mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:30:01 +00:00
Compare commits
8 Commits
ecd06eb352
...
f4ebd78234
Author | SHA1 | Date | |
---|---|---|---|
![]() |
f4ebd78234 | ||
![]() |
1475156855 | ||
![]() |
080680d095 | ||
![]() |
2845f357b7 | ||
![]() |
3d11226d57 | ||
![]() |
039fb1a98e | ||
![]() |
31a5ba2460 | ||
![]() |
1a9f397702 |
@ -1,7 +1,7 @@
|
|||||||
[book]
|
[book]
|
||||||
title = "RustFrame User Guide"
|
title = "Rustframe User Guide"
|
||||||
author = ["RustFrame Contributors"]
|
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
||||||
description = "Guided journey through RustFrame capabilities."
|
description = "Guided journey through Rustframe capabilities."
|
||||||
|
|
||||||
[build]
|
[build]
|
||||||
build-dir = "book"
|
build-dir = "book"
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
#!/usr/bin/env sh
|
#!/usr/bin/env sh
|
||||||
# Build and test the RustFrame user guide using mdBook.
|
# Build and test the Rustframe user guide using mdBook.
|
||||||
set -e
|
set -e
|
||||||
|
|
||||||
cd docs
|
cd docs
|
||||||
|
@ -11,4 +11,4 @@ mdbook test -L ../target/debug/deps "$@"
|
|||||||
mdbook build "$@"
|
mdbook build "$@"
|
||||||
|
|
||||||
cargo build
|
cargo build
|
||||||
cargo build --release
|
# cargo build --release
|
||||||
|
@ -1,30 +1,54 @@
|
|||||||
# Compute Features
|
# Compute Features
|
||||||
|
|
||||||
The `compute` module provides statistical routines like descriptive
|
The `compute` module hosts numerical routines for exploratory data analysis.
|
||||||
statistics and correlation measures.
|
It covers descriptive statistics, correlations, probability distributions and
|
||||||
|
some basic inferential tests.
|
||||||
|
|
||||||
## Basic Statistics
|
## Basic Statistics
|
||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate rustframe;
|
# extern crate rustframe;
|
||||||
use rustframe::compute::stats::{mean, stddev};
|
use rustframe::compute::stats::{mean, mean_vertical, stddev, median};
|
||||||
use rustframe::matrix::Matrix;
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
let mean_val = mean(&m);
|
assert_eq!(mean(&m), 2.5);
|
||||||
let std_val = stddev(&m);
|
assert_eq!(stddev(&m), 1.118033988749895);
|
||||||
|
assert_eq!(median(&m), 2.5);
|
||||||
|
// column averages returned as 1 x n matrix
|
||||||
|
let col_means = mean_vertical(&m);
|
||||||
|
assert_eq!(col_means.data(), &[1.5, 3.5]);
|
||||||
```
|
```
|
||||||
|
|
||||||
## Correlation
|
## Correlation
|
||||||
|
|
||||||
|
Correlation functions help measure linear relationships between datasets.
|
||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate rustframe;
|
# extern crate rustframe;
|
||||||
use rustframe::compute::stats::pearson;
|
use rustframe::compute::stats::{pearson, covariance};
|
||||||
use rustframe::matrix::Matrix;
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||||
let corr = pearson(&x, &y);
|
let corr = pearson(&x, &y);
|
||||||
|
let cov = covariance(&x, &y);
|
||||||
|
assert!((corr - 1.0).abs() < 1e-8);
|
||||||
|
assert!((cov - 2.5).abs() < 1e-8);
|
||||||
|
```
|
||||||
|
|
||||||
|
## Distributions
|
||||||
|
|
||||||
|
Probability distribution helpers are available for common PDFs and CDFs.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::stats::distributions::normal_pdf;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||||
|
let pdf = normal_pdf(x, 0.0, 1.0);
|
||||||
|
assert_eq!(pdf.data().len(), 2);
|
||||||
```
|
```
|
||||||
|
|
||||||
With the basics covered, explore predictive models in the
|
With the basics covered, explore predictive models in the
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
# Data Manipulation
|
# Data Manipulation
|
||||||
|
|
||||||
RustFrame's `Frame` type couples tabular data with
|
Rustframe's `Frame` type couples tabular data with
|
||||||
column labels and a typed row index.
|
column labels and a typed row index. Frames expose a familiar API for loading
|
||||||
|
data, selecting rows or columns and performing aggregations.
|
||||||
|
|
||||||
## Creating a Frame
|
## Creating a Frame
|
||||||
|
|
||||||
@ -17,27 +18,60 @@ assert_eq!(frame["A"], vec![1.0, 2.0]);
|
|||||||
|
|
||||||
## Indexing Rows
|
## Indexing Rows
|
||||||
|
|
||||||
|
Row labels can be integers, dates or a default range. Retrieving a row returns a
|
||||||
|
view that lets you inspect values by column name or position.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
# extern crate chrono;
|
||||||
|
use chrono::NaiveDate;
|
||||||
|
use rustframe::frame::{Frame, RowIndex};
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
|
||||||
|
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||||
|
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
|
||||||
|
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
|
||||||
|
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
|
||||||
|
|
||||||
|
// mutate by row key
|
||||||
|
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
|
||||||
|
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
|
||||||
|
```
|
||||||
|
|
||||||
|
## Column operations
|
||||||
|
|
||||||
|
Columns can be inserted, renamed, removed or reordered in place.
|
||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate rustframe;
|
# extern crate rustframe;
|
||||||
use rustframe::frame::{Frame, RowIndex};
|
use rustframe::frame::{Frame, RowIndex};
|
||||||
use rustframe::matrix::Matrix;
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
||||||
let index = RowIndex::Int(vec![10, 20]);
|
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
|
||||||
let frame = Frame::new(data, vec!["A", "B"], Some(index));
|
|
||||||
assert_eq!(frame.get_row(20)["B"], 4.0);
|
frame.add_column("Z", vec![5, 6]);
|
||||||
|
frame.rename("Y", "W");
|
||||||
|
let removed = frame.delete_column("X");
|
||||||
|
assert_eq!(removed, vec![1, 2]);
|
||||||
|
frame.sort_columns();
|
||||||
|
assert_eq!(frame.columns(), &["W", "Z"]);
|
||||||
```
|
```
|
||||||
|
|
||||||
## Aggregations
|
## Aggregations
|
||||||
|
|
||||||
|
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
|
||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate rustframe;
|
# extern crate rustframe;
|
||||||
use rustframe::frame::Frame;
|
use rustframe::frame::Frame;
|
||||||
use rustframe::matrix::{Matrix, SeriesOps};
|
use rustframe::matrix::{Matrix, SeriesOps};
|
||||||
|
|
||||||
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
|
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
|
||||||
assert_eq!(frame.sum_vertical(), vec![3.0]);
|
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
||||||
|
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
|
||||||
```
|
```
|
||||||
|
|
||||||
When you're ready to run analytics, continue to the
|
With the basics covered, continue to the [compute features](./compute.md)
|
||||||
[compute features](./compute.md) chapter.
|
chapter for statistics and analytics.
|
||||||
|
@ -1,10 +1,38 @@
|
|||||||
# Introduction
|
# Introduction
|
||||||
|
|
||||||
Welcome to the **RustFrame User Guide**. This book provides a tour of
|
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
|
||||||
RustFrame's capabilities from basic data handling to advanced machine learning
|
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
|
||||||
workflows. Each chapter contains runnable snippets so you can follow along.
|
API approachable while offering handy features for small analytical or
|
||||||
|
educational projects.
|
||||||
|
|
||||||
1. [Data manipulation](./data-manipulation.md) for loading and transforming data.
|
Rustframe bundles:
|
||||||
2. [Compute features](./compute.md) for statistics and analytics.
|
|
||||||
3. [Machine learning](./machine-learning.md) for predictive models.
|
- column‑labelled frames built on a fast column‑major matrix
|
||||||
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules.
|
- familiar element‑wise math and aggregation routines
|
||||||
|
- a growing `compute` module for statistics and machine learning
|
||||||
|
- utilities for dates and random numbers
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
|
||||||
|
|
||||||
|
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
||||||
|
let frame = Frame::new(data, vec!["A", "B"], None);
|
||||||
|
|
||||||
|
// Perform column wise aggregation
|
||||||
|
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
||||||
|
```
|
||||||
|
|
||||||
|
## Resources
|
||||||
|
|
||||||
|
- [GitHub repository](https://github.com/Magnus167/rustframe)
|
||||||
|
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
|
||||||
|
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
|
||||||
|
|
||||||
|
This guide walks through the main building blocks of the library. Each chapter
|
||||||
|
contains runnable snippets so you can follow along:
|
||||||
|
|
||||||
|
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
|
||||||
|
2. [Compute features](./compute.md) for statistics and analytics
|
||||||
|
3. [Machine learning](./machine-learning.md) for predictive models
|
||||||
|
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules
|
||||||
|
@ -1,11 +1,17 @@
|
|||||||
# Machine Learning
|
# Machine Learning
|
||||||
|
|
||||||
RustFrame ships with several algorithms:
|
The `compute::models` module bundles several learning algorithms that operate on
|
||||||
|
`Matrix` structures. These examples highlight the basic training and prediction
|
||||||
|
APIs. For more end‑to‑end walkthroughs see the examples directory in the
|
||||||
|
repository.
|
||||||
|
|
||||||
|
Currently implemented models include:
|
||||||
|
|
||||||
- Linear and logistic regression
|
- Linear and logistic regression
|
||||||
- K-means clustering
|
- K‑means clustering
|
||||||
- Principal component analysis (PCA)
|
- Principal component analysis (PCA)
|
||||||
- Naive Bayes and dense neural networks
|
- Gaussian Naive Bayes
|
||||||
|
- Dense neural networks
|
||||||
|
|
||||||
## Linear Regression
|
## Linear Regression
|
||||||
|
|
||||||
@ -37,3 +43,34 @@ let cluster = model.predict(&new_point)[0];
|
|||||||
|
|
||||||
For helper functions and upcoming modules, visit the
|
For helper functions and upcoming modules, visit the
|
||||||
[utilities](./utilities.md) section.
|
[utilities](./utilities.md) section.
|
||||||
|
|
||||||
|
## Logistic Regression
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::models::logreg::LogReg;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||||
|
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||||
|
let mut model = LogReg::new(1);
|
||||||
|
model.fit(&x, &y, 0.1, 200);
|
||||||
|
let preds = model.predict_proba(&x);
|
||||||
|
assert_eq!(preds.rows(), 4);
|
||||||
|
```
|
||||||
|
|
||||||
|
## Principal Component Analysis
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::models::pca::PCA;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let pca = PCA::fit(&data, 1, 0);
|
||||||
|
let transformed = pca.transform(&data);
|
||||||
|
assert_eq!(transformed.cols(), 1);
|
||||||
|
```
|
||||||
|
|
||||||
|
For helper functions and upcoming modules, visit the
|
||||||
|
[utilities](./utilities.md) section.
|
||||||
|
@ -3,16 +3,36 @@
|
|||||||
Utilities provide handy helpers around the core library. Existing tools
|
Utilities provide handy helpers around the core library. Existing tools
|
||||||
include:
|
include:
|
||||||
|
|
||||||
- Date utilities for generating calendar sequences.
|
- Date utilities for generating calendar sequences and business‑day sets
|
||||||
|
- Random number generators for simulations and testing
|
||||||
|
|
||||||
## Date Helpers
|
## Date Helpers
|
||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate rustframe;
|
# extern crate rustframe;
|
||||||
use rustframe::utils::dateutils::{DatesList, DateFreq};
|
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
|
||||||
|
|
||||||
|
// Calendar sequence
|
||||||
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
||||||
assert_eq!(list.count().unwrap(), 3);
|
assert_eq!(list.count().unwrap(), 3);
|
||||||
|
|
||||||
|
// Business days starting from 2024‑01‑02
|
||||||
|
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
|
||||||
|
assert_eq!(bdates.list().unwrap().len(), 3);
|
||||||
|
```
|
||||||
|
|
||||||
|
## Random Numbers
|
||||||
|
|
||||||
|
The `random` module offers deterministic and cryptographically secure RNGs.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::random::{Prng, Rng};
|
||||||
|
|
||||||
|
let mut rng = Prng::new(42);
|
||||||
|
let v1 = rng.next_u64();
|
||||||
|
let v2 = rng.next_u64();
|
||||||
|
assert_ne!(v1, v2);
|
||||||
```
|
```
|
||||||
|
|
||||||
Upcoming utilities will cover:
|
Upcoming utilities will cover:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user