use crate::matrix::{Axis, BoolMatrix, FloatMatrix}; /// "Series-like" helpers that work along a single axis. /// /// *All* the old methods (`sum_*`, `prod_*`, `is_nan`, …) are exposed /// through this trait, so nothing needs to stay on an `impl Matrix`; /// just `use SeriesOps` to make the extension methods available. pub trait SeriesOps { /// Generic helper: apply `f` to every column/row and collect its /// result in a `Vec`. fn apply_axis(&self, axis: Axis, f: F) -> Vec where F: FnMut(&[f64]) -> U; fn sum_vertical(&self) -> Vec; fn sum_horizontal(&self) -> Vec; fn prod_vertical(&self) -> Vec; fn prod_horizontal(&self) -> Vec; fn cumsum_vertical(&self) -> FloatMatrix; fn cumsum_horizontal(&self) -> FloatMatrix; fn count_nan_vertical(&self) -> Vec; fn count_nan_horizontal(&self) -> Vec; fn is_nan(&self) -> BoolMatrix; } impl SeriesOps for FloatMatrix { fn apply_axis(&self, axis: Axis, mut f: F) -> Vec where F: FnMut(&[f64]) -> U, { match axis { Axis::Col => { let mut out = Vec::with_capacity(self.cols()); for c in 0..self.cols() { out.push(f(self.column(c))); } out } Axis::Row => { let mut out = Vec::with_capacity(self.rows()); let mut buf = vec![0.0; self.cols()]; // reusable buffer for r in 0..self.rows() { for c in 0..self.cols() { buf[c] = self[(r, c)]; } out.push(f(&buf)); } out } } } fn sum_vertical(&self) -> Vec { self.apply_axis(Axis::Col, |col| { col.iter().copied().filter(|v| !v.is_nan()).sum::() }) } fn sum_horizontal(&self) -> Vec { self.apply_axis(Axis::Row, |row| { row.iter().copied().filter(|v| !v.is_nan()).sum::() }) } fn prod_vertical(&self) -> Vec { self.apply_axis(Axis::Col, |col| { col.iter() .copied() .filter(|v| !v.is_nan()) .fold(1.0, |acc, x| acc * x) }) } fn prod_horizontal(&self) -> Vec { self.apply_axis(Axis::Row, |row| { row.iter() .copied() .filter(|v| !v.is_nan()) .fold(1.0, |acc, x| acc * x) }) } fn cumsum_vertical(&self) -> FloatMatrix { let mut data = Vec::with_capacity(self.rows() * self.cols()); for c in 0..self.cols() { let mut acc = 0.0; for r in 0..self.rows() { let v = self[(r, c)]; if !v.is_nan() { acc += v; } data.push(acc); } } FloatMatrix::from_vec(data, self.rows(), self.cols()) } fn cumsum_horizontal(&self) -> FloatMatrix { // Compute cumulative sums for each row and store in a temporary buffer let mut row_results: Vec> = Vec::with_capacity(self.rows()); for r in 0..self.rows() { let mut row_data = Vec::with_capacity(self.cols()); let mut acc = 0.0; for c in 0..self.cols() { let v = self[(r, c)]; if !v.is_nan() { acc += v; } row_data.push(acc); } row_results.push(row_data); } // Assemble the final data vector in column-major format let mut final_data = Vec::with_capacity(self.rows() * self.cols()); for c in 0..self.cols() { for r in 0..self.rows() { // Extract the element at (r, c) from the temporary row-wise results final_data.push(row_results[r][c]); } } FloatMatrix::from_vec(final_data, self.rows(), self.cols()) } fn count_nan_vertical(&self) -> Vec { self.apply_axis(Axis::Col, |col| col.iter().filter(|x| x.is_nan()).count()) } fn count_nan_horizontal(&self) -> Vec { self.apply_axis(Axis::Row, |row| row.iter().filter(|x| x.is_nan()).count()) } fn is_nan(&self) -> BoolMatrix { let data = self.data().iter().map(|v| v.is_nan()).collect(); BoolMatrix::from_vec(data, self.rows(), self.cols()) } } #[cfg(test)] mod tests { use super::*; // Helper function to create a FloatMatrix for SeriesOps testing fn create_float_test_matrix() -> FloatMatrix { // 3x3 matrix (column-major) with some NaNs // 1.0 4.0 7.0 // 2.0 NaN 8.0 // 3.0 6.0 NaN let data = vec![1.0, 2.0, 3.0, 4.0, f64::NAN, 6.0, 7.0, 8.0, f64::NAN]; FloatMatrix::from_vec(data, 3, 3) } // --- Tests for SeriesOps (FloatMatrix) --- #[test] fn test_series_ops_sum_vertical() { let matrix = create_float_test_matrix(); // Col 0: 1.0 + 2.0 + 3.0 = 6.0 // Col 1: 4.0 + NaN + 6.0 = 10.0 (NaN ignored) // Col 2: 7.0 + 8.0 + NaN = 15.0 (NaN ignored) let expected = vec![6.0, 10.0, 15.0]; assert_eq!(matrix.sum_vertical(), expected); } #[test] fn test_series_ops_sum_horizontal() { let matrix = create_float_test_matrix(); // Row 0: 1.0 + 4.0 + 7.0 = 12.0 // Row 1: 2.0 + NaN + 8.0 = 10.0 (NaN ignored) // Row 2: 3.0 + 6.0 + NaN = 9.0 (NaN ignored) let expected = vec![12.0, 10.0, 9.0]; assert_eq!(matrix.sum_horizontal(), expected); } #[test] fn test_series_ops_prod_vertical() { let matrix = create_float_test_matrix(); // Col 0: 1.0 * 2.0 * 3.0 = 6.0 // Col 1: 4.0 * NaN * 6.0 = 24.0 (NaN ignored, starts with 1.0) // Col 2: 7.0 * 8.0 * NaN = 56.0 (NaN ignored, starts with 1.0) let expected = vec![6.0, 24.0, 56.0]; assert_eq!(matrix.prod_vertical(), expected); } #[test] fn test_series_ops_prod_horizontal() { let matrix = create_float_test_matrix(); // Row 0: 1.0 * 4.0 * 7.0 = 28.0 // Row 1: 2.0 * NaN * 8.0 = 16.0 (NaN ignored, starts with 1.0) // Row 2: 3.0 * 6.0 * NaN = 18.0 (NaN ignored, starts with 1.0) let expected = vec![28.0, 16.0, 18.0]; assert_eq!(matrix.prod_horizontal(), expected); } #[test] fn test_series_ops_cumsum_vertical() { let matrix = create_float_test_matrix(); // Col 0: [1.0, 1.0+2.0=3.0, 3.0+3.0=6.0] // Col 1: [4.0, 4.0+NaN=4.0, 4.0+6.0=10.0] (NaN ignored, cumulative sum doesn't reset) // Col 2: [7.0, 7.0+8.0=15.0, 15.0+NaN=15.0] // Expected data (column-major): [1.0, 3.0, 6.0, 4.0, 4.0, 10.0, 7.0, 15.0, 15.0] let expected_data = vec![1.0, 3.0, 6.0, 4.0, 4.0, 10.0, 7.0, 15.0, 15.0]; let expected_matrix = FloatMatrix::from_vec(expected_data, 3, 3); assert_eq!(matrix.cumsum_vertical(), expected_matrix); } #[test] fn test_series_ops_cumsum_horizontal() { let matrix = create_float_test_matrix(); // Row 0: [1.0, 1.0+4.0=5.0, 5.0+7.0=12.0] // Row 1: [2.0, 2.0+NaN=2.0, 2.0+8.0=10.0] (NaN ignored, cumulative sum doesn't reset) // Row 2: [3.0, 3.0+6.0=9.0, 9.0+NaN=9.0] // Expected data (column-major construction from row results): // Col 0: (R0,C0)=1.0, (R1,C0)=2.0, (R2,C0)=3.0 => [1.0, 2.0, 3.0] // Col 1: (R0,C1)=5.0, (R1,C1)=2.0, (R2,C1)=9.0 => [5.0, 2.0, 9.0] // Col 2: (R0,C2)=12.0, (R1,C2)=10.0, (R2,C2)=9.0 => [12.0, 10.0, 9.0] // Combined data: [1.0, 2.0, 3.0, 5.0, 2.0, 9.0, 12.0, 10.0, 9.0] let expected_data = vec![1.0, 2.0, 3.0, 5.0, 2.0, 9.0, 12.0, 10.0, 9.0]; let expected_matrix = FloatMatrix::from_vec(expected_data, 3, 3); assert_eq!(matrix.cumsum_horizontal(), expected_matrix); } #[test] fn test_series_ops_count_nan_vertical() { let matrix = create_float_test_matrix(); // Col 0: 0 NaNs // Col 1: 1 NaN // Col 2: 1 NaN let expected = vec![0, 1, 1]; assert_eq!(matrix.count_nan_vertical(), expected); } #[test] fn test_series_ops_count_nan_horizontal() { let matrix = create_float_test_matrix(); // Row 0: 0 NaNs // Row 1: 1 NaN // Row 2: 1 NaN let expected = vec![0, 1, 1]; assert_eq!(matrix.count_nan_horizontal(), expected); } #[test] fn test_series_ops_is_nan() { let matrix = create_float_test_matrix(); // Original data (col-major): [1.0, 2.0, 3.0, 4.0, NaN, 6.0, 7.0, 8.0, NaN] // is_nan() applied: [F, F, F, F, T, F, F, F, T] let expected_data = vec![false, false, false, false, true, false, false, false, true]; let expected_matrix = BoolMatrix::from_vec(expected_data, 3, 3); assert_eq!(matrix.is_nan(), expected_matrix); } // --- Edge Cases for SeriesOps --- #[test] fn test_series_ops_1x1() { let matrix = FloatMatrix::from_vec(vec![42.0], 1, 1); assert_eq!(matrix.sum_vertical(), vec![42.0]); assert_eq!(matrix.sum_horizontal(), vec![42.0]); assert_eq!(matrix.prod_vertical(), vec![42.0]); assert_eq!(matrix.prod_horizontal(), vec![42.0]); assert_eq!(matrix.cumsum_vertical().data(), &[42.0]); assert_eq!(matrix.cumsum_horizontal().data(), &[42.0]); assert_eq!(matrix.count_nan_vertical(), vec![0]); assert_eq!(matrix.count_nan_horizontal(), vec![0]); assert_eq!(matrix.is_nan().data(), &[false]); let matrix_nan = FloatMatrix::from_vec(vec![f64::NAN], 1, 1); assert_eq!(matrix_nan.sum_vertical(), vec![0.0]); // sum of empty set is 0 assert_eq!(matrix_nan.sum_horizontal(), vec![0.0]); assert_eq!(matrix_nan.prod_vertical(), vec![1.0]); // product of empty set is 1 assert_eq!(matrix_nan.prod_horizontal(), vec![1.0]); assert_eq!(matrix_nan.cumsum_vertical().data(), &[0.0]); // cumsum starts at 0, nan ignored assert_eq!(matrix_nan.cumsum_horizontal().data(), &[0.0]); assert_eq!(matrix_nan.count_nan_vertical(), vec![1]); assert_eq!(matrix_nan.count_nan_horizontal(), vec![1]); assert_eq!(matrix_nan.is_nan().data(), &[true]); } #[test] fn test_series_ops_1xn_matrix() { let matrix = FloatMatrix::from_vec(vec![1.0, f64::NAN, 3.0, 4.0], 1, 4); // 1 row, 4 cols // Data: [1.0, NaN, 3.0, 4.0] // Vertical (sums/prods/counts per column - each col is just one element) assert_eq!(matrix.sum_vertical(), vec![1.0, 0.0, 3.0, 4.0]); // NaN sum is 0 assert_eq!(matrix.prod_vertical(), vec![1.0, 1.0, 3.0, 4.0]); // NaN prod is 1 assert_eq!(matrix.count_nan_vertical(), vec![0, 1, 0, 0]); assert_eq!(matrix.cumsum_vertical().data(), &[1.0, 0.0, 3.0, 4.0]); // Cumsum on single element column // Horizontal (sums/prods/counts for the single row) // Row 0: 1.0 + NaN + 3.0 + 4.0 = 8.0 // Row 0: 1.0 * NaN * 3.0 * 4.0 = 12.0 // Row 0: 1 NaN assert_eq!(matrix.sum_horizontal(), vec![8.0]); assert_eq!(matrix.prod_horizontal(), vec![12.0]); assert_eq!(matrix.count_nan_horizontal(), vec![1]); // Cumsum Horizontal // Row 0: [1.0, 1.0+NaN=1.0, 1.0+3.0=4.0, 4.0+4.0=8.0] // Data (col-major): [1.0, 1.0, 4.0, 8.0] (since it's 1 row, data is the same as the row result) assert_eq!(matrix.cumsum_horizontal().data(), &[1.0, 1.0, 4.0, 8.0]); // is_nan // Data: [1.0, NaN, 3.0, 4.0] // Expected: [F, T, F, F] assert_eq!(matrix.is_nan().data(), &[false, true, false, false]); } #[test] fn test_series_ops_nx1_matrix() { let matrix = FloatMatrix::from_vec(vec![1.0, 2.0, f64::NAN, 4.0], 4, 1); // 4 rows, 1 col // Data: [1.0, 2.0, NaN, 4.0] // Vertical (sums/prods/counts for the single column) // Col 0: 1.0 + 2.0 + NaN + 4.0 = 7.0 // Col 0: 1.0 * 2.0 * NaN * 4.0 = 8.0 // Col 0: 1 NaN assert_eq!(matrix.sum_vertical(), vec![7.0]); assert_eq!(matrix.prod_vertical(), vec![8.0]); assert_eq!(matrix.count_nan_vertical(), vec![1]); // Cumsum Vertical // Col 0: [1.0, 1.0+2.0=3.0, 3.0+NaN=3.0, 3.0+4.0=7.0] // Data (col-major): [1.0, 3.0, 3.0, 7.0] (since it's 1 col, data is the same as the col result) assert_eq!(matrix.cumsum_vertical().data(), &[1.0, 3.0, 3.0, 7.0]); // Horizontal (sums/prods/counts per row - each row is just one element) assert_eq!(matrix.sum_horizontal(), vec![1.0, 2.0, 0.0, 4.0]); // NaN sum is 0 assert_eq!(matrix.prod_horizontal(), vec![1.0, 2.0, 1.0, 4.0]); // NaN prod is 1 assert_eq!(matrix.count_nan_horizontal(), vec![0, 0, 1, 0]); assert_eq!(matrix.cumsum_horizontal().data(), &[1.0, 2.0, 0.0, 4.0]); // Cumsum on single element row // is_nan // Data: [1.0, 2.0, NaN, 4.0] // Expected: [F, F, T, F] assert_eq!(matrix.is_nan().data(), &[false, false, true, false]); } #[test] fn test_series_ops_all_nan_matrix() { let matrix = FloatMatrix::from_vec(vec![f64::NAN, f64::NAN, f64::NAN, f64::NAN], 2, 2); // NaN NaN // NaN NaN // Data: [NaN, NaN, NaN, NaN] assert_eq!(matrix.sum_vertical(), vec![0.0, 0.0]); assert_eq!(matrix.sum_horizontal(), vec![0.0, 0.0]); assert_eq!(matrix.prod_vertical(), vec![1.0, 1.0]); assert_eq!(matrix.prod_horizontal(), vec![1.0, 1.0]); assert_eq!(matrix.cumsum_vertical().data(), &[0.0, 0.0, 0.0, 0.0]); assert_eq!(matrix.cumsum_horizontal().data(), &[0.0, 0.0, 0.0, 0.0]); assert_eq!(matrix.count_nan_vertical(), vec![2, 2]); assert_eq!(matrix.count_nan_horizontal(), vec![2, 2]); assert_eq!(matrix.is_nan().data(), &[true, true, true, true]); } }