mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-11-19 23:16:11 +00:00
Compare commits
2 Commits
dataframe
...
d9bfb326d2
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d9bfb326d2 | ||
|
|
ff97e6b0b6 |
127
README.md
127
README.md
@@ -153,133 +153,6 @@ let zipped_matrix = a.zip(&b, |x, y| x + y);
|
|||||||
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
||||||
```
|
```
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## DataFrame Usage Example
|
|
||||||
|
|
||||||
```rust
|
|
||||||
use chrono::NaiveDate;
|
|
||||||
use rustframe::dataframe::DataFrame;
|
|
||||||
use rustframe::utils::{BDateFreq, BDatesList};
|
|
||||||
use std::any::TypeId;
|
|
||||||
use std::collections::HashMap;
|
|
||||||
|
|
||||||
// Helper for NaiveDate
|
|
||||||
fn d(y: i32, m: u32, d: u32) -> NaiveDate {
|
|
||||||
NaiveDate::from_ymd_opt(y, m, d).unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
// Create a new DataFrame
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
|
|
||||||
// Add columns of different types
|
|
||||||
df.add_column("col_int1", vec![1, 2, 3, 4, 5]);
|
|
||||||
df.add_column("col_float1", vec![1.1, 2.2, 3.3, 4.4, 5.5]);
|
|
||||||
df.add_column(
|
|
||||||
"col_string",
|
|
||||||
vec![
|
|
||||||
"apple".to_string(),
|
|
||||||
"banana".to_string(),
|
|
||||||
"cherry".to_string(),
|
|
||||||
"date".to_string(),
|
|
||||||
"elderberry".to_string(),
|
|
||||||
],
|
|
||||||
);
|
|
||||||
df.add_column("col_bool", vec![true, false, true, false, true]);
|
|
||||||
// df.add_column("col_date", vec![d(2023,1,1), d(2023,1,2), d(2023,1,3), d(2023,1,4), d(2023,1,5)]);
|
|
||||||
df.add_column(
|
|
||||||
"col_date",
|
|
||||||
BDatesList::from_n_periods("2023-01-01".to_string(), BDateFreq::Daily, 5)
|
|
||||||
.unwrap()
|
|
||||||
.list()
|
|
||||||
.unwrap(),
|
|
||||||
);
|
|
||||||
|
|
||||||
println!("DataFrame after initial column additions:\n{}", df);
|
|
||||||
|
|
||||||
// Demonstrate frame re-use when adding columns of existing types
|
|
||||||
let initial_frames_count = df.num_internal_frames();
|
|
||||||
println!(
|
|
||||||
"\nInitial number of internal frames: {}",
|
|
||||||
initial_frames_count
|
|
||||||
);
|
|
||||||
|
|
||||||
df.add_column("col_int2", vec![6, 7, 8, 9, 10]);
|
|
||||||
df.add_column("col_float2", vec![6.6, 7.7, 8.8, 9.9, 10.0]);
|
|
||||||
|
|
||||||
let frames_after_reuse = df.num_internal_frames();
|
|
||||||
println!(
|
|
||||||
"Number of internal frames after adding more columns of existing types: {}",
|
|
||||||
frames_after_reuse
|
|
||||||
);
|
|
||||||
assert_eq!(initial_frames_count, frames_after_reuse); // Should be equal, demonstrating re-use
|
|
||||||
|
|
||||||
println!(
|
|
||||||
"\nDataFrame after adding more columns of existing types:\n{}",
|
|
||||||
df
|
|
||||||
);
|
|
||||||
|
|
||||||
// Get number of rows and columns
|
|
||||||
println!("Rows: {}", df.rows()); // Output: Rows: 5
|
|
||||||
println!("Columns: {}", df.cols()); // Output: Columns: 5
|
|
||||||
|
|
||||||
// Get column names
|
|
||||||
println!("Column names: {:?}", df.get_column_names());
|
|
||||||
// Output: Column names: ["col_int", "col_float", "col_string", "col_bool", "col_date"]
|
|
||||||
|
|
||||||
// Get a specific column by name and type
|
|
||||||
let int_col = df.get_column::<i32>("col_int1").unwrap();
|
|
||||||
// Output: Integer column: [1, 2, 3, 4, 5]
|
|
||||||
println!("Integer column (col_int1): {:?}", int_col);
|
|
||||||
|
|
||||||
let int_col2 = df.get_column::<i32>("col_int2").unwrap();
|
|
||||||
// Output: Integer column: [6, 7, 8, 9, 10]
|
|
||||||
println!("Integer column (col_int2): {:?}", int_col2);
|
|
||||||
|
|
||||||
let float_col = df.get_column::<f64>("col_float1").unwrap();
|
|
||||||
// Output: Float column: [1.1, 2.2, 3.3, 4.4, 5.5]
|
|
||||||
println!("Float column (col_float1): {:?}", float_col);
|
|
||||||
|
|
||||||
// Attempt to get a column with incorrect type (returns None)
|
|
||||||
let wrong_type_col = df.get_column::<bool>("col_int1");
|
|
||||||
// Output: Wrong type column: None
|
|
||||||
println!("Wrong type column: {:?}", wrong_type_col);
|
|
||||||
|
|
||||||
// Get a row by index
|
|
||||||
let row_0 = df.get_row(0).unwrap();
|
|
||||||
println!("Row 0: {:?}", row_0);
|
|
||||||
// Output: Row 0: {"col_int1": "1", "col_float1": "1.1", "col_string": "apple", "col_bool": "true", "col_date": "2023-01-01", "col_int2": "6", "col_float2": "6.6"}
|
|
||||||
|
|
||||||
let row_2 = df.get_row(2).unwrap();
|
|
||||||
println!("Row 2: {:?}", row_2);
|
|
||||||
// Output: Row 2: {"col_int1": "3", "col_float1": "3.3", "col_string": "cherry", "col_bool": "true", "col_date": "2023-01-03", "col_int2": "8", "col_float2": "8.8"}
|
|
||||||
|
|
||||||
// Attempt to get an out-of-bounds row (returns None)
|
|
||||||
let row_out_of_bounds = df.get_row(10);
|
|
||||||
// Output: Row out of bounds: None
|
|
||||||
println!("Row out of bounds: {:?}", row_out_of_bounds);
|
|
||||||
|
|
||||||
// Drop a column
|
|
||||||
df.drop_column("col_bool");
|
|
||||||
println!("\nDataFrame after dropping 'col_bool':\n{}", df);
|
|
||||||
|
|
||||||
println!("Columns after drop: {}", df.cols());
|
|
||||||
println!("Column names after drop: {:?}", df.get_column_names());
|
|
||||||
|
|
||||||
// Drop another column, ensuring the underlying Frame is removed if empty
|
|
||||||
df.drop_column("col_float1");
|
|
||||||
println!("\nDataFrame after dropping 'col_float1':\n{}", df);
|
|
||||||
|
|
||||||
println!("Columns after second drop: {}", df.cols());
|
|
||||||
println!(
|
|
||||||
"Column names after second drop: {:?}",
|
|
||||||
df.get_column_names()
|
|
||||||
);
|
|
||||||
|
|
||||||
// Attempt to drop a non-existent column (will panic)
|
|
||||||
// df.drop_column("non_existent_col"); // Uncomment to see panic
|
|
||||||
```
|
|
||||||
|
|
||||||
## More examples
|
## More examples
|
||||||
|
|
||||||
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
||||||
|
|||||||
@@ -1,659 +0,0 @@
|
|||||||
use crate::frame::{Frame, RowIndex};
|
|
||||||
use std::any::{Any, TypeId};
|
|
||||||
use std::collections::HashMap;
|
|
||||||
use std::fmt; // Import TypeId
|
|
||||||
|
|
||||||
const DEFAULT_DISPLAY_ROWS: usize = 5;
|
|
||||||
const DEFAULT_DISPLAY_COLS: usize = 10;
|
|
||||||
|
|
||||||
// Trait to enable type-agnostic operations on Frame objects within DataFrame
|
|
||||||
pub trait SubFrame: Send + Sync + fmt::Debug + Any {
|
|
||||||
fn rows(&self) -> usize;
|
|
||||||
fn get_value_as_string(&self, physical_row_idx: usize, col_name: &str) -> String;
|
|
||||||
fn clone_box(&self) -> Box<dyn SubFrame>;
|
|
||||||
fn delete_column_from_frame(&mut self, col_name: &str);
|
|
||||||
fn get_frame_cols(&self) -> usize; // Add a method to get the number of columns in the underlying frame
|
|
||||||
|
|
||||||
// Methods for downcasting to concrete types
|
|
||||||
fn as_any(&self) -> &dyn Any;
|
|
||||||
fn as_any_mut(&mut self) -> &mut dyn Any;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Implement SubFrame for any Frame<T> that meets the requirements
|
|
||||||
impl<T> SubFrame for Frame<T>
|
|
||||||
where
|
|
||||||
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
|
||||||
{
|
|
||||||
fn rows(&self) -> usize {
|
|
||||||
self.rows()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn get_value_as_string(&self, physical_row_idx: usize, col_name: &str) -> String {
|
|
||||||
self.get_row(physical_row_idx).get(col_name).to_string()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn clone_box(&self) -> Box<dyn SubFrame> {
|
|
||||||
Box::new(self.clone())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn delete_column_from_frame(&mut self, col_name: &str) {
|
|
||||||
self.delete_column(col_name);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn get_frame_cols(&self) -> usize {
|
|
||||||
self.cols()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_any(&self) -> &dyn Any {
|
|
||||||
self
|
|
||||||
}
|
|
||||||
|
|
||||||
fn as_any_mut(&mut self) -> &mut dyn Any {
|
|
||||||
self
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub struct DataFrame {
|
|
||||||
frames_by_type: HashMap<TypeId, Box<dyn SubFrame>>, // Maps TypeId to the Frame holding columns of that type
|
|
||||||
column_to_type: HashMap<String, TypeId>, // Maps column name to its TypeId
|
|
||||||
column_names: Vec<String>,
|
|
||||||
index: RowIndex,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl DataFrame {
|
|
||||||
pub fn new() -> Self {
|
|
||||||
DataFrame {
|
|
||||||
frames_by_type: HashMap::new(),
|
|
||||||
column_to_type: HashMap::new(),
|
|
||||||
column_names: Vec::new(),
|
|
||||||
index: RowIndex::Range(0..0), // Initialize with an empty range index
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the number of rows in the DataFrame.
|
|
||||||
pub fn rows(&self) -> usize {
|
|
||||||
self.index.len()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the number of columns in the DataFrame.
|
|
||||||
pub fn cols(&self) -> usize {
|
|
||||||
self.column_names.len()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a reference to the vector of column names.
|
|
||||||
pub fn get_column_names(&self) -> &Vec<String> {
|
|
||||||
&self.column_names
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns the number of internal Frame objects (one per unique data type).
|
|
||||||
pub fn num_internal_frames(&self) -> usize {
|
|
||||||
self.frames_by_type.len()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a reference to a column of a specific type, if it exists.
|
|
||||||
pub fn get_column<T>(&self, col_name: &str) -> Option<&[T]>
|
|
||||||
where
|
|
||||||
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
|
||||||
{
|
|
||||||
let expected_type_id = TypeId::of::<T>();
|
|
||||||
if let Some(actual_type_id) = self.column_to_type.get(col_name) {
|
|
||||||
if *actual_type_id == expected_type_id {
|
|
||||||
if let Some(sub_frame_box) = self.frames_by_type.get(actual_type_id) {
|
|
||||||
if let Some(frame) = sub_frame_box.as_any().downcast_ref::<Frame<T>>() {
|
|
||||||
return Some(frame.column(col_name));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
None
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a HashMap representing a row, mapping column names to their string values.
|
|
||||||
pub fn get_row(&self, row_idx: usize) -> Option<HashMap<String, String>> {
|
|
||||||
if row_idx >= self.rows() {
|
|
||||||
return None;
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut row_data = HashMap::new();
|
|
||||||
for col_name in &self.column_names {
|
|
||||||
if let Some(type_id) = self.column_to_type.get(col_name) {
|
|
||||||
if let Some(sub_frame_box) = self.frames_by_type.get(type_id) {
|
|
||||||
let value = sub_frame_box.get_value_as_string(row_idx, col_name);
|
|
||||||
row_data.insert(col_name.clone(), value);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Some(row_data)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn add_column<T>(&mut self, col_name: &str, data: Vec<T>)
|
|
||||||
where
|
|
||||||
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
|
||||||
{
|
|
||||||
let type_id = TypeId::of::<T>();
|
|
||||||
let col_name_string = col_name.to_string();
|
|
||||||
|
|
||||||
// Check for duplicate column name across the entire DataFrame
|
|
||||||
if self.column_to_type.contains_key(&col_name_string) {
|
|
||||||
panic!(
|
|
||||||
"DataFrame::add_column: duplicate column name: '{}'",
|
|
||||||
col_name_string
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
// If this is the first column being added, set the DataFrame's index
|
|
||||||
if self.column_names.is_empty() {
|
|
||||||
self.index = RowIndex::Range(0..data.len());
|
|
||||||
} else {
|
|
||||||
// Ensure new column has the same number of rows as existing columns
|
|
||||||
if data.len() != self.index.len() {
|
|
||||||
panic!(
|
|
||||||
"DataFrame::add_column: new column '{}' has {} rows, but existing columns have {} rows",
|
|
||||||
col_name_string,
|
|
||||||
data.len(),
|
|
||||||
self.index.len()
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check if a Frame of this type already exists
|
|
||||||
if let Some(sub_frame_box) = self.frames_by_type.get_mut(&type_id) {
|
|
||||||
// Downcast to the concrete Frame<T> and add the column
|
|
||||||
if let Some(frame) = sub_frame_box.as_any_mut().downcast_mut::<Frame<T>>() {
|
|
||||||
frame.add_column(col_name_string.clone(), data);
|
|
||||||
} else {
|
|
||||||
// This should ideally not happen if TypeId matches, but good for safety
|
|
||||||
panic!(
|
|
||||||
"Type mismatch when downcasting existing SubFrame for TypeId {:?}",
|
|
||||||
type_id
|
|
||||||
);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// No Frame of this type exists, create a new one
|
|
||||||
// The Frame::new constructor expects a Matrix and column names.
|
|
||||||
// We create a Matrix from a single column vector.
|
|
||||||
let new_frame = Frame::new(
|
|
||||||
crate::matrix::Matrix::from_cols(vec![data]),
|
|
||||||
vec![col_name_string.clone()],
|
|
||||||
Some(self.index.clone()), // Pass the DataFrame's index to the new Frame
|
|
||||||
);
|
|
||||||
self.frames_by_type.insert(type_id, Box::new(new_frame));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Update column mappings and names
|
|
||||||
self.column_to_type.insert(col_name_string.clone(), type_id);
|
|
||||||
self.column_names.push(col_name_string);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Drops a column from the DataFrame.
|
|
||||||
/// Panics if the column does not exist.
|
|
||||||
pub fn drop_column(&mut self, col_name: &str) {
|
|
||||||
let col_name_string = col_name.to_string();
|
|
||||||
|
|
||||||
// 1. Get the TypeId associated with the column
|
|
||||||
let type_id = self
|
|
||||||
.column_to_type
|
|
||||||
.remove(&col_name_string)
|
|
||||||
.unwrap_or_else(|| {
|
|
||||||
panic!(
|
|
||||||
"DataFrame::drop_column: column '{}' not found",
|
|
||||||
col_name_string
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
// 2. Remove the column name from the ordered list
|
|
||||||
self.column_names.retain(|name| name != &col_name_string);
|
|
||||||
|
|
||||||
// 3. Find the Frame object and delete the column from it
|
|
||||||
if let Some(sub_frame_box) = self.frames_by_type.get_mut(&type_id) {
|
|
||||||
sub_frame_box.delete_column_from_frame(&col_name_string);
|
|
||||||
|
|
||||||
// 4. If the Frame object for this type becomes empty, remove it from frames_by_type
|
|
||||||
if sub_frame_box.get_frame_cols() == 0 {
|
|
||||||
self.frames_by_type.remove(&type_id);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// This should not happen if column_to_type was consistent
|
|
||||||
panic!(
|
|
||||||
"DataFrame::drop_column: internal error, no frame found for type_id {:?}",
|
|
||||||
type_id
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl fmt::Display for DataFrame {
|
|
||||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
||||||
// Display column headers
|
|
||||||
for col_name in self.column_names.iter().take(DEFAULT_DISPLAY_COLS) {
|
|
||||||
write!(f, "{:<15}", col_name)?;
|
|
||||||
}
|
|
||||||
if self.column_names.len() > DEFAULT_DISPLAY_COLS {
|
|
||||||
write!(f, "...")?;
|
|
||||||
}
|
|
||||||
writeln!(f)?;
|
|
||||||
|
|
||||||
// Display data rows
|
|
||||||
let mut displayed_rows = 0;
|
|
||||||
for i in 0..self.index.len() {
|
|
||||||
if displayed_rows >= DEFAULT_DISPLAY_ROWS {
|
|
||||||
writeln!(f, "...")?;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
for col_name in self.column_names.iter().take(DEFAULT_DISPLAY_COLS) {
|
|
||||||
if let Some(type_id) = self.column_to_type.get(col_name) {
|
|
||||||
if let Some(sub_frame_box) = self.frames_by_type.get(type_id) {
|
|
||||||
write!(f, "{:<15}", sub_frame_box.get_value_as_string(i, col_name))?;
|
|
||||||
} else {
|
|
||||||
// This case indicates an inconsistency: column_to_type has an entry,
|
|
||||||
// but frames_by_type doesn't have the corresponding Frame.
|
|
||||||
write!(f, "{:<15}", "[ERROR]")?;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// This case indicates an inconsistency: column_names has an entry,
|
|
||||||
// but column_to_type doesn't have the corresponding column.
|
|
||||||
write!(f, "{:<15}", "[ERROR]")?;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if self.column_names.len() > DEFAULT_DISPLAY_COLS {
|
|
||||||
write!(f, "...")?;
|
|
||||||
}
|
|
||||||
writeln!(f)?;
|
|
||||||
displayed_rows += 1;
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl fmt::Debug for DataFrame {
|
|
||||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
||||||
f.debug_struct("DataFrame")
|
|
||||||
.field("column_names", &self.column_names)
|
|
||||||
.field("index", &self.index)
|
|
||||||
.field("column_to_type", &self.column_to_type)
|
|
||||||
.field("frames_by_type", &self.frames_by_type)
|
|
||||||
.finish()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
use crate::frame::Frame;
|
|
||||||
use crate::matrix::Matrix;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_new() {
|
|
||||||
let df = DataFrame::new();
|
|
||||||
assert_eq!(df.rows(), 0);
|
|
||||||
assert_eq!(df.cols(), 0);
|
|
||||||
assert!(df.get_column_names().is_empty());
|
|
||||||
assert!(df.frames_by_type.is_empty());
|
|
||||||
assert!(df.column_to_type.is_empty());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_add_column_initial() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
let data = vec![1, 2, 3];
|
|
||||||
df.add_column("col_int", data.clone());
|
|
||||||
|
|
||||||
assert_eq!(df.rows(), 3);
|
|
||||||
assert_eq!(df.cols(), 1);
|
|
||||||
assert_eq!(df.get_column_names(), &vec!["col_int".to_string()]);
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert_eq!(df.column_to_type.get("col_int"), Some(&TypeId::of::<i32>()));
|
|
||||||
|
|
||||||
// Verify the underlying frame
|
|
||||||
let sub_frame_box = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap();
|
|
||||||
let frame = sub_frame_box.as_any().downcast_ref::<Frame<i32>>().unwrap();
|
|
||||||
assert_eq!(frame.rows(), 3);
|
|
||||||
assert_eq!(frame.cols(), 1);
|
|
||||||
assert_eq!(frame.columns(), &vec!["col_int".to_string()]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_add_column_same_type() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int1", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_int2", vec![4, 5, 6]);
|
|
||||||
|
|
||||||
assert_eq!(df.rows(), 3);
|
|
||||||
assert_eq!(df.cols(), 2);
|
|
||||||
assert_eq!(
|
|
||||||
df.get_column_names(),
|
|
||||||
&vec!["col_int1".to_string(), "col_int2".to_string()]
|
|
||||||
);
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert_eq!(
|
|
||||||
df.column_to_type.get("col_int1"),
|
|
||||||
Some(&TypeId::of::<i32>())
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
df.column_to_type.get("col_int2"),
|
|
||||||
Some(&TypeId::of::<i32>())
|
|
||||||
);
|
|
||||||
|
|
||||||
// Verify the underlying frame
|
|
||||||
let sub_frame_box = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap();
|
|
||||||
let frame = sub_frame_box.as_any().downcast_ref::<Frame<i32>>().unwrap();
|
|
||||||
assert_eq!(frame.rows(), 3);
|
|
||||||
assert_eq!(frame.cols(), 2);
|
|
||||||
assert_eq!(
|
|
||||||
frame.columns(),
|
|
||||||
&vec!["col_int1".to_string(), "col_int2".to_string()]
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_add_column_different_type() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
|
||||||
df.add_column(
|
|
||||||
"col_string",
|
|
||||||
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
|
||||||
);
|
|
||||||
|
|
||||||
assert_eq!(df.rows(), 3);
|
|
||||||
assert_eq!(df.cols(), 3);
|
|
||||||
assert_eq!(
|
|
||||||
df.get_column_names(),
|
|
||||||
&vec![
|
|
||||||
"col_int".to_string(),
|
|
||||||
"col_float".to_string(),
|
|
||||||
"col_string".to_string()
|
|
||||||
]
|
|
||||||
);
|
|
||||||
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
|
||||||
|
|
||||||
assert_eq!(df.column_to_type.get("col_int"), Some(&TypeId::of::<i32>()));
|
|
||||||
assert_eq!(
|
|
||||||
df.column_to_type.get("col_float"),
|
|
||||||
Some(&TypeId::of::<f64>())
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
df.column_to_type.get("col_string"),
|
|
||||||
Some(&TypeId::of::<String>())
|
|
||||||
);
|
|
||||||
|
|
||||||
// Verify underlying frames
|
|
||||||
let int_frame = df
|
|
||||||
.frames_by_type
|
|
||||||
.get(&TypeId::of::<i32>())
|
|
||||||
.unwrap()
|
|
||||||
.as_any()
|
|
||||||
.downcast_ref::<Frame<i32>>()
|
|
||||||
.unwrap();
|
|
||||||
assert_eq!(int_frame.columns(), &vec!["col_int".to_string()]);
|
|
||||||
|
|
||||||
let float_frame = df
|
|
||||||
.frames_by_type
|
|
||||||
.get(&TypeId::of::<f64>())
|
|
||||||
.unwrap()
|
|
||||||
.as_any()
|
|
||||||
.downcast_ref::<Frame<f64>>()
|
|
||||||
.unwrap();
|
|
||||||
assert_eq!(float_frame.columns(), &vec!["col_float".to_string()]);
|
|
||||||
|
|
||||||
let string_frame = df
|
|
||||||
.frames_by_type
|
|
||||||
.get(&TypeId::of::<String>())
|
|
||||||
.unwrap()
|
|
||||||
.as_any()
|
|
||||||
.downcast_ref::<Frame<String>>()
|
|
||||||
.unwrap();
|
|
||||||
assert_eq!(string_frame.columns(), &vec!["col_string".to_string()]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_get_column() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
|
||||||
df.add_column(
|
|
||||||
"col_string",
|
|
||||||
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
|
||||||
);
|
|
||||||
|
|
||||||
// Test getting existing columns with correct type
|
|
||||||
assert_eq!(
|
|
||||||
df.get_column::<i32>("col_int").unwrap(),
|
|
||||||
vec![1, 2, 3].as_slice()
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
df.get_column::<f64>("col_float").unwrap(),
|
|
||||||
vec![1.1, 2.2, 3.3].as_slice()
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
df.get_column::<String>("col_string").unwrap(),
|
|
||||||
vec!["a".to_string(), "b".to_string(), "c".to_string()].as_slice()
|
|
||||||
);
|
|
||||||
|
|
||||||
// Test getting non-existent column
|
|
||||||
assert_eq!(df.get_column::<i32>("non_existent"), None);
|
|
||||||
|
|
||||||
// Test getting existing column with incorrect type
|
|
||||||
assert_eq!(df.get_column::<f64>("col_int"), None);
|
|
||||||
assert_eq!(df.get_column::<i32>("col_float"), None);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_get_row() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
|
||||||
df.add_column(
|
|
||||||
"col_string",
|
|
||||||
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
|
||||||
);
|
|
||||||
|
|
||||||
// Test getting an existing row
|
|
||||||
let row0 = df.get_row(0).unwrap();
|
|
||||||
assert_eq!(row0.get("col_int"), Some(&"1".to_string()));
|
|
||||||
assert_eq!(row0.get("col_float"), Some(&"1.1".to_string()));
|
|
||||||
assert_eq!(row0.get("col_string"), Some(&"a".to_string()));
|
|
||||||
|
|
||||||
let row1 = df.get_row(1).unwrap();
|
|
||||||
assert_eq!(row1.get("col_int"), Some(&"2".to_string()));
|
|
||||||
assert_eq!(row1.get("col_float"), Some(&"2.2".to_string()));
|
|
||||||
assert_eq!(row1.get("col_string"), Some(&"b".to_string()));
|
|
||||||
|
|
||||||
// Test getting an out-of-bounds row
|
|
||||||
assert_eq!(df.get_row(3), None);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
#[should_panic(expected = "DataFrame::add_column: duplicate column name: 'col_int'")]
|
|
||||||
fn test_dataframe_add_column_duplicate_name() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_int", vec![4, 5, 6]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
#[should_panic(
|
|
||||||
expected = "DataFrame::add_column: new column 'col_int2' has 2 rows, but existing columns have 3 rows"
|
|
||||||
)]
|
|
||||||
fn test_dataframe_add_column_mismatched_rows() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int1", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_int2", vec![4, 5]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_display() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int", vec![1, 2, 3, 4, 5, 6]);
|
|
||||||
df.add_column("col_float", vec![1.1, 2.2, 3.3, 4.4, 5.5, 6.6]);
|
|
||||||
df.add_column(
|
|
||||||
"col_string",
|
|
||||||
vec![
|
|
||||||
"a".to_string(),
|
|
||||||
"b".to_string(),
|
|
||||||
"c".to_string(),
|
|
||||||
"d".to_string(),
|
|
||||||
"e".to_string(),
|
|
||||||
"f".to_string(),
|
|
||||||
],
|
|
||||||
);
|
|
||||||
|
|
||||||
let expected_output = "\
|
|
||||||
col_int col_float col_string
|
|
||||||
1 1.1 a
|
|
||||||
2 2.2 b
|
|
||||||
3 3.3 c
|
|
||||||
4 4.4 d
|
|
||||||
5 5.5 e
|
|
||||||
...
|
|
||||||
";
|
|
||||||
assert_eq!(format!("{}", df), expected_output);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_debug() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
|
||||||
|
|
||||||
let debug_output = format!("{:?}", df);
|
|
||||||
assert!(debug_output.contains("DataFrame {"));
|
|
||||||
assert!(debug_output.contains("column_names: [\"col_int\", \"col_float\"]"));
|
|
||||||
assert!(debug_output.contains("index: Range(0..3)"));
|
|
||||||
assert!(debug_output.contains("column_to_type: {"));
|
|
||||||
assert!(debug_output.contains("frames_by_type: {"));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_drop_column_single_type() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int1", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_int2", vec![4, 5, 6]);
|
|
||||||
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
|
||||||
|
|
||||||
assert_eq!(df.cols(), 3);
|
|
||||||
assert_eq!(
|
|
||||||
df.get_column_names(),
|
|
||||||
&vec![
|
|
||||||
"col_int1".to_string(),
|
|
||||||
"col_int2".to_string(),
|
|
||||||
"col_float".to_string()
|
|
||||||
]
|
|
||||||
);
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
|
||||||
|
|
||||||
df.drop_column("col_int1");
|
|
||||||
|
|
||||||
assert_eq!(df.cols(), 2);
|
|
||||||
assert_eq!(
|
|
||||||
df.get_column_names(),
|
|
||||||
&vec!["col_int2".to_string(), "col_float".to_string()]
|
|
||||||
);
|
|
||||||
assert!(df.column_to_type.get("col_int1").is_none());
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>())); // Frame<i32> should still exist
|
|
||||||
let int_frame = df
|
|
||||||
.frames_by_type
|
|
||||||
.get(&TypeId::of::<i32>())
|
|
||||||
.unwrap()
|
|
||||||
.as_any()
|
|
||||||
.downcast_ref::<Frame<i32>>()
|
|
||||||
.unwrap();
|
|
||||||
assert_eq!(int_frame.columns(), &vec!["col_int2".to_string()]);
|
|
||||||
|
|
||||||
df.drop_column("col_int2");
|
|
||||||
|
|
||||||
assert_eq!(df.cols(), 1);
|
|
||||||
assert_eq!(df.get_column_names(), &vec!["col_float".to_string()]);
|
|
||||||
assert!(df.column_to_type.get("col_int2").is_none());
|
|
||||||
assert!(!df.frames_by_type.contains_key(&TypeId::of::<i32>())); // Frame<i32> should be removed
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_drop_column_mixed_types() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
|
||||||
df.add_column(
|
|
||||||
"col_string",
|
|
||||||
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
|
||||||
);
|
|
||||||
|
|
||||||
assert_eq!(df.cols(), 3);
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
|
||||||
|
|
||||||
df.drop_column("col_float");
|
|
||||||
|
|
||||||
assert_eq!(df.cols(), 2);
|
|
||||||
assert_eq!(
|
|
||||||
df.get_column_names(),
|
|
||||||
&vec!["col_int".to_string(), "col_string".to_string()]
|
|
||||||
);
|
|
||||||
assert!(df.column_to_type.get("col_float").is_none());
|
|
||||||
assert!(!df.frames_by_type.contains_key(&TypeId::of::<f64>())); // Frame<f64> should be removed
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
|
||||||
|
|
||||||
df.drop_column("col_int");
|
|
||||||
df.drop_column("col_string");
|
|
||||||
|
|
||||||
assert_eq!(df.cols(), 0);
|
|
||||||
assert!(df.get_column_names().is_empty());
|
|
||||||
assert!(df.frames_by_type.is_empty());
|
|
||||||
assert!(df.column_to_type.is_empty());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
#[should_panic(expected = "DataFrame::drop_column: column 'non_existent' not found")]
|
|
||||||
fn test_dataframe_drop_column_non_existent() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int", vec![1, 2, 3]);
|
|
||||||
df.drop_column("non_existent");
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_dataframe_add_column_reuses_existing_frame() {
|
|
||||||
let mut df = DataFrame::new();
|
|
||||||
df.add_column("col_int1", vec![1, 2, 3]);
|
|
||||||
df.add_column("col_float1", vec![1.1, 2.2, 3.3]);
|
|
||||||
|
|
||||||
// Initially, there should be two frames (one for i32, one for f64)
|
|
||||||
assert_eq!(df.frames_by_type.len(), 2);
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
|
||||||
|
|
||||||
// Add another integer column
|
|
||||||
df.add_column("col_int2", vec![4, 5, 6]);
|
|
||||||
|
|
||||||
// The number of frames should still be 2, as the existing i32 frame should be reused
|
|
||||||
assert_eq!(df.frames_by_type.len(), 2);
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
|
||||||
|
|
||||||
// Verify the i32 frame now contains both integer columns
|
|
||||||
let int_frame = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap().as_any().downcast_ref::<Frame<i32>>().unwrap();
|
|
||||||
assert_eq!(int_frame.columns(), &vec!["col_int1".to_string(), "col_int2".to_string()]);
|
|
||||||
assert_eq!(int_frame.cols(), 2);
|
|
||||||
|
|
||||||
// Add another float column
|
|
||||||
df.add_column("col_float2", vec![4.4, 5.5, 6.6]);
|
|
||||||
|
|
||||||
// The number of frames should still be 2, as the existing f64 frame should be reused
|
|
||||||
assert_eq!(df.frames_by_type.len(), 2);
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
|
||||||
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
|
||||||
|
|
||||||
// Verify the f64 frame now contains both float columns
|
|
||||||
let float_frame = df.frames_by_type.get(&TypeId::of::<f64>()).unwrap().as_any().downcast_ref::<Frame<f64>>().unwrap();
|
|
||||||
assert_eq!(float_frame.columns(), &vec!["col_float1".to_string(), "col_float2".to_string()]);
|
|
||||||
assert_eq!(float_frame.cols(), 2);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,4 +0,0 @@
|
|||||||
//! This module provides the DataFrame structure for handling tabular data with mixed types.
|
|
||||||
pub mod df;
|
|
||||||
|
|
||||||
pub use df::{DataFrame, SubFrame};
|
|
||||||
@@ -332,7 +332,7 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns an immutable slice of the specified column's data by name.
|
/// Returns an immutable slice of the specified column's data.
|
||||||
/// Panics if the column name is not found.
|
/// Panics if the column name is not found.
|
||||||
pub fn column(&self, name: &str) -> &[T] {
|
pub fn column(&self, name: &str) -> &[T] {
|
||||||
let idx = self
|
let idx = self
|
||||||
@@ -341,13 +341,7 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
self.matrix.column(idx)
|
self.matrix.column(idx)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns an immutable slice of the specified column's data by its physical index.
|
/// Returns a mutable slice of the specified column's data.
|
||||||
/// Panics if the index is out of bounds.
|
|
||||||
pub fn column_by_physical_idx(&self, idx: usize) -> &[T] {
|
|
||||||
self.matrix.column(idx)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a mutable slice of the specified column's data by name.
|
|
||||||
/// Panics if the column name is not found.
|
/// Panics if the column name is not found.
|
||||||
pub fn column_mut(&mut self, name: &str) -> &mut [T] {
|
pub fn column_mut(&mut self, name: &str) -> &mut [T] {
|
||||||
let idx = self
|
let idx = self
|
||||||
@@ -356,12 +350,6 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
self.matrix.column_mut(idx)
|
self.matrix.column_mut(idx)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a mutable slice of the specified column's data by its physical index.
|
|
||||||
/// Panics if the index is out of bounds.
|
|
||||||
pub fn column_mut_by_physical_idx(&mut self, idx: usize) -> &mut [T] {
|
|
||||||
self.matrix.column_mut(idx)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Row access methods
|
// Row access methods
|
||||||
|
|
||||||
/// Returns an immutable view of the row for the given integer key.
|
/// Returns an immutable view of the row for the given integer key.
|
||||||
|
|||||||
@@ -1,8 +1,5 @@
|
|||||||
#![doc = include_str!("../README.md")]
|
#![doc = include_str!("../README.md")]
|
||||||
|
|
||||||
/// Documentation for the [`crate::dataframe`] module.
|
|
||||||
pub mod dataframe;
|
|
||||||
|
|
||||||
/// Documentation for the [`crate::matrix`] module.
|
/// Documentation for the [`crate::matrix`] module.
|
||||||
pub mod matrix;
|
pub mod matrix;
|
||||||
|
|
||||||
|
|||||||
@@ -10,6 +10,7 @@
|
|||||||
//! assert_eq!(dates.count().unwrap(), 3);
|
//! assert_eq!(dates.count().unwrap(), 3);
|
||||||
//! ```
|
//! ```
|
||||||
pub mod dateutils;
|
pub mod dateutils;
|
||||||
|
pub mod spigots;
|
||||||
|
|
||||||
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};
|
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};
|
||||||
pub use dateutils::{DateFreq, DatesGenerator, DatesList};
|
pub use dateutils::{DateFreq, DatesGenerator, DatesList};
|
||||||
|
|||||||
243
src/utils/spigots.rs
Normal file
243
src/utils/spigots.rs
Normal file
@@ -0,0 +1,243 @@
|
|||||||
|
/// Iterator producing successive approximations of π using the Nilakantha series.
|
||||||
|
pub struct PiSpigot {
|
||||||
|
k: u64,
|
||||||
|
current: f64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Iterator for PiSpigot {
|
||||||
|
type Item = f64;
|
||||||
|
|
||||||
|
fn next(&mut self) -> Option<Self::Item> {
|
||||||
|
if self.k == 0 {
|
||||||
|
self.k = 1;
|
||||||
|
self.current = 3.0;
|
||||||
|
return Some(self.current);
|
||||||
|
}
|
||||||
|
let k = self.k as f64;
|
||||||
|
let term = 4.0 / ((2.0 * k) * (2.0 * k + 1.0) * (2.0 * k + 2.0));
|
||||||
|
if self.k % 2 == 1 {
|
||||||
|
self.current += term;
|
||||||
|
} else {
|
||||||
|
self.current -= term;
|
||||||
|
}
|
||||||
|
self.k += 1;
|
||||||
|
Some(self.current)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generator yielding approximations of π indefinitely.
|
||||||
|
pub fn pi_spigot() -> PiSpigot {
|
||||||
|
PiSpigot { k: 0, current: 0.0 }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return the first `n` approximations of π as a vector.
|
||||||
|
pub fn pi_values(n: usize) -> Vec<f64> {
|
||||||
|
pi_spigot().take(n).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generator yielding approximations of τ = 2π indefinitely.
|
||||||
|
pub fn tau_spigot() -> impl Iterator<Item = f64> {
|
||||||
|
pi_spigot().map(|v| v * 2.0)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return the first `n` approximations of τ as a vector.
|
||||||
|
pub fn tau_values(n: usize) -> Vec<f64> {
|
||||||
|
tau_spigot().take(n).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Iterator producing successive approximations of the Euler-Mascheroni constant γ.
|
||||||
|
pub struct GammaSpigot {
|
||||||
|
n: u64,
|
||||||
|
harmonic: f64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Iterator for GammaSpigot {
|
||||||
|
type Item = f64;
|
||||||
|
|
||||||
|
fn next(&mut self) -> Option<Self::Item> {
|
||||||
|
self.n += 1;
|
||||||
|
self.harmonic += 1.0 / self.n as f64;
|
||||||
|
let value = self.harmonic - (self.n as f64).ln();
|
||||||
|
Some(value)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generator yielding approximations of γ indefinitely.
|
||||||
|
pub fn gamma_spigot() -> GammaSpigot {
|
||||||
|
GammaSpigot {
|
||||||
|
n: 0,
|
||||||
|
harmonic: 0.0,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return the first `n` approximations of γ as a vector.
|
||||||
|
pub fn gamma_values(n: usize) -> Vec<f64> {
|
||||||
|
gamma_spigot().take(n).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Iterator producing successive approximations of e using the series Σ 1/n!.
|
||||||
|
pub struct ESpigot {
|
||||||
|
n: u64,
|
||||||
|
sum: f64,
|
||||||
|
factorial: f64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Iterator for ESpigot {
|
||||||
|
type Item = f64;
|
||||||
|
|
||||||
|
fn next(&mut self) -> Option<Self::Item> {
|
||||||
|
if self.n == 0 {
|
||||||
|
self.n = 1;
|
||||||
|
self.sum = 1.0;
|
||||||
|
self.factorial = 1.0;
|
||||||
|
return Some(self.sum);
|
||||||
|
}
|
||||||
|
self.factorial *= self.n as f64;
|
||||||
|
self.sum += 1.0 / self.factorial;
|
||||||
|
self.n += 1;
|
||||||
|
Some(self.sum)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generator yielding approximations of e indefinitely.
|
||||||
|
pub fn e_spigot() -> ESpigot {
|
||||||
|
ESpigot {
|
||||||
|
n: 0,
|
||||||
|
sum: 0.0,
|
||||||
|
factorial: 1.0,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return the first `n` approximations of e as a vector.
|
||||||
|
pub fn e_values(n: usize) -> Vec<f64> {
|
||||||
|
e_spigot().take(n).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Iterator producing successive approximations of √2 using Newton's method.
|
||||||
|
pub struct Sqrt2Spigot {
|
||||||
|
x: f64,
|
||||||
|
first: bool,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Iterator for Sqrt2Spigot {
|
||||||
|
type Item = f64;
|
||||||
|
|
||||||
|
fn next(&mut self) -> Option<Self::Item> {
|
||||||
|
if self.first {
|
||||||
|
self.first = false;
|
||||||
|
Some(self.x)
|
||||||
|
} else {
|
||||||
|
self.x = 0.5 * (self.x + 2.0 / self.x);
|
||||||
|
Some(self.x)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generator yielding approximations of √2 indefinitely.
|
||||||
|
pub fn sqrt2_spigot() -> Sqrt2Spigot {
|
||||||
|
Sqrt2Spigot {
|
||||||
|
x: 1.0,
|
||||||
|
first: true,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return the first `n` approximations of √2 as a vector.
|
||||||
|
pub fn sqrt2_values(n: usize) -> Vec<f64> {
|
||||||
|
sqrt2_spigot().take(n).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn look_and_say(s: &str) -> String {
|
||||||
|
let mut chars = s.chars().peekable();
|
||||||
|
let mut result = String::new();
|
||||||
|
while let Some(c) = chars.next() {
|
||||||
|
let mut count = 1;
|
||||||
|
while let Some(&next) = chars.peek() {
|
||||||
|
if next == c {
|
||||||
|
chars.next();
|
||||||
|
count += 1;
|
||||||
|
} else {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
result.push_str(&format!("{}{}", count, c));
|
||||||
|
}
|
||||||
|
result
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Iterator producing successive ratios of lengths of the look-and-say sequence.
|
||||||
|
pub struct ConwaySpigot {
|
||||||
|
current: String,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Iterator for ConwaySpigot {
|
||||||
|
type Item = f64;
|
||||||
|
|
||||||
|
fn next(&mut self) -> Option<Self::Item> {
|
||||||
|
let next = look_and_say(&self.current);
|
||||||
|
let ratio = next.len() as f64 / self.current.len() as f64;
|
||||||
|
self.current = next;
|
||||||
|
Some(ratio)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generator yielding approximations of Conway's constant λ indefinitely.
|
||||||
|
pub fn conway_spigot() -> ConwaySpigot {
|
||||||
|
ConwaySpigot {
|
||||||
|
current: "1".to_string(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return the first `n` approximations of Conway's constant as a vector.
|
||||||
|
pub fn conway_values(n: usize) -> Vec<f64> {
|
||||||
|
conway_spigot().take(n).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use std::f64::consts::{E, PI, TAU};
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_pi_spigot() {
|
||||||
|
let vals = pi_values(1000);
|
||||||
|
let approx = vals.last().cloned().unwrap();
|
||||||
|
assert!((approx - PI).abs() < 1e-8);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_tau_spigot() {
|
||||||
|
let vals = tau_values(1000);
|
||||||
|
let approx = vals.last().cloned().unwrap();
|
||||||
|
assert!((approx - TAU).abs() < 1e-8);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gamma_spigot() {
|
||||||
|
let vals = gamma_values(100000);
|
||||||
|
let approx = vals.last().cloned().unwrap();
|
||||||
|
let gamma_true = 0.5772156649015329_f64;
|
||||||
|
assert!((approx - gamma_true).abs() < 1e-5);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_e_spigot() {
|
||||||
|
let vals = e_values(10);
|
||||||
|
let approx = vals.last().cloned().unwrap();
|
||||||
|
assert!((approx - E).abs() < 1e-6);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_sqrt2_spigot() {
|
||||||
|
let vals = sqrt2_values(6);
|
||||||
|
let approx = vals.last().cloned().unwrap();
|
||||||
|
assert!((approx - 2_f64.sqrt()).abs() < 1e-12);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_conway_spigot() {
|
||||||
|
let vals = conway_values(25);
|
||||||
|
let approx = vals.last().cloned().unwrap();
|
||||||
|
let conway = 1.3035772690342964_f64;
|
||||||
|
assert!((approx - conway).abs() < 1e-2);
|
||||||
|
}
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user