32 Commits

Author SHA1 Message Date
Palash Tyagi
ef25e77f04 Update documentation for CSV module with detailed usage examples 2025-08-24 19:51:53 +01:00
Palash Tyagi
4ba5cfea18 Enhance CSV reader with support for UInt, Date, and DateTime types; add builder methods for easier configuration 2025-08-24 19:51:47 +01:00
Palash Tyagi
23367c7ca3 Add csv module and core functionality for CSV reading 2025-08-07 22:38:18 +01:00
Palash Tyagi
df8c1d2a12 Implement CSV reader with support for custom separators and data types 2025-08-07 22:38:11 +01:00
Palash Tyagi
1381c77eaf Revert "Update README to include upcoming features for CSV I/O, Date Utils, and more math functions"
This reverts commit 623303cf72.
2025-08-05 23:25:56 +01:00
c56574f0f3 Merge branch 'main' into csv 2025-08-05 23:20:10 +01:00
c53693fa7b Merge pull request #72 from Magnus167/release/a20250805
Bump version to 0.0.1-a.20250805 in Cargo.toml
2025-08-05 00:11:57 +01:00
109d39b248 Merge branch 'main' into release/a20250805 2025-08-05 00:08:27 +01:00
Palash Tyagi
18ad6c689a Bump version to 0.0.1-a.20250805 in Cargo.toml 2025-08-05 00:06:49 +01:00
1fead78b69 Merge pull request #71 from Magnus167/prep-release-20250804
Update package version and enhance description in Cargo.toml
2025-08-04 23:27:12 +01:00
Palash Tyagi
6fb32e743c Update package version and enhance description in Cargo.toml 2025-08-04 23:15:24 +01:00
2cb4e46217 Merge pull request #69 from Magnus167/user-guide
Add user guide mdbook
2025-08-04 22:22:55 +01:00
Palash Tyagi
a53ba63f30 Rearrange links in the introduction for improved visibility 2025-08-04 22:20:58 +01:00
Palash Tyagi
dae60ea1bd Rearrange links in the README for improved visibility 2025-08-04 22:15:42 +01:00
Palash Tyagi
755dee58e7 Refactor machine learning user-guide 2025-08-04 22:14:17 +01:00
cd3aa84e60 Merge branch 'main' into csv 2025-07-06 11:35:13 +01:00
27275e2479 Merge branch 'main' into csv 2025-07-06 11:05:20 +01:00
9ef719316a Merge branch 'main' into csv 2025-07-06 01:04:10 +01:00
960fd345c2 Merge branch 'main' into csv 2025-07-04 00:59:25 +01:00
325e75419c Merge branch 'main' into csv 2025-06-07 13:38:30 +01:00
b1dc18d05b Merge branch 'main' into csv 2025-05-15 18:35:46 +01:00
8cbb957764 Merge branch 'main' into csv 2025-05-13 00:08:38 +01:00
b937ed1cdf Merge branch 'main' into csv 2025-05-11 02:00:25 +01:00
2e071a6974 Merge branch 'main' into csv 2025-05-05 02:13:15 +01:00
689169bab2 Merge branch 'main' into csv 2025-05-05 02:01:45 +01:00
a45a5ecf4e Merge branch 'main' into csv 2025-05-04 02:29:12 +01:00
84e1b423f4 Merge branch 'main' into csv 2025-05-04 02:10:55 +01:00
197739bc2f Merge branch 'main' into csv 2025-05-04 01:07:58 +01:00
d2c2ebca0f Merge branch 'main' into csv 2025-05-03 01:32:05 +01:00
f5f3f2c100 Merge branch 'main' into csv 2025-05-02 23:38:37 +01:00
9fcb1ea2cf Merge branch 'main' into csv 2025-05-01 01:14:09 +01:00
Palash Tyagi
623303cf72 Update README to include upcoming features for CSV I/O, Date Utils, and more math functions 2025-05-01 01:13:34 +01:00
7 changed files with 629 additions and 9 deletions

View File

@@ -1,11 +1,12 @@
[package]
name = "rustframe"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
version = "0.0.1-a.20250716"
version = "0.0.1-a.20250805"
edition = "2021"
license = "GPL-3.0-or-later"
readme = "README.md"
description = "A simple dataframe library"
description = "A simple dataframe and math toolkit"
documentation = "https://magnus167.github.io/rustframe/"
[lib]
name = "rustframe"

View File

@@ -1,6 +1,6 @@
# rustframe
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
<!-- [![Last commit](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/rustframe/last-commit-date.json)](https://github.com/Magnus167/rustframe) -->

View File

@@ -1,6 +1,6 @@
# Introduction
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the

View File

@@ -41,9 +41,6 @@ let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
let cluster = model.predict(&new_point)[0];
```
For helper functions and upcoming modules, visit the
[utilities](./utilities.md) section.
## Logistic Regression
```rust
@@ -72,7 +69,7 @@ let transformed = pca.transform(&data);
assert_eq!(transformed.cols(), 1);
```
### Gaussian Naive Bayes
## Gaussian Naive Bayes
Gaussian Naive Bayes classifier for continuous features:
@@ -101,7 +98,7 @@ let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
### Dense Neural Networks
## Dense Neural Networks
Simple fully connected neural network:
@@ -142,5 +139,144 @@ let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Real-world Examples
### Housing Price Prediction
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
// Features: square feet and bedrooms
let features = Matrix::from_rows_vec(vec![
2100.0, 3.0,
1600.0, 2.0,
2400.0, 4.0,
1400.0, 2.0,
], 4, 2);
// Sale prices
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
let mut model = LinReg::new(2);
model.fit(&features, &target, 1e-8, 10_000);
// Predict price of a new home
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
let predicted_price = model.predict(&new_home);
println!("Predicted price: ${}", predicted_price.data()[0]);
```
### Spam Detection
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
let x = Matrix::from_rows_vec(
vec![
// ─────────── spam examples ───────────
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
1.0, 0.0, 1.0, 0.0, 1.0, // ...
0.0, 1.0, 1.0, 1.0, 0.0, // ...
2.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 1.0, 0.0, 1.0, // ...
1.0, 1.0, 1.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 1.0, 1.0, // ...
// ─────────── ham examples ───────────
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
0.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0,
],
20,
5,
);
// Labels: 1 = spam, 0 = ham
let y = Matrix::from_vec(
vec![
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
],
20,
1,
);
// Train
let mut model = LogReg::new(5);
model.fit(&x, &y, 0.01, 5000);
// Predict
// e.g. "free money offer"
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
let email = Matrix::from_vec(email_data, 1, 5);
let prob_spam = model.predict_proba(&email);
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
```
### Iris Flower Classification
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Features: sepal length and petal length
let x = Matrix::from_rows_vec(vec![
5.1, 1.4, // setosa
4.9, 1.4, // setosa
6.2, 4.5, // versicolor
5.9, 5.1, // virginica
], 4, 2);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
let names = vec!["setosa", "versicolor", "virginica"];
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
let predicted_class = model.predict(&sample);
let class_name = names[predicted_class.data()[0] as usize];
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
```
### Customer Segmentation
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
// Each row: [age, annual_income]
let customers = Matrix::from_rows_vec(
vec![
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
],
4,
2,
);
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
let cluster = model.predict(&new_customer)[0];
println!("New customer belongs to cluster: {}", cluster);
println!("Cluster labels: {:?}", labels);
```
For helper functions and upcoming modules, visit the
[utilities](./utilities.md) section.

411
src/csv/csv_core.rs Normal file
View File

@@ -0,0 +1,411 @@
use chrono::{NaiveDate, NaiveDateTime};
use std::collections::HashMap;
use std::fs::File;
use std::io::{self, BufRead, BufReader};
use std::path::Path;
/// Represents the target type for a CSV column.
#[derive(Debug, Clone)]
pub enum DataType {
Int,
Float,
Bool,
UInt,
String,
Date,
DateTime,
}
/// Represents a value parsed from the CSV.
#[derive(Debug, Clone, PartialEq)]
pub enum Value {
Int(i64),
Float(f64),
Bool(bool),
UInt(u64),
String(String),
Date(NaiveDate),
DateTime(NaiveDateTime),
}
/// Convenience alias for a parsed CSV record.
pub type Record = HashMap<String, Value>;
/// A simple CSV reader that reads records line by line.
pub struct CsvReader<R: BufRead> {
reader: R,
separators: Vec<char>,
headers: Vec<String>,
types: Option<HashMap<String, DataType>>,
}
/// Builder for [`CsvReader`] allowing chained configuration of headers, types, and separators.
pub struct CsvReaderBuilder<R: BufRead> {
reader: R,
separators: Vec<char>,
headers: Vec<String>,
types: Option<HashMap<String, DataType>>,
}
impl<R: BufRead> CsvReader<R> {
/// Create a new CSV reader from a [`BufRead`] source.
/// The first line is expected to contain headers.
/// `separators` is a list of characters considered as field separators.
/// `types` optionally maps column names to target data types.
pub fn new(
mut reader: R,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<Self> {
let mut first_line = String::new();
reader.read_line(&mut first_line)?;
let headers = parse_line(&first_line, &separators);
Ok(Self {
reader,
separators,
headers,
types,
})
}
/// Create a reader with default settings (comma separator, automatic typing).
pub fn new_default(reader: R) -> io::Result<Self> {
Self::new(reader, vec![','], None)
}
/// Create a reader with default separators and explicit type mapping.
pub fn new_with_types(reader: R, types: HashMap<String, DataType>) -> io::Result<Self> {
Self::new(reader, vec![','], Some(types))
}
/// Start building a reader from a source that lacks headers.
pub fn new_with_headers(reader: R, headers: Vec<String>) -> CsvReaderBuilder<R> {
CsvReaderBuilder {
reader,
separators: vec![','],
headers,
types: None,
}
}
/// Return the headers of the CSV file.
pub fn headers(&self) -> &[String] {
&self.headers
}
/// Read the next record. Returns `Ok(None)` on EOF.
pub fn read_record(&mut self) -> io::Result<Option<Record>> {
let mut line = String::new();
if self.reader.read_line(&mut line)? == 0 {
return Ok(None);
}
let fields = parse_line(&line, &self.separators);
let mut record = HashMap::new();
for (i, header) in self.headers.iter().enumerate() {
let field = fields.get(i).cloned().unwrap_or_default();
let value = match &self.types {
Some(map) => {
if let Some(dt) = map.get(header) {
parse_with_type(&field, dt)
} else {
Value::String(field)
}
}
None => parse_auto(&field),
};
record.insert(header.clone(), value);
}
Ok(Some(record))
}
}
impl<R: BufRead> Iterator for CsvReader<R> {
type Item = io::Result<Record>;
fn next(&mut self) -> Option<Self::Item> {
match self.read_record() {
Ok(Some(rec)) => Some(Ok(rec)),
Ok(None) => None,
Err(e) => Some(Err(e)),
}
}
}
impl<R: BufRead> CsvReaderBuilder<R> {
/// Override field separators for the upcoming reader.
pub fn separators(mut self, separators: Vec<char>) -> Self {
self.separators = separators;
self
}
/// Finalize the builder with an explicit type mapping.
pub fn new_with_types(mut self, types: HashMap<String, DataType>) -> CsvReader<R> {
self.types = Some(types);
self.build()
}
/// Finalize the builder without specifying types.
pub fn build(self) -> CsvReader<R> {
CsvReader {
reader: self.reader,
separators: self.separators,
headers: self.headers,
types: self.types,
}
}
}
impl<R: BufRead> CsvReader<R> {
/// Read all remaining records into a vector.
pub fn read_all(&mut self) -> io::Result<Vec<Record>> {
let mut records = Vec::new();
while let Some(rec) = self.read_record()? {
records.push(rec);
}
Ok(records)
}
}
impl CsvReader<BufReader<File>> {
/// Create a [`CsvReader`] from a file path using comma separators and
/// automatic type detection.
///
/// # Examples
///
/// ```
/// use rustframe::csv::{CsvReader, Value};
/// # let path = std::env::temp_dir().join("from_path_auto.csv");
/// # std::fs::write(&path, "a,b\n1,true\n").unwrap();
/// let mut reader = CsvReader::from_path_auto(&path).unwrap();
/// let rec = reader.next().unwrap().unwrap();
/// assert_eq!(rec.get("a"), Some(&Value::Int(1)));
/// assert_eq!(rec.get("b"), Some(&Value::Bool(true)));
/// # std::fs::remove_file(path).unwrap();
/// ```
pub fn from_path_auto<P: AsRef<Path>>(path: P) -> io::Result<Self> {
let file = File::open(path)?;
let reader = BufReader::new(file);
CsvReader::new_default(reader)
}
}
/// Create an iterator over records from a file path using default settings.
pub fn reader<P: AsRef<Path>>(path: P) -> io::Result<CsvReader<BufReader<File>>> {
reader_with(path, vec![','], None)
}
/// Create an iterator over records from a file path with custom separators and type mapping.
pub fn reader_with<P: AsRef<Path>>(
path: P,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<CsvReader<BufReader<File>>> {
let file = File::open(path)?;
let reader = BufReader::new(file);
CsvReader::new(reader, separators, types)
}
/// Read an entire CSV file into memory using default settings.
pub fn read_file<P: AsRef<Path>>(path: P) -> io::Result<Vec<Record>> {
read_file_with(path, vec![','], None)
}
/// Read an entire CSV file into memory with custom separators and type mapping.
pub fn read_file_with<P: AsRef<Path>>(
path: P,
separators: Vec<char>,
types: Option<HashMap<String, DataType>>,
) -> io::Result<Vec<Record>> {
let mut reader = reader_with(path, separators, types)?;
reader.read_all()
}
fn parse_with_type(s: &str, ty: &DataType) -> Value {
match ty {
DataType::Int => s
.parse::<i64>()
.map(Value::Int)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::Float => s
.parse::<f64>()
.map(Value::Float)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::Bool => s
.parse::<bool>()
.map(Value::Bool)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::UInt => s
.parse::<u64>()
.map(Value::UInt)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::String => Value::String(s.to_string()),
DataType::Date => s
.parse::<NaiveDate>()
.map(Value::Date)
.unwrap_or_else(|_| Value::String(s.to_string())),
DataType::DateTime => NaiveDateTime::parse_from_str(s, "%Y-%m-%d %H:%M:%S")
.map(Value::DateTime)
.unwrap_or_else(|_| Value::String(s.to_string())),
}
}
fn parse_auto(s: &str) -> Value {
if let Ok(i) = s.parse::<i64>() {
Value::Int(i)
} else if let Ok(f) = s.parse::<f64>() {
Value::Float(f)
} else if let Ok(b) = s.parse::<bool>() {
Value::Bool(b)
} else if let Ok(dt) = NaiveDateTime::parse_from_str(s, "%Y-%m-%d %H:%M:%S") {
Value::DateTime(dt)
} else if let Ok(d) = NaiveDate::parse_from_str(s, "%Y-%m-%d") {
Value::Date(d)
} else {
Value::String(s.to_string())
}
}
fn parse_line(line: &str, separators: &[char]) -> Vec<String> {
let mut fields = Vec::new();
let mut current = String::new();
let mut in_quotes: Option<char> = None;
let chars: Vec<char> = line.chars().collect();
let mut i = 0;
while i < chars.len() {
let c = chars[i];
if let Some(q) = in_quotes {
if c == q {
if i + 1 < chars.len() && chars[i + 1] == q {
current.push(q);
i += 1; // skip escaped quote
} else {
in_quotes = None;
}
} else {
current.push(c);
}
} else if c == '"' || c == '\'' {
in_quotes = Some(c);
} else if separators.contains(&c) {
fields.push(current.clone());
current.clear();
} else if c == '\r' {
// Ignore carriage returns
} else if c == '\n' {
break;
} else {
current.push(c);
}
i += 1;
}
fields.push(current);
fields
}
#[cfg(test)]
mod tests {
use super::*;
use chrono::{NaiveDate, NaiveDateTime};
use std::io::Cursor;
#[test]
fn test_parse_line() {
let line = "a,'b,c',\"d\"\"e\",f";
let fields = parse_line(line, &[',']);
assert_eq!(fields, vec!["a", "b,c", "d\"e", "f"]);
}
#[test]
fn test_reader_auto() {
let data = "a,b,c\n1,2.5,true\n4,5.0,false\n";
let cursor = Cursor::new(data);
let mut reader = CsvReader::new_default(cursor).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(1)));
assert_eq!(rec.get("b"), Some(&Value::Float(2.5)));
assert_eq!(rec.get("c"), Some(&Value::Bool(true)));
}
#[test]
fn test_reader_with_types() {
let data = "a,b,c\n1,2,3\n";
let cursor = Cursor::new(data);
let mut types = HashMap::new();
types.insert("a".to_string(), DataType::Int);
types.insert("b".to_string(), DataType::Int);
types.insert("c".to_string(), DataType::String);
let mut reader = CsvReader::new_with_types(cursor, types).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(1)));
assert_eq!(rec.get("b"), Some(&Value::Int(2)));
assert_eq!(rec.get("c"), Some(&Value::String("3".to_string())));
}
#[test]
fn test_chain_headers_and_types() {
let data = "1,2\n3,4\n";
let cursor = Cursor::new(data);
let headers = vec!["x".to_string(), "y".to_string()];
let mut types = HashMap::new();
types.insert("x".to_string(), DataType::Int);
types.insert("y".to_string(), DataType::UInt);
let mut reader = CsvReader::new_with_headers(cursor, headers).new_with_types(types);
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("x"), Some(&Value::Int(1)));
assert_eq!(rec.get("y"), Some(&Value::UInt(2)));
}
#[test]
fn test_date_types() {
let data = "d,dt\n2024-01-01,2024-01-01 12:00:00\n";
let cursor = Cursor::new(data);
let mut types = HashMap::new();
types.insert("d".to_string(), DataType::Date);
types.insert("dt".to_string(), DataType::DateTime);
let mut reader = CsvReader::new_with_types(cursor, types).unwrap();
let rec = reader.next().unwrap().unwrap();
let date = NaiveDate::from_ymd_opt(2024, 1, 1).unwrap();
let datetime: NaiveDateTime = NaiveDate::from_ymd_opt(2024, 1, 1)
.unwrap()
.and_hms_opt(12, 0, 0)
.unwrap();
assert_eq!(rec.get("d"), Some(&Value::Date(date)));
assert_eq!(rec.get("dt"), Some(&Value::DateTime(datetime)));
}
#[test]
fn test_read_file_all() {
let path = std::env::temp_dir().join("csv_full_test.csv");
std::fs::write(&path, "a,b\n1,2\n3,4\n").unwrap();
let records = read_file(&path).unwrap();
assert_eq!(records.len(), 2);
assert_eq!(records[1].get("b"), Some(&Value::Int(4)));
std::fs::remove_file(path).unwrap();
}
#[test]
fn test_reader_from_path() {
let path = std::env::temp_dir().join("csv_iter_test.csv");
std::fs::write(&path, "a,b\n5,6\n").unwrap();
let mut iter = reader(&path).unwrap();
let rec = iter.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(5)));
assert_eq!(rec.get("b"), Some(&Value::Int(6)));
std::fs::remove_file(path).unwrap();
}
#[test]
fn test_from_path_auto_method() {
let path = std::env::temp_dir().join("csv_method_auto.csv");
std::fs::write(&path, "a,b\n7,true\n").unwrap();
let mut reader = CsvReader::from_path_auto(&path).unwrap();
let rec = reader.next().unwrap().unwrap();
assert_eq!(rec.get("a"), Some(&Value::Int(7)));
assert_eq!(rec.get("b"), Some(&Value::Bool(true)));
std::fs::remove_file(path).unwrap();
}
}

69
src/csv/mod.rs Normal file
View File

@@ -0,0 +1,69 @@
//! CSV handling utilities.
//!
//! The [`csv`] module offers a flexible [`CsvReader`] with automatic type
//! detection and optional builders for custom headers and types.
//!
//! # Examples
//!
//! Read from a file with auto type detection:
//!
//! ```
//! use rustframe::csv::CsvReader;
//! # let path = std::env::temp_dir().join("docs_auto.csv");
//! # std::fs::write(&path, "a,b\n1,true\n").unwrap();
//! let mut reader = CsvReader::from_path_auto(&path).unwrap();
//! for rec in reader {
//! let rec = rec.unwrap();
//! println!("{:?}", rec);
//! }
//! # std::fs::remove_file(path).unwrap();
//! ```
//!
//! Specify column types explicitly:
//!
//! ```
//! use rustframe::csv::{CsvReader, DataType, Value};
//! use std::collections::HashMap;
//! use std::io::Cursor;
//! let data = "a,b\n1,2\n";
//! let mut types = HashMap::new();
//! types.insert("a".into(), DataType::Int);
//! types.insert("b".into(), DataType::Float);
//! let mut reader = CsvReader::new_with_types(Cursor::new(data), types).unwrap();
//! let rec = reader.next().unwrap().unwrap();
//! assert_eq!(rec.get("b"), Some(&Value::Float(2.0)));
//! ```
//!
//! Building from custom headers and types:
//!
//! ```
//! use rustframe::csv::{CsvReader, DataType, Value};
//! use std::collections::HashMap;
//! use std::io::Cursor;
//! let data = "1,2\n";
//! let headers = vec!["x".to_string(), "y".to_string()];
//! let mut types = HashMap::new();
//! types.insert("x".into(), DataType::Int);
//! types.insert("y".into(), DataType::UInt);
//! let mut reader = CsvReader::new_with_headers(Cursor::new(data), headers).new_with_types(types);
//! let rec = reader.next().unwrap().unwrap();
//! assert_eq!(rec.get("y"), Some(&Value::UInt(2)));
//! ```
//!
//! Reading an entire file into memory:
//!
//! ```
//! use rustframe::csv::read_file;
//! # let path = std::env::temp_dir().join("docs_full.csv");
//! # std::fs::write(&path, "a,b\n1,2\n3,4\n").unwrap();
//! let records = read_file(&path).unwrap();
//! assert_eq!(records.len(), 2);
//! # std::fs::remove_file(path).unwrap();
//! ```
pub mod csv_core;
pub use csv_core::{
CsvReader, CsvReaderBuilder, DataType, Record, Value, reader, reader_with,
read_file, read_file_with,
};

View File

@@ -14,3 +14,6 @@ pub mod compute;
/// Documentation for the [`crate::random`] module.
pub mod random;
/// Documentation for the [`crate::csv`] module.
pub mod csv;