match axis { Axis::Row => { // Calculate variance for each column (vertical variance) let num_rows = x.rows() as f64; let mean_of_cols = mean_vertical(x); // 1 x cols matrix let mut result_data = vec![0.0; x.cols()]; for c in 0..x.cols() { let mean_val = mean_of_cols.get(0, c); // Mean for current column let mut sum_sq_diff = 0.0; for r in 0..x.rows() { let diff = x.get(r, c) - mean_val; sum_sq_diff += diff * diff; } result_data[c] = sum_sq_diff / num_rows; } Matrix::from_vec(result_data, 1, x.cols()) } Axis::Col => { // Calculate variance for each row (horizontal variance) let num_cols = x.cols() as f64; let mean_of_rows = mean_horizontal(x); // rows x 1 matrix let mut result_data = vec![0.0; x.rows()]; for r in 0..x.rows() { let mean_val = mean_of_rows.get(r, 0); // Mean for current row let mut sum_sq_diff = 0.0; for c in 0..x.cols() { let diff = x.get(r, c) - mean_val; sum_sq_diff += diff * diff; } result_data[r] = sum_sq_diff / num_cols; } Matrix::from_vec(result_data, x.rows(), 1) } } } pub fn variance_vertical(x: &Matrix) -> Matrix { _variance_axis(x, Axis::Row) } pub fn variance_horizontal(x: &Matrix) -> Matrix { _variance_axis(x, Axis::Col) } pub fn stddev(x: &Matrix) -> f64 { variance(x).sqrt() } pub fn stddev_vertical(x: &Matrix) -> Matrix { variance_vertical(x).map(|v| v.sqrt()) } pub fn stddev_horizontal(x: &Matrix) -> Matrix { variance_horizontal(x).map(|v| v.sqrt()) } pub fn median(x: &Matrix) -> f64 { let mut data = x.data().to_vec(); data.sort_by(|a, b| a.partial_cmp(b).unwrap()); let mid = data.len() / 2; if data.len() % 2 == 0 { (data[mid - 1] + data[mid]) / 2.0 } else { data[mid] } } fn _median_axis(x: &Matrix, axis: Axis) -> Matrix { let mut data = match axis { Axis::Row => x.sum_vertical(), Axis::Col => x.sum_horizontal(), }; data.sort_by(|a, b| a.partial_cmp(b).unwrap()); let mid = data.len() / 2; if data.len() % 2 == 0 { Matrix::from_vec( vec![(data[mid - 1] + data[mid]) / 2.0], if axis == Axis::Row { 1 } else { x.rows() }, if axis == Axis::Row { x.cols() } else { 1 }, ) } else { Matrix::from_vec( vec![data[mid]], if axis == Axis::Row { 1 } else { x.rows() }, if axis == Axis::Row { x.cols() } else { 1 }, ) } } pub fn median_vertical(x: &Matrix) -> Matrix { _median_axis(x, Axis::Row) } pub fn median_horizontal(x: &Matrix) -> Matrix { _median_axis(x, Axis::Col) } pub fn percentile(x: &Matrix, p: f64) -> f64 { if p < 0.0 || p > 100.0 { panic!("Percentile must be between 0 and 100"); } let mut data = x.data().to_vec(); data.sort_by(|a, b| a.partial_cmp(b).unwrap()); let index = ((p / 100.0) * (data.len() as f64 - 1.0)).round() as usize; data[index] } fn _percentile_axis(x: &Matrix, p: f64, axis: Axis) -> Matrix { if p < 0.0 || p > 100.0 { panic!("Percentile must be between 0 and 100"); } let mut data = match axis { Axis::Row => x.sum_vertical(), Axis::Col => x.sum_horizontal(), }; data.sort_by(|a, b| a.partial_cmp(b).unwrap()); let index = ((p / 100.0) * (data.len() as f64 - 1.0)).round() as usize; Matrix::from_vec( vec![data[index]], if axis == Axis::Row { 1 } else { x.rows() }, if axis == Axis::Row { x.cols() } else { 1 }, ) } pub fn percentile_vertical(x: &Matrix, p: f64) -> Matrix { _percentile_axis(x, p, Axis::Row) } pub fn percentile_horizontal(x: &Matrix, p: f64) -> Matrix { _percentile_axis(x, p, Axis::Col) } #[cfg(test)] mod tests { use super::*; use crate::matrix::Matrix; const EPSILON: f64 = 1e-8; #[test] fn test_descriptive_stats_regular_values() { let data = vec![1.0, 2.0, 3.0, 4.0, 5.0]; let x = Matrix::from_vec(data, 1, 5); // Mean assert!((mean(&x) - 3.0).abs() < EPSILON); // Variance assert!((variance(&x) - 2.0).abs() < EPSILON); // Standard Deviation assert!((stddev(&x) - 1.4142135623730951).abs() < EPSILON); // Median assert!((median(&x) - 3.0).abs() < EPSILON); // Percentile assert!((percentile(&x, 0.0) - 1.0).abs() < EPSILON); assert!((percentile(&x, 25.0) - 2.0).abs() < EPSILON); assert!((percentile(&x, 50.0) - 3.0).abs() < EPSILON); assert!((percentile(&x, 75.0) - 4.0).abs() < EPSILON); assert!((percentile(&x, 100.0) - 5.0).abs() < EPSILON); let data_even = vec![1.0, 2.0, 3.0, 4.0]; let x_even = Matrix::from_vec(data_even, 1, 4); assert!((median(&x_even) - 2.5).abs() < EPSILON); } #[test] fn test_descriptive_stats_outlier() { let data = vec![1.0, 2.0, 3.0, 4.0, 100.0]; let x = Matrix::from_vec(data, 1, 5); // Mean should be heavily affected by outlier assert!((mean(&x) - 22.0).abs() < EPSILON); // Variance should be heavily affected by outlier assert!((variance(&x) - 1522.0).abs() < EPSILON); // Standard Deviation should be heavily affected by outlier assert!((stddev(&x) - 39.0128183970461).abs() < EPSILON); // Median should be robust to outlier assert!((median(&x) - 3.0).abs() < EPSILON); } #[test] #[should_panic(expected = "Percentile must be between 0 and 100")] fn test_percentile_panic_low() { let data = vec![1.0, 2.0, 3.0]; let x = Matrix::from_vec(data, 1, 3); percentile(&x, -1.0); } #[test] #[should_panic(expected = "Percentile must be between 0 and 100")] fn test_percentile_panic_high() { let data = vec![1.0, 2.0, 3.0]; let x = Matrix::from_vec(data, 1, 3); percentile(&x, 101.0); } #[test] fn test_mean_vertical_horizontal() { // 2x3 matrix: let data = vec![1.0, 4.0, 2.0, 5.0, 3.0, 6.0]; let x = Matrix::from_vec(data, 2, 3); // Vertical means (per column): [(1+4)/2, (2+5)/2, (3+6)/2] let mv = mean_vertical(&x); assert!((mv.get(0, 0) - 2.5).abs() < EPSILON); assert!((mv.get(0, 1) - 3.5).abs() < EPSILON); assert!((mv.get(0, 2) - 4.5).abs() < EPSILON); // Horizontal means (per row): [(1+2+3)/3, (4+5+6)/3] let mh = mean_horizontal(&x); assert!((mh.get(0, 0) - 2.0).abs() < EPSILON); assert!((mh.get(1, 0) - 5.0).abs() < EPSILON); } #[test] fn test_variance_vertical_horizontal() { let data = vec![1.0, 4.0, 2.0, 5.0, 3.0, 6.0]; let x = Matrix::from_vec(data, 2, 3); // Vertical variances (per column): each is ((v - mean)^2 summed / 2) // cols: {1,4}, {2,5}, {3,6} all give 2.25 let vv = variance_vertical(&x); for c in 0..3 { assert!((vv.get(0, c) - 2.25).abs() < EPSILON); } // Horizontal variances (per row): rows [1,2,3] and [4,5,6] both give 2/3 let vh = variance_horizontal(&x); assert!((vh.get(0, 0) - (2.0 / 3.0)).abs() < EPSILON); assert!((vh.get(1, 0) - (2.0 / 3.0)).abs() < EPSILON); } #[test] fn test_stddev_vertical_horizontal() { let data = vec![1.0, 4.0, 2.0, 5.0, 3.0, 6.0]; let x = Matrix::from_vec(data, 2, 3); // Stddev is sqrt of variance let sv = stddev_vertical(&x); for c in 0..3 { assert!((sv.get(0, c) - 1.5).abs() < EPSILON); } let sh = stddev_horizontal(&x); // sqrt(2/3) ≈ 0.816497 let expected = (2.0 / 3.0 as f64).sqrt(); assert!((sh.get(0, 0) - expected).abs() < EPSILON); assert!((sh.get(1, 0) - expected).abs() < EPSILON); } }