use crate::matrix::{Matrix, SeriesOps}; pub struct LinReg { w: Matrix, // shape (n_features, 1) b: f64, } impl LinReg { pub fn new(n_features: usize) -> Self { Self { w: Matrix::from_vec(vec![0.0; n_features], n_features, 1), b: 0.0, } } pub fn predict(&self, x: &Matrix) -> Matrix { // X.dot(w) + b x.dot(&self.w) + self.b } pub fn fit(&mut self, x: &Matrix, y: &Matrix, lr: f64, epochs: usize) { let m = x.rows() as f64; for _ in 0..epochs { let y_hat = self.predict(x); let err = &y_hat - y; // shape (m,1) // grads let grad_w = x.transpose().dot(&err) * (2.0 / m); // (n,1) let grad_b = (2.0 / m) * err.sum_vertical().iter().sum::(); // update self.w = &self.w - &(grad_w * lr); self.b -= lr * grad_b; } } }