mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 14:30:01 +00:00
Compare commits
1 Commits
d8afef049d
...
28cb700224
Author | SHA1 | Date | |
---|---|---|---|
![]() |
28cb700224 |
2
.github/runners/runner-x64/Dockerfile
vendored
2
.github/runners/runner-x64/Dockerfile
vendored
@ -7,7 +7,7 @@ ARG DEBIAN_FRONTEND=noninteractive
|
|||||||
|
|
||||||
RUN apt update -y && apt upgrade -y && useradd -m docker
|
RUN apt update -y && apt upgrade -y && useradd -m docker
|
||||||
RUN apt install -y --no-install-recommends \
|
RUN apt install -y --no-install-recommends \
|
||||||
curl jq git zip unzip \
|
curl jq git unzip \
|
||||||
# dev dependencies
|
# dev dependencies
|
||||||
build-essential libssl-dev libffi-dev python3 python3-venv python3-dev python3-pip \
|
build-essential libssl-dev libffi-dev python3 python3-venv python3-dev python3-pip \
|
||||||
# dot net core dependencies
|
# dot net core dependencies
|
||||||
|
16
.github/scripts/run_examples.sh
vendored
16
.github/scripts/run_examples.sh
vendored
@ -1,16 +0,0 @@
|
|||||||
cargo build --release --examples
|
|
||||||
|
|
||||||
for ex in examples/*.rs; do
|
|
||||||
name=$(basename "$ex" .rs)
|
|
||||||
echo
|
|
||||||
echo "🟡 Running example: $name"
|
|
||||||
|
|
||||||
if ! cargo run --release --example "$name" -- --debug; then
|
|
||||||
echo
|
|
||||||
echo "❌ Example '$name' failed. Aborting."
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
done
|
|
||||||
|
|
||||||
echo
|
|
||||||
echo "✅ All examples ran successfully."
|
|
17
.github/workflows/run-unit-tests.yml
vendored
17
.github/workflows/run-unit-tests.yml
vendored
@ -12,12 +12,14 @@ concurrency:
|
|||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
pick-runner:
|
pick-runner:
|
||||||
|
|
||||||
if: github.event.pull_request.draft == false
|
if: github.event.pull_request.draft == false
|
||||||
|
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
outputs:
|
outputs:
|
||||||
runner: ${{ steps.choose.outputs.use-runner }}
|
runner: ${{ steps.choose.outputs.use-runner }}
|
||||||
steps:
|
steps:
|
||||||
|
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- id: choose
|
- id: choose
|
||||||
uses: ./.github/actions/runner-fallback
|
uses: ./.github/actions/runner-fallback
|
||||||
@ -25,6 +27,7 @@ jobs:
|
|||||||
primary-runner: "self-hosted"
|
primary-runner: "self-hosted"
|
||||||
fallback-runner: "ubuntu-latest"
|
fallback-runner: "ubuntu-latest"
|
||||||
github-token: ${{ secrets.CUSTOM_GH_TOKEN }}
|
github-token: ${{ secrets.CUSTOM_GH_TOKEN }}
|
||||||
|
|
||||||
|
|
||||||
run-unit-tests:
|
run-unit-tests:
|
||||||
needs: pick-runner
|
needs: pick-runner
|
||||||
@ -53,20 +56,6 @@ jobs:
|
|||||||
- name: Test docs generation
|
- name: Test docs generation
|
||||||
run: cargo doc --no-deps --release
|
run: cargo doc --no-deps --release
|
||||||
|
|
||||||
- name: Test examples
|
|
||||||
run: cargo test --examples --release
|
|
||||||
|
|
||||||
- name: Run all examples
|
|
||||||
run: |
|
|
||||||
for example in examples/*.rs; do
|
|
||||||
name=$(basename "$example" .rs)
|
|
||||||
echo "Running example: $name"
|
|
||||||
cargo run --release --example "$name" -- --debug || exit 1
|
|
||||||
done
|
|
||||||
|
|
||||||
- name: Cargo test all targets
|
|
||||||
run: cargo test --all-targets --release
|
|
||||||
|
|
||||||
- name: Upload coverage to Codecov
|
- name: Upload coverage to Codecov
|
||||||
uses: codecov/codecov-action@v3
|
uses: codecov/codecov-action@v3
|
||||||
with:
|
with:
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "rustframe"
|
name = "rustframe"
|
||||||
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
|
||||||
version = "0.0.1-a.20250716"
|
version = "0.0.1-a.20250716"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
license = "GPL-3.0-or-later"
|
license = "GPL-3.0-or-later"
|
||||||
@ -15,6 +14,7 @@ crate-type = ["cdylib", "lib"]
|
|||||||
[dependencies]
|
[dependencies]
|
||||||
chrono = "^0.4.10"
|
chrono = "^0.4.10"
|
||||||
criterion = { version = "0.5", features = ["html_reports"], optional = true }
|
criterion = { version = "0.5", features = ["html_reports"], optional = true }
|
||||||
|
rand = "^0.9.1"
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
bench = ["dep:criterion"]
|
bench = ["dep:criterion"]
|
||||||
|
25
README.md
25
README.md
@ -30,7 +30,7 @@ Rustframe is an educational project, and is not intended for production use. It
|
|||||||
|
|
||||||
- **[Coming Soon]** _DataFrame_ - Multi-type data structure for heterogeneous data, with labeled columns and typed row indices.
|
- **[Coming Soon]** _DataFrame_ - Multi-type data structure for heterogeneous data, with labeled columns and typed row indices.
|
||||||
|
|
||||||
- **Random number utils** - Built-in pseudo and cryptographically secure generators for simulations.
|
- **[Coming Soon]** _Random number utils_ - Random number generation utilities for statistical sampling and simulations. (Currently using the [`rand`](https://crates.io/crates/rand) crate.)
|
||||||
|
|
||||||
#### Matrix and Frame functionality
|
#### Matrix and Frame functionality
|
||||||
|
|
||||||
@ -319,29 +319,6 @@ E.g. to run the `game_of_life` example:
|
|||||||
cargo run --example game_of_life
|
cargo run --example game_of_life
|
||||||
```
|
```
|
||||||
|
|
||||||
More demos:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cargo run --example linear_regression
|
|
||||||
cargo run --example logistic_regression
|
|
||||||
cargo run --example k_means
|
|
||||||
cargo run --example pca
|
|
||||||
cargo run --example stats_overview
|
|
||||||
cargo run --example descriptive_stats
|
|
||||||
cargo run --example correlation
|
|
||||||
cargo run --example inferential_stats
|
|
||||||
cargo run --example distributions
|
|
||||||
```
|
|
||||||
|
|
||||||
To simply list all available examples, you can run:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# this technically raises an error, but it will list all examples
|
|
||||||
cargo run --example
|
|
||||||
```
|
|
||||||
|
|
||||||
Each demo runs a couple of mini-scenarios showcasing the APIs.
|
|
||||||
|
|
||||||
### Running benchmarks
|
### Running benchmarks
|
||||||
|
|
||||||
To run the benchmarks, use:
|
To run the benchmarks, use:
|
||||||
|
@ -1,45 +0,0 @@
|
|||||||
use rustframe::compute::stats::{covariance, covariance_matrix, pearson};
|
|
||||||
use rustframe::matrix::{Axis, Matrix};
|
|
||||||
|
|
||||||
/// Demonstrates covariance and correlation utilities.
|
|
||||||
fn main() {
|
|
||||||
pairwise_cov();
|
|
||||||
println!("\n-----\n");
|
|
||||||
matrix_cov();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn pairwise_cov() {
|
|
||||||
println!("Covariance & Pearson r\n----------------------");
|
|
||||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
|
||||||
println!("covariance : {:.2}", covariance(&x, &y));
|
|
||||||
println!("pearson r : {:.3}", pearson(&x, &y));
|
|
||||||
}
|
|
||||||
|
|
||||||
fn matrix_cov() {
|
|
||||||
println!("Covariance matrix\n-----------------");
|
|
||||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let cov = covariance_matrix(&data, Axis::Col);
|
|
||||||
println!("cov matrix : {:?}", cov.data());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
const EPS: f64 = 1e-8;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_pairwise_cov() {
|
|
||||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
|
||||||
assert!((covariance(&x, &y) - 1.625).abs() < EPS);
|
|
||||||
assert!((pearson(&x, &y) - 0.9827076298239908).abs() < 1e-5,);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_matrix_cov() {
|
|
||||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let cov = covariance_matrix(&data, Axis::Col);
|
|
||||||
assert_eq!(cov.data(), &[2.0, 2.0, 2.0, 2.0]);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,56 +0,0 @@
|
|||||||
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, median, percentile, stddev};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
/// Demonstrates descriptive statistics utilities.
|
|
||||||
///
|
|
||||||
/// Part 1: simple mean/stddev/median/percentile on a vector.
|
|
||||||
/// Part 2: mean across rows and columns.
|
|
||||||
fn main() {
|
|
||||||
simple_stats();
|
|
||||||
println!("\n-----\n");
|
|
||||||
axis_stats();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn simple_stats() {
|
|
||||||
println!("Basic stats\n-----------");
|
|
||||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
println!("mean : {:.2}", mean(&data));
|
|
||||||
println!("stddev : {:.2}", stddev(&data));
|
|
||||||
println!("median : {:.2}", median(&data));
|
|
||||||
println!("90th pct. : {:.2}", percentile(&data, 90.0));
|
|
||||||
}
|
|
||||||
|
|
||||||
fn axis_stats() {
|
|
||||||
println!("Row/column means\n----------------");
|
|
||||||
// 2x3 matrix
|
|
||||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 2, 3);
|
|
||||||
let v = mean_vertical(&data); // 1x3
|
|
||||||
let h = mean_horizontal(&data); // 2x1
|
|
||||||
println!("vertical means : {:?}", v.data());
|
|
||||||
println!("horizontal means: {:?}", h.data());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
const EPS: f64 = 1e-8;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_simple_stats() {
|
|
||||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
assert!((mean(&data) - 3.0).abs() < EPS);
|
|
||||||
assert!((stddev(&data) - 1.4142135623730951).abs() < EPS);
|
|
||||||
assert!((median(&data) - 3.0).abs() < EPS);
|
|
||||||
assert!((percentile(&data, 90.0) - 5.0).abs() < EPS);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_axis_stats() {
|
|
||||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 2, 3);
|
|
||||||
let v = mean_vertical(&data);
|
|
||||||
assert_eq!(v.data(), &[2.5, 3.5, 4.5]);
|
|
||||||
let h = mean_horizontal(&data);
|
|
||||||
assert_eq!(h.data(), &[2.0, 5.0]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
@ -1,66 +0,0 @@
|
|||||||
use rustframe::compute::stats::{binomial_cdf, binomial_pmf, normal_cdf, normal_pdf, poisson_pmf};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
/// Demonstrates some probability distribution helpers.
|
|
||||||
fn main() {
|
|
||||||
normal_example();
|
|
||||||
println!("\n-----\n");
|
|
||||||
binomial_example();
|
|
||||||
println!("\n-----\n");
|
|
||||||
poisson_example();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn normal_example() {
|
|
||||||
println!("Normal distribution\n-------------------");
|
|
||||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
|
||||||
let pdf = normal_pdf(x.clone(), 0.0, 1.0);
|
|
||||||
let cdf = normal_cdf(x, 0.0, 1.0);
|
|
||||||
println!("pdf : {:?}", pdf.data());
|
|
||||||
println!("cdf : {:?}", cdf.data());
|
|
||||||
}
|
|
||||||
|
|
||||||
fn binomial_example() {
|
|
||||||
println!("Binomial distribution\n---------------------");
|
|
||||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
|
||||||
let pmf = binomial_pmf(4, k.clone(), 0.5);
|
|
||||||
let cdf = binomial_cdf(4, k, 0.5);
|
|
||||||
println!("pmf : {:?}", pmf.data());
|
|
||||||
println!("cdf : {:?}", cdf.data());
|
|
||||||
}
|
|
||||||
|
|
||||||
fn poisson_example() {
|
|
||||||
println!("Poisson distribution\n--------------------");
|
|
||||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
|
||||||
let pmf = poisson_pmf(3.0, k);
|
|
||||||
println!("pmf : {:?}", pmf.data());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_normal_example() {
|
|
||||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
|
||||||
let pdf = normal_pdf(x.clone(), 0.0, 1.0);
|
|
||||||
let cdf = normal_cdf(x, 0.0, 1.0);
|
|
||||||
assert!((pdf.get(0, 0) - 0.39894228).abs() < 1e-6);
|
|
||||||
assert!((cdf.get(0, 1) - 0.8413447).abs() < 1e-6);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_binomial_example() {
|
|
||||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
|
||||||
let pmf = binomial_pmf(4, k.clone(), 0.5);
|
|
||||||
let cdf = binomial_cdf(4, k, 0.5);
|
|
||||||
assert!((pmf.get(0, 2) - 0.375).abs() < 1e-6);
|
|
||||||
assert!((cdf.get(0, 2) - 0.6875).abs() < 1e-6);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_poisson_example() {
|
|
||||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
|
||||||
let pmf = poisson_pmf(3.0, k);
|
|
||||||
assert!((pmf.get(0, 1) - 3.0_f64 * (-3.0_f64).exp()).abs() < 1e-6);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,26 +1,11 @@
|
|||||||
//! Conway's Game of Life Example
|
use rand::{self, Rng};
|
||||||
//! This example implements Conway's Game of Life using a `BoolMatrix` to represent the game board.
|
|
||||||
//! It demonstrates matrix operations like shifting, counting neighbors, and applying game rules.
|
|
||||||
//! The game runs in a loop, updating the board state and printing it to the console.
|
|
||||||
//! To modify the behaviour of the example, please change the constants at the top of this file.
|
|
||||||
//! By default,
|
|
||||||
|
|
||||||
use rustframe::matrix::{BoolMatrix, BoolOps, IntMatrix, Matrix};
|
use rustframe::matrix::{BoolMatrix, BoolOps, IntMatrix, Matrix};
|
||||||
use rustframe::random::{rng, Rng};
|
|
||||||
use std::{thread, time};
|
use std::{thread, time};
|
||||||
|
|
||||||
const BOARD_SIZE: usize = 20; // Size of the board (50x50)
|
const BOARD_SIZE: usize = 50; // Size of the board (50x50)
|
||||||
const MAX_FRAMES: u32 = 1000;
|
const TICK_DURATION_MS: u64 = 10; // Milliseconds per frame
|
||||||
|
|
||||||
const TICK_DURATION_MS: u64 = 0; // Milliseconds per frame
|
|
||||||
const SKIP_FRAMES: u32 = 1;
|
|
||||||
const PRINT_BOARD: bool = true; // Set to false to disable printing the board
|
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
let args = std::env::args().collect::<Vec<String>>();
|
|
||||||
let debug_mode = args.contains(&"--debug".to_string());
|
|
||||||
let print_mode = if debug_mode { false } else { PRINT_BOARD };
|
|
||||||
|
|
||||||
// Initialize the game board.
|
// Initialize the game board.
|
||||||
// This demonstrates `BoolMatrix::from_vec`.
|
// This demonstrates `BoolMatrix::from_vec`.
|
||||||
let mut current_board =
|
let mut current_board =
|
||||||
@ -39,12 +24,20 @@ fn main() {
|
|||||||
let mut print_bool_int = 0;
|
let mut print_bool_int = 0;
|
||||||
|
|
||||||
loop {
|
loop {
|
||||||
// if print_board_bool {
|
// print!("{}[2J", 27 as char); // Clear screen and move cursor to top-left
|
||||||
if print_bool_int % SKIP_FRAMES == 0 {
|
|
||||||
print_board(¤t_board, generation_count, print_mode);
|
|
||||||
|
|
||||||
|
// if print_board_bool {
|
||||||
|
if print_bool_int % 10 == 0 {
|
||||||
|
print!("{}[2J", 27 as char);
|
||||||
|
println!("Conway's Game of Life - Generation: {}", generation_count);
|
||||||
|
|
||||||
|
print_board(¤t_board);
|
||||||
|
println!("Alive cells: {}", ¤t_board.count());
|
||||||
|
|
||||||
|
// print_board_bool = false;
|
||||||
print_bool_int = 0;
|
print_bool_int = 0;
|
||||||
} else {
|
} else {
|
||||||
|
// print_board_bool = true;
|
||||||
print_bool_int += 1;
|
print_bool_int += 1;
|
||||||
}
|
}
|
||||||
// `current_board.count()` demonstrates a method from `BoolOps`.
|
// `current_board.count()` demonstrates a method from `BoolOps`.
|
||||||
@ -78,10 +71,10 @@ fn main() {
|
|||||||
generation_count += 1;
|
generation_count += 1;
|
||||||
thread::sleep(time::Duration::from_millis(TICK_DURATION_MS));
|
thread::sleep(time::Duration::from_millis(TICK_DURATION_MS));
|
||||||
|
|
||||||
if (MAX_FRAMES > 0) && (generation_count > MAX_FRAMES) {
|
// if generation_count > 500 { // Optional limit
|
||||||
println!("\nReached generation limit.");
|
// println!("\nReached generation limit.");
|
||||||
break;
|
// break;
|
||||||
}
|
// }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -89,13 +82,7 @@ fn main() {
|
|||||||
///
|
///
|
||||||
/// - `board`: A reference to the `BoolMatrix` representing the current game state.
|
/// - `board`: A reference to the `BoolMatrix` representing the current game state.
|
||||||
/// This function demonstrates `board.rows()`, `board.cols()`, and `board[(r, c)]` (Index trait).
|
/// This function demonstrates `board.rows()`, `board.cols()`, and `board[(r, c)]` (Index trait).
|
||||||
fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
|
fn print_board(board: &BoolMatrix) {
|
||||||
if !print_mode {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
print!("{}[2J", 27 as char);
|
|
||||||
println!("Conway's Game of Life - Generation: {}", generation_count);
|
|
||||||
let mut print_str = String::new();
|
let mut print_str = String::new();
|
||||||
print_str.push_str("+");
|
print_str.push_str("+");
|
||||||
for _ in 0..board.cols() {
|
for _ in 0..board.cols() {
|
||||||
@ -120,8 +107,6 @@ fn print_board(board: &BoolMatrix, generation_count: u32, print_mode: bool) {
|
|||||||
}
|
}
|
||||||
print_str.push_str("+\n\n");
|
print_str.push_str("+\n\n");
|
||||||
print!("{}", print_str);
|
print!("{}", print_str);
|
||||||
|
|
||||||
println!("Alive cells: {}", board.count());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Helper function to create a shifted version of the game board.
|
/// Helper function to create a shifted version of the game board.
|
||||||
@ -265,7 +250,7 @@ pub fn generate_glider(board: &mut BoolMatrix, board_size: usize) {
|
|||||||
// Initialize with a Glider pattern.
|
// Initialize with a Glider pattern.
|
||||||
// It demonstrates how to set specific cells in the matrix.
|
// It demonstrates how to set specific cells in the matrix.
|
||||||
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
||||||
let mut rng = rng();
|
let mut rng = rand::rng();
|
||||||
let r_offset = rng.random_range(0..(board_size - 3));
|
let r_offset = rng.random_range(0..(board_size - 3));
|
||||||
let c_offset = rng.random_range(0..(board_size - 3));
|
let c_offset = rng.random_range(0..(board_size - 3));
|
||||||
if board.rows() >= r_offset + 3 && board.cols() >= c_offset + 3 {
|
if board.rows() >= r_offset + 3 && board.cols() >= c_offset + 3 {
|
||||||
@ -281,7 +266,7 @@ pub fn generate_pulsar(board: &mut BoolMatrix, board_size: usize) {
|
|||||||
// Initialize with a Pulsar pattern.
|
// Initialize with a Pulsar pattern.
|
||||||
// This demonstrates how to set specific cells in the matrix.
|
// This demonstrates how to set specific cells in the matrix.
|
||||||
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
// This demonstrates `IndexMut` for `current_board[(r, c)] = true;`.
|
||||||
let mut rng = rng();
|
let mut rng = rand::rng();
|
||||||
let r_offset = rng.random_range(0..(board_size - 17));
|
let r_offset = rng.random_range(0..(board_size - 17));
|
||||||
let c_offset = rng.random_range(0..(board_size - 17));
|
let c_offset = rng.random_range(0..(board_size - 17));
|
||||||
if board.rows() >= r_offset + 17 && board.cols() >= c_offset + 17 {
|
if board.rows() >= r_offset + 17 && board.cols() >= c_offset + 17 {
|
||||||
|
@ -1,66 +0,0 @@
|
|||||||
use rustframe::compute::stats::{anova, chi2_test, t_test};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
/// Demonstrates simple inferential statistics tests.
|
|
||||||
fn main() {
|
|
||||||
t_test_demo();
|
|
||||||
println!("\n-----\n");
|
|
||||||
chi2_demo();
|
|
||||||
println!("\n-----\n");
|
|
||||||
anova_demo();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn t_test_demo() {
|
|
||||||
println!("Two-sample t-test\n-----------------");
|
|
||||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
let b = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
|
||||||
let (t, p) = t_test(&a, &b);
|
|
||||||
println!("t statistic: {:.2}, p-value: {:.4}", t, p);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn chi2_demo() {
|
|
||||||
println!("Chi-square test\n---------------");
|
|
||||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
|
||||||
let (chi2, p) = chi2_test(&observed);
|
|
||||||
println!("chi^2: {:.2}, p-value: {:.4}", chi2, p);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn anova_demo() {
|
|
||||||
println!("One-way ANOVA\n-------------");
|
|
||||||
let g1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
|
||||||
let g2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
|
||||||
let g3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
|
||||||
let (f, p) = anova(vec![&g1, &g2, &g3]);
|
|
||||||
println!("F statistic: {:.2}, p-value: {:.4}", f, p);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_t_test_demo() {
|
|
||||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
let b = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
|
||||||
let (t, _p) = t_test(&a, &b);
|
|
||||||
assert!((t + 5.0).abs() < 1e-5);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_chi2_demo() {
|
|
||||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
|
||||||
let (chi2, p) = chi2_test(&observed);
|
|
||||||
assert!(chi2 > 0.0);
|
|
||||||
assert!(p > 0.0 && p < 1.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_anova_demo() {
|
|
||||||
let g1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
|
||||||
let g2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
|
||||||
let g3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
|
||||||
let (f, p) = anova(vec![&g1, &g2, &g3]);
|
|
||||||
assert!(f > 0.0);
|
|
||||||
assert!(p > 0.0 && p < 1.0);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,65 +0,0 @@
|
|||||||
use rustframe::compute::models::k_means::KMeans;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
/// Two quick K-Means clustering demos.
|
|
||||||
///
|
|
||||||
/// Example 1 groups store locations on a city map.
|
|
||||||
/// Example 2 segments customers by annual spending habits.
|
|
||||||
fn main() {
|
|
||||||
city_store_example();
|
|
||||||
println!("\n-----\n");
|
|
||||||
customer_spend_example();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn city_store_example() {
|
|
||||||
println!("Example 1: store locations");
|
|
||||||
|
|
||||||
// (x, y) coordinates of stores around a city
|
|
||||||
let raw = vec![
|
|
||||||
1.0, 2.0, 1.5, 1.8, 5.0, 8.0, 8.0, 8.0, 1.0, 0.6, 9.0, 11.0, 8.0, 2.0, 10.0, 2.0, 9.0, 3.0,
|
|
||||||
];
|
|
||||||
let x = Matrix::from_rows_vec(raw, 9, 2);
|
|
||||||
|
|
||||||
// Group stores into two areas
|
|
||||||
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
|
||||||
|
|
||||||
println!("Centres: {:?}", model.centroids.data());
|
|
||||||
println!("Labels: {:?}", labels);
|
|
||||||
|
|
||||||
let new_points = Matrix::from_rows_vec(vec![0.0, 0.0, 8.0, 3.0], 2, 2);
|
|
||||||
let pred = model.predict(&new_points);
|
|
||||||
println!("New store assignments: {:?}", pred);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn customer_spend_example() {
|
|
||||||
println!("Example 2: customer spending");
|
|
||||||
|
|
||||||
// (grocery spend, electronics spend) in dollars
|
|
||||||
let raw = vec![
|
|
||||||
200.0, 150.0, 220.0, 170.0, 250.0, 160.0, 800.0, 750.0, 820.0, 760.0, 790.0, 770.0,
|
|
||||||
];
|
|
||||||
let x = Matrix::from_rows_vec(raw, 6, 2);
|
|
||||||
|
|
||||||
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
|
||||||
|
|
||||||
println!("Centres: {:?}", model.centroids.data());
|
|
||||||
println!("Labels: {:?}", labels);
|
|
||||||
|
|
||||||
let new_customers = Matrix::from_rows_vec(vec![230.0, 155.0, 810.0, 760.0], 2, 2);
|
|
||||||
let pred = model.predict(&new_customers);
|
|
||||||
println!("Cluster of new customers: {:?}", pred);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn k_means_store_locations() {
|
|
||||||
let raw = vec![
|
|
||||||
1.0, 2.0, 1.5, 1.8, 5.0, 8.0, 8.0, 8.0, 1.0, 0.6, 9.0, 11.0, 8.0, 2.0, 10.0, 2.0, 9.0, 3.0,
|
|
||||||
];
|
|
||||||
let x = Matrix::from_rows_vec(raw, 9, 2);
|
|
||||||
let (model, labels) = KMeans::fit(&x, 2, 100, 1e-4);
|
|
||||||
assert_eq!(labels.len(), 9);
|
|
||||||
assert_eq!(model.centroids.rows(), 2);
|
|
||||||
let new_points = Matrix::from_rows_vec(vec![0.0, 0.0, 8.0, 3.0], 2, 2);
|
|
||||||
let pred = model.predict(&new_points);
|
|
||||||
assert_eq!(pred.len(), 2);
|
|
||||||
}
|
|
@ -1,118 +0,0 @@
|
|||||||
use rustframe::compute::models::linreg::LinReg;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
/// Two quick linear regression demonstrations.
|
|
||||||
///
|
|
||||||
/// Example 1 fits a model to predict house price from floor area.
|
|
||||||
/// Example 2 adds number of bedrooms as a second feature.
|
|
||||||
fn main() {
|
|
||||||
example_one_feature();
|
|
||||||
println!("\n-----\n");
|
|
||||||
example_two_features();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Price ~ floor area
|
|
||||||
fn example_one_feature() {
|
|
||||||
println!("Example 1: predict price from floor area only");
|
|
||||||
|
|
||||||
// Square meters of floor area for a few houses
|
|
||||||
let sizes = vec![50.0, 60.0, 70.0, 80.0, 90.0, 100.0];
|
|
||||||
// Thousands of dollars in sale price
|
|
||||||
let prices = vec![150.0, 180.0, 210.0, 240.0, 270.0, 300.0];
|
|
||||||
|
|
||||||
// Each row is a sample with one feature
|
|
||||||
let x = Matrix::from_vec(sizes.clone(), sizes.len(), 1);
|
|
||||||
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
|
||||||
|
|
||||||
// Train with a small learning rate
|
|
||||||
let mut model = LinReg::new(1);
|
|
||||||
model.fit(&x, &y, 0.0005, 20000);
|
|
||||||
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
println!("Size (m^2) -> predicted price (k) vs actual");
|
|
||||||
for i in 0..x.rows() {
|
|
||||||
println!(
|
|
||||||
"{:>3} -> {:>6.1} | {:>6.1}",
|
|
||||||
sizes[i],
|
|
||||||
preds[(i, 0)],
|
|
||||||
prices[i]
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
let new_house = Matrix::from_vec(vec![120.0], 1, 1);
|
|
||||||
let pred = model.predict(&new_house);
|
|
||||||
println!("Predicted price for 120 m^2: {:.1}k", pred[(0, 0)]);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Price ~ floor area + bedrooms
|
|
||||||
fn example_two_features() {
|
|
||||||
println!("Example 2: price from area and bedrooms");
|
|
||||||
|
|
||||||
// (size m^2, bedrooms) for each house
|
|
||||||
let raw_x = vec![
|
|
||||||
50.0, 2.0, 70.0, 2.0, 90.0, 3.0, 110.0, 3.0, 130.0, 4.0, 150.0, 4.0,
|
|
||||||
];
|
|
||||||
let prices = vec![160.0, 195.0, 250.0, 285.0, 320.0, 350.0];
|
|
||||||
|
|
||||||
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
|
||||||
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
|
||||||
|
|
||||||
let mut model = LinReg::new(2);
|
|
||||||
model.fit(&x, &y, 0.0001, 50000);
|
|
||||||
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
println!("size, beds -> predicted | actual (k)");
|
|
||||||
for i in 0..x.rows() {
|
|
||||||
let size = x[(i, 0)];
|
|
||||||
let beds = x[(i, 1)];
|
|
||||||
println!(
|
|
||||||
"{:>3} m^2, {:>1} -> {:>6.1} | {:>6.1}",
|
|
||||||
size,
|
|
||||||
beds,
|
|
||||||
preds[(i, 0)],
|
|
||||||
prices[i]
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
let new_home = Matrix::from_rows_vec(vec![120.0, 3.0], 1, 2);
|
|
||||||
let pred = model.predict(&new_home);
|
|
||||||
println!(
|
|
||||||
"Predicted price for 120 m^2 with 3 bedrooms: {:.1}k",
|
|
||||||
pred[(0, 0)]
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_linear_regression_one_feature() {
|
|
||||||
let sizes = vec![50.0, 60.0, 70.0, 80.0, 90.0, 100.0];
|
|
||||||
let prices = vec![150.0, 180.0, 210.0, 240.0, 270.0, 300.0];
|
|
||||||
let scaled: Vec<f64> = sizes.iter().map(|s| s / 100.0).collect();
|
|
||||||
let x = Matrix::from_vec(scaled, sizes.len(), 1);
|
|
||||||
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
|
||||||
let mut model = LinReg::new(1);
|
|
||||||
model.fit(&x, &y, 0.1, 2000);
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
for i in 0..y.rows() {
|
|
||||||
assert!((preds[(i, 0)] - prices[i]).abs() < 1.0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_linear_regression_two_features() {
|
|
||||||
let raw_x = vec![
|
|
||||||
50.0, 2.0, 70.0, 2.0, 90.0, 3.0, 110.0, 3.0, 130.0, 4.0, 150.0, 4.0,
|
|
||||||
];
|
|
||||||
let prices = vec![170.0, 210.0, 270.0, 310.0, 370.0, 410.0];
|
|
||||||
let scaled_x: Vec<f64> = raw_x
|
|
||||||
.chunks(2)
|
|
||||||
.flat_map(|pair| vec![pair[0] / 100.0, pair[1]])
|
|
||||||
.collect();
|
|
||||||
let x = Matrix::from_rows_vec(scaled_x, 6, 2);
|
|
||||||
let y = Matrix::from_vec(prices.clone(), prices.len(), 1);
|
|
||||||
let mut model = LinReg::new(2);
|
|
||||||
model.fit(&x, &y, 0.01, 50000);
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
for i in 0..y.rows() {
|
|
||||||
assert!((preds[(i, 0)] - prices[i]).abs() < 1.0);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,101 +0,0 @@
|
|||||||
use rustframe::compute::models::logreg::LogReg;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
/// Two binary classification demos using logistic regression.
|
|
||||||
///
|
|
||||||
/// Example 1 predicts exam success from hours studied.
|
|
||||||
/// Example 2 predicts whether an online shopper will make a purchase.
|
|
||||||
fn main() {
|
|
||||||
student_passing_example();
|
|
||||||
println!("\n-----\n");
|
|
||||||
purchase_prediction_example();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn student_passing_example() {
|
|
||||||
println!("Example 1: exam pass prediction");
|
|
||||||
|
|
||||||
// Hours studied for each student
|
|
||||||
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
|
|
||||||
// 0 = fail, 1 = pass
|
|
||||||
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
|
|
||||||
|
|
||||||
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
|
|
||||||
let y = Matrix::from_vec(passed.clone(), passed.len(), 1);
|
|
||||||
|
|
||||||
let mut model = LogReg::new(1);
|
|
||||||
model.fit(&x, &y, 0.1, 10000);
|
|
||||||
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
println!("Hours -> pred | actual");
|
|
||||||
for i in 0..x.rows() {
|
|
||||||
println!(
|
|
||||||
"{:>2} -> {} | {}",
|
|
||||||
hours[i] as i32,
|
|
||||||
preds[(i, 0)] as i32,
|
|
||||||
passed[i] as i32
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Probability estimate for a new student
|
|
||||||
let new_student = Matrix::from_vec(vec![5.5], 1, 1);
|
|
||||||
let p = model.predict_proba(&new_student);
|
|
||||||
println!("Probability of passing with 5.5h study: {:.2}", p[(0, 0)]);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn purchase_prediction_example() {
|
|
||||||
println!("Example 2: purchase likelihood");
|
|
||||||
|
|
||||||
// minutes on site, pages viewed -> made a purchase?
|
|
||||||
let raw_x = vec![1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 5.0, 5.0, 3.5, 2.0, 6.0, 6.0];
|
|
||||||
let bought = vec![0.0, 0.0, 0.0, 1.0, 0.0, 1.0];
|
|
||||||
|
|
||||||
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
|
||||||
let y = Matrix::from_vec(bought.clone(), bought.len(), 1);
|
|
||||||
|
|
||||||
let mut model = LogReg::new(2);
|
|
||||||
model.fit(&x, &y, 0.05, 20000);
|
|
||||||
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
println!("time, pages -> pred | actual");
|
|
||||||
for i in 0..x.rows() {
|
|
||||||
println!(
|
|
||||||
"{:>4}m, {:>2} -> {} | {}",
|
|
||||||
x[(i, 0)],
|
|
||||||
x[(i, 1)] as i32,
|
|
||||||
preds[(i, 0)] as i32,
|
|
||||||
bought[i] as i32
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
let new_visit = Matrix::from_rows_vec(vec![4.0, 4.0], 1, 2);
|
|
||||||
let p = model.predict_proba(&new_visit);
|
|
||||||
println!("Prob of purchase for 4min/4pages: {:.2}", p[(0, 0)]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_student_passing_example() {
|
|
||||||
let hours = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
|
|
||||||
let passed = vec![0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0];
|
|
||||||
let x = Matrix::from_vec(hours.clone(), hours.len(), 1);
|
|
||||||
let y = Matrix::from_vec(passed.clone(), passed.len(), 1);
|
|
||||||
let mut model = LogReg::new(1);
|
|
||||||
model.fit(&x, &y, 0.1, 10000);
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
for i in 0..y.rows() {
|
|
||||||
assert_eq!(preds[(i, 0)], passed[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_purchase_prediction_example() {
|
|
||||||
let raw_x = vec![1.0, 2.0, 3.0, 1.0, 2.0, 4.0, 5.0, 5.0, 3.5, 2.0, 6.0, 6.0];
|
|
||||||
let bought = vec![0.0, 0.0, 0.0, 1.0, 0.0, 1.0];
|
|
||||||
let x = Matrix::from_rows_vec(raw_x, 6, 2);
|
|
||||||
let y = Matrix::from_vec(bought.clone(), bought.len(), 1);
|
|
||||||
let mut model = LogReg::new(2);
|
|
||||||
model.fit(&x, &y, 0.05, 20000);
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
for i in 0..y.rows() {
|
|
||||||
assert_eq!(preds[(i, 0)], bought[i]);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,60 +0,0 @@
|
|||||||
use rustframe::compute::models::pca::PCA;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
/// Two dimensionality reduction examples using PCA.
|
|
||||||
///
|
|
||||||
/// Example 1 reduces 3D sensor readings to two components.
|
|
||||||
/// Example 2 compresses a small four-feature dataset.
|
|
||||||
fn main() {
|
|
||||||
sensor_demo();
|
|
||||||
println!("\n-----\n");
|
|
||||||
finance_demo();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn sensor_demo() {
|
|
||||||
println!("Example 1: 3D sensor data");
|
|
||||||
|
|
||||||
// Ten 3D observations from an accelerometer
|
|
||||||
let raw = vec![
|
|
||||||
2.5, 2.4, 0.5, 0.5, 0.7, 1.5, 2.2, 2.9, 0.7, 1.9, 2.2, 1.0, 3.1, 3.0, 0.6, 2.3, 2.7, 0.9,
|
|
||||||
2.0, 1.6, 1.1, 1.0, 1.1, 1.9, 1.5, 1.6, 2.2, 1.1, 0.9, 2.1,
|
|
||||||
];
|
|
||||||
let x = Matrix::from_rows_vec(raw, 10, 3);
|
|
||||||
|
|
||||||
let pca = PCA::fit(&x, 2, 0);
|
|
||||||
let reduced = pca.transform(&x);
|
|
||||||
|
|
||||||
println!("Components: {:?}", pca.components.data());
|
|
||||||
println!("First row -> {:.2?}", [reduced[(0, 0)], reduced[(0, 1)]]);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn finance_demo() {
|
|
||||||
println!("Example 2: 4D finance data");
|
|
||||||
|
|
||||||
// Four daily percentage returns of different stocks
|
|
||||||
let raw = vec![
|
|
||||||
0.2, 0.1, -0.1, 0.0, 0.3, 0.2, -0.2, 0.1, 0.1, 0.0, -0.1, -0.1, 0.4, 0.3, -0.3, 0.2, 0.0,
|
|
||||||
-0.1, 0.1, -0.1,
|
|
||||||
];
|
|
||||||
let x = Matrix::from_rows_vec(raw, 5, 4);
|
|
||||||
|
|
||||||
// Keep two principal components
|
|
||||||
let pca = PCA::fit(&x, 2, 0);
|
|
||||||
let reduced = pca.transform(&x);
|
|
||||||
|
|
||||||
println!("Reduced shape: {:?}", reduced.shape());
|
|
||||||
println!("First row -> {:.2?}", [reduced[(0, 0)], reduced[(0, 1)]]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_sensor_demo() {
|
|
||||||
let raw = vec![
|
|
||||||
2.5, 2.4, 0.5, 0.5, 0.7, 1.5, 2.2, 2.9, 0.7, 1.9, 2.2, 1.0, 3.1, 3.0, 0.6, 2.3, 2.7, 0.9,
|
|
||||||
2.0, 1.6, 1.1, 1.0, 1.1, 1.9, 1.5, 1.6, 2.2, 1.1, 0.9, 2.1,
|
|
||||||
];
|
|
||||||
let x = Matrix::from_rows_vec(raw, 10, 3);
|
|
||||||
let pca = PCA::fit(&x, 2, 0);
|
|
||||||
let reduced = pca.transform(&x);
|
|
||||||
assert_eq!(reduced.rows(), 10);
|
|
||||||
assert_eq!(reduced.cols(), 2);
|
|
||||||
}
|
|
@ -1,67 +0,0 @@
|
|||||||
use rustframe::random::{crypto_rng, rng, Rng, SliceRandom};
|
|
||||||
|
|
||||||
/// Demonstrates basic usage of the random number generators.
|
|
||||||
///
|
|
||||||
/// It showcases uniform ranges, booleans, normal distribution,
|
|
||||||
/// shuffling and the cryptographically secure generator.
|
|
||||||
fn main() {
|
|
||||||
basic_usage();
|
|
||||||
println!("\n-----\n");
|
|
||||||
normal_demo();
|
|
||||||
println!("\n-----\n");
|
|
||||||
shuffle_demo();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn basic_usage() {
|
|
||||||
println!("Basic PRNG usage\n----------------");
|
|
||||||
let mut prng = rng();
|
|
||||||
println!("random u64 : {}", prng.next_u64());
|
|
||||||
println!("range [10,20): {}", prng.random_range(10..20));
|
|
||||||
println!("bool : {}", prng.gen_bool());
|
|
||||||
}
|
|
||||||
|
|
||||||
fn normal_demo() {
|
|
||||||
println!("Normal distribution\n-------------------");
|
|
||||||
let mut prng = rng();
|
|
||||||
for _ in 0..3 {
|
|
||||||
let v = prng.normal(0.0, 1.0);
|
|
||||||
println!("sample: {:.3}", v);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn shuffle_demo() {
|
|
||||||
println!("Slice shuffling\n----------------");
|
|
||||||
let mut prng = rng();
|
|
||||||
let mut data = [1, 2, 3, 4, 5];
|
|
||||||
data.shuffle(&mut prng);
|
|
||||||
println!("shuffled: {:?}", data);
|
|
||||||
|
|
||||||
let mut secure = crypto_rng();
|
|
||||||
let byte = secure.random_range(0..256usize);
|
|
||||||
println!("crypto byte: {}", byte);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
use rustframe::random::{CryptoRng, Prng};
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_basic_usage_range_bounds() {
|
|
||||||
let mut rng = Prng::new(1);
|
|
||||||
for _ in 0..50 {
|
|
||||||
let v = rng.random_range(5..10);
|
|
||||||
assert!(v >= 5 && v < 10);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_byte_bounds() {
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
for _ in 0..50 {
|
|
||||||
let v = rng.random_range(0..256usize);
|
|
||||||
assert!(v < 256);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
@ -1,57 +0,0 @@
|
|||||||
use rustframe::random::{crypto_rng, rng, Rng};
|
|
||||||
|
|
||||||
/// Demonstrates simple statistical checks on random number generators.
|
|
||||||
fn main() {
|
|
||||||
chi_square_demo();
|
|
||||||
println!("\n-----\n");
|
|
||||||
monobit_demo();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn chi_square_demo() {
|
|
||||||
println!("Chi-square test on PRNG");
|
|
||||||
let mut rng = rng();
|
|
||||||
let mut counts = [0usize; 10];
|
|
||||||
let samples = 10000;
|
|
||||||
for _ in 0..samples {
|
|
||||||
let v = rng.random_range(0..10usize);
|
|
||||||
counts[v] += 1;
|
|
||||||
}
|
|
||||||
let expected = samples as f64 / 10.0;
|
|
||||||
let chi2: f64 = counts
|
|
||||||
.iter()
|
|
||||||
.map(|&c| {
|
|
||||||
let diff = c as f64 - expected;
|
|
||||||
diff * diff / expected
|
|
||||||
})
|
|
||||||
.sum();
|
|
||||||
println!("counts: {:?}", counts);
|
|
||||||
println!("chi-square: {:.3}", chi2);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn monobit_demo() {
|
|
||||||
println!("Monobit test on crypto RNG");
|
|
||||||
let mut rng = crypto_rng();
|
|
||||||
let mut ones = 0usize;
|
|
||||||
let samples = 1000;
|
|
||||||
for _ in 0..samples {
|
|
||||||
ones += rng.next_u64().count_ones() as usize;
|
|
||||||
}
|
|
||||||
let ratio = ones as f64 / (samples as f64 * 64.0);
|
|
||||||
println!("ones ratio: {:.4}", ratio);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_chi_square_demo_runs() {
|
|
||||||
chi_square_demo();
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_monobit_demo_runs() {
|
|
||||||
monobit_demo();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
@ -1,93 +0,0 @@
|
|||||||
use rustframe::compute::stats::{
|
|
||||||
chi2_test, covariance, covariance_matrix, mean, median, pearson, percentile, stddev, t_test,
|
|
||||||
};
|
|
||||||
use rustframe::matrix::{Axis, Matrix};
|
|
||||||
|
|
||||||
/// Demonstrates some of the statistics utilities in Rustframe.
|
|
||||||
///
|
|
||||||
/// The example is split into three parts:
|
|
||||||
/// 1. Basic descriptive statistics on a small data set.
|
|
||||||
/// 2. Covariance and correlation calculations.
|
|
||||||
/// 3. Simple inferential tests (t-test and chi-square).
|
|
||||||
fn main() {
|
|
||||||
descriptive_demo();
|
|
||||||
println!("\n-----\n");
|
|
||||||
correlation_demo();
|
|
||||||
println!("\n-----\n");
|
|
||||||
inferential_demo();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn descriptive_demo() {
|
|
||||||
println!("Descriptive statistics\n----------------------");
|
|
||||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
println!("mean : {:.2}", mean(&data));
|
|
||||||
println!("std dev : {:.2}", stddev(&data));
|
|
||||||
println!("median : {:.2}", median(&data));
|
|
||||||
println!("25th percentile: {:.2}", percentile(&data, 25.0));
|
|
||||||
}
|
|
||||||
|
|
||||||
fn correlation_demo() {
|
|
||||||
println!("Covariance and Correlation\n--------------------------");
|
|
||||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let y = Matrix::from_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
|
||||||
let cov = covariance(&x, &y);
|
|
||||||
let cov_mat = covariance_matrix(&x, Axis::Col);
|
|
||||||
let corr = pearson(&x, &y);
|
|
||||||
println!("covariance : {:.2}", cov);
|
|
||||||
println!("cov matrix : {:?}", cov_mat.data());
|
|
||||||
println!("pearson r : {:.2}", corr);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn inferential_demo() {
|
|
||||||
println!("Inferential statistics\n----------------------");
|
|
||||||
let s1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
let s2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
|
||||||
let (t_stat, t_p) = t_test(&s1, &s2);
|
|
||||||
println!("t statistic : {:.2}, p-value: {:.4}", t_stat, t_p);
|
|
||||||
|
|
||||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
|
||||||
let (chi2, chi_p) = chi2_test(&observed);
|
|
||||||
println!("chi^2 : {:.2}, p-value: {:.4}", chi2, chi_p);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
const EPS: f64 = 1e-8;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_descriptive_demo() {
|
|
||||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
assert!((mean(&data) - 3.0).abs() < EPS);
|
|
||||||
assert!((stddev(&data) - 1.4142135623730951).abs() < EPS);
|
|
||||||
assert!((median(&data) - 3.0).abs() < EPS);
|
|
||||||
assert!((percentile(&data, 25.0) - 2.0).abs() < EPS);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_correlation_demo() {
|
|
||||||
let x = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let y = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 5.0], 2, 2);
|
|
||||||
let cov = covariance(&x, &y);
|
|
||||||
assert!((cov - 1.625).abs() < EPS);
|
|
||||||
let cov_mat = covariance_matrix(&x, Axis::Col);
|
|
||||||
assert!((cov_mat.get(0, 0) - 2.0).abs() < EPS);
|
|
||||||
assert!((cov_mat.get(1, 1) - 2.0).abs() < EPS);
|
|
||||||
let corr = pearson(&x, &y);
|
|
||||||
assert!((corr - 0.9827076298239908).abs() < 1e-6);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_inferential_demo() {
|
|
||||||
let s1 = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
let s2 = Matrix::from_rows_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
|
||||||
let (t_stat, p_value) = t_test(&s1, &s2);
|
|
||||||
assert!((t_stat + 5.0).abs() < 1e-5);
|
|
||||||
assert!(p_value > 0.0 && p_value < 1.0);
|
|
||||||
|
|
||||||
let observed = Matrix::from_rows_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
|
||||||
let (chi2, p) = chi2_test(&observed);
|
|
||||||
assert!(chi2 > 0.0);
|
|
||||||
assert!(p > 0.0 && p < 1.0);
|
|
||||||
}
|
|
||||||
}
|
|
@ -25,7 +25,6 @@ pub fn dleaky_relu(x: &Matrix<f64>) -> Matrix<f64> {
|
|||||||
x.map(|v| if v > 0.0 { 1.0 } else { 0.01 })
|
x.map(|v| if v > 0.0 { 1.0 } else { 0.01 })
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
mod tests {
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
use crate::compute::models::activations::{drelu, relu, sigmoid};
|
use crate::compute::models::activations::{drelu, relu, sigmoid};
|
||||||
use crate::matrix::{Matrix, SeriesOps};
|
use crate::matrix::{Matrix, SeriesOps};
|
||||||
use crate::random::prelude::*;
|
use rand::prelude::*;
|
||||||
|
|
||||||
/// Supported activation functions
|
/// Supported activation functions
|
||||||
#[derive(Clone)]
|
#[derive(Clone)]
|
||||||
@ -46,7 +46,7 @@ pub enum InitializerKind {
|
|||||||
|
|
||||||
impl InitializerKind {
|
impl InitializerKind {
|
||||||
pub fn initialize(&self, rows: usize, cols: usize) -> Matrix<f64> {
|
pub fn initialize(&self, rows: usize, cols: usize) -> Matrix<f64> {
|
||||||
let mut rng = rng();
|
let mut rng = rand::rng();
|
||||||
let fan_in = rows;
|
let fan_in = rows;
|
||||||
let fan_out = cols;
|
let fan_out = cols;
|
||||||
let limit = match self {
|
let limit = match self {
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
use crate::compute::stats::mean_vertical;
|
use crate::compute::stats::mean_vertical;
|
||||||
use crate::matrix::Matrix;
|
use crate::matrix::Matrix;
|
||||||
use crate::random::prelude::*;
|
use rand::rng;
|
||||||
|
use rand::seq::SliceRandom;
|
||||||
|
|
||||||
pub struct KMeans {
|
pub struct KMeans {
|
||||||
pub centroids: Matrix<f64>, // (k, n_features)
|
pub centroids: Matrix<f64>, // (k, n_features)
|
||||||
@ -192,8 +193,7 @@ mod tests {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// "Centroid {} (empty cluster) does not match any data point",c
|
assert!(matches_data_point, "Centroid {} (empty cluster) does not match any data point", c);
|
||||||
assert!(matches_data_point);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
@ -360,4 +360,5 @@ mod tests {
|
|||||||
assert_eq!(predicted_label.len(), 1);
|
assert_eq!(predicted_label.len(), 1);
|
||||||
assert!(predicted_label[0] < k);
|
assert!(predicted_label[0] < k);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -14,6 +14,3 @@ pub mod utils;
|
|||||||
|
|
||||||
/// Documentation for the [`crate::compute`] module.
|
/// Documentation for the [`crate::compute`] module.
|
||||||
pub mod compute;
|
pub mod compute;
|
||||||
|
|
||||||
/// Documentation for the [`crate::random`] module.
|
|
||||||
pub mod random;
|
|
||||||
|
@ -1,227 +0,0 @@
|
|||||||
#[cfg(unix)]
|
|
||||||
use std::{fs::File, io::Read};
|
|
||||||
|
|
||||||
use crate::random::Rng;
|
|
||||||
|
|
||||||
#[cfg(unix)]
|
|
||||||
pub struct CryptoRng {
|
|
||||||
file: File,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(unix)]
|
|
||||||
impl CryptoRng {
|
|
||||||
/// Open `/dev/urandom`.
|
|
||||||
pub fn new() -> Self {
|
|
||||||
let file = File::open("/dev/urandom").expect("failed to open /dev/urandom");
|
|
||||||
Self { file }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(unix)]
|
|
||||||
impl Rng for CryptoRng {
|
|
||||||
fn next_u64(&mut self) -> u64 {
|
|
||||||
let mut buf = [0u8; 8];
|
|
||||||
self.file
|
|
||||||
.read_exact(&mut buf)
|
|
||||||
.expect("failed reading from /dev/urandom");
|
|
||||||
u64::from_ne_bytes(buf)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(windows)]
|
|
||||||
pub struct CryptoRng;
|
|
||||||
|
|
||||||
#[cfg(windows)]
|
|
||||||
impl CryptoRng {
|
|
||||||
/// No handle is needed on Windows.
|
|
||||||
pub fn new() -> Self {
|
|
||||||
Self
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(windows)]
|
|
||||||
impl Rng for CryptoRng {
|
|
||||||
fn next_u64(&mut self) -> u64 {
|
|
||||||
let mut buf = [0u8; 8];
|
|
||||||
win_fill(&mut buf).expect("BCryptGenRandom failed");
|
|
||||||
u64::from_ne_bytes(buf)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Fill `buf` with cryptographically secure random bytes using CNG.
|
|
||||||
///
|
|
||||||
/// * `BCryptGenRandom(NULL, buf, len, BCRYPT_USE_SYSTEM_PREFERRED_RNG)`
|
|
||||||
/// asks the OS for its system‑preferred DRBG (CTR_DRBG on modern
|
|
||||||
/// Windows).
|
|
||||||
#[cfg(windows)]
|
|
||||||
fn win_fill(buf: &mut [u8]) -> Result<(), ()> {
|
|
||||||
use core::ffi::c_void;
|
|
||||||
|
|
||||||
type BcryptAlgHandle = *mut c_void;
|
|
||||||
type NTSTATUS = i32;
|
|
||||||
|
|
||||||
const BCRYPT_USE_SYSTEM_PREFERRED_RNG: u32 = 0x0000_0002;
|
|
||||||
|
|
||||||
#[link(name = "bcrypt")]
|
|
||||||
extern "system" {
|
|
||||||
fn BCryptGenRandom(
|
|
||||||
hAlgorithm: BcryptAlgHandle,
|
|
||||||
pbBuffer: *mut u8,
|
|
||||||
cbBuffer: u32,
|
|
||||||
dwFlags: u32,
|
|
||||||
) -> NTSTATUS;
|
|
||||||
}
|
|
||||||
|
|
||||||
// NT_SUCCESS(status) == status >= 0
|
|
||||||
let status = unsafe {
|
|
||||||
BCryptGenRandom(
|
|
||||||
core::ptr::null_mut(),
|
|
||||||
buf.as_mut_ptr(),
|
|
||||||
buf.len() as u32,
|
|
||||||
BCRYPT_USE_SYSTEM_PREFERRED_RNG,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
|
|
||||||
if status >= 0 {
|
|
||||||
Ok(())
|
|
||||||
} else {
|
|
||||||
Err(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience constructor for [`CryptoRng`].
|
|
||||||
pub fn crypto_rng() -> CryptoRng {
|
|
||||||
CryptoRng::new()
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
use crate::random::Rng;
|
|
||||||
use std::collections::HashSet;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_rng_nonzero() {
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
let mut all_same = true;
|
|
||||||
let mut prev = rng.next_u64();
|
|
||||||
for _ in 0..5 {
|
|
||||||
let val = rng.next_u64();
|
|
||||||
if val != prev {
|
|
||||||
all_same = false;
|
|
||||||
}
|
|
||||||
prev = val;
|
|
||||||
}
|
|
||||||
assert!(!all_same, "CryptoRng produced identical values");
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_rng_variation_large() {
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
let mut values = HashSet::new();
|
|
||||||
for _ in 0..100 {
|
|
||||||
values.insert(rng.next_u64());
|
|
||||||
}
|
|
||||||
assert!(values.len() > 90, "CryptoRng output not varied enough");
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_rng_random_range_uniform() {
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
let mut counts = [0usize; 10];
|
|
||||||
for _ in 0..1000 {
|
|
||||||
let v = rng.random_range(0..10usize);
|
|
||||||
counts[v] += 1;
|
|
||||||
}
|
|
||||||
for &c in &counts {
|
|
||||||
// "Crypto RNG counts far from uniform: {c}"
|
|
||||||
assert!((c as isize - 100).abs() < 50);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_normal_distribution() {
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
let mean = 0.0;
|
|
||||||
let sd = 1.0;
|
|
||||||
let n = 2000;
|
|
||||||
let mut sum = 0.0;
|
|
||||||
let mut sum_sq = 0.0;
|
|
||||||
for _ in 0..n {
|
|
||||||
let val = rng.normal(mean, sd);
|
|
||||||
sum += val;
|
|
||||||
sum_sq += val * val;
|
|
||||||
}
|
|
||||||
let sample_mean = sum / n as f64;
|
|
||||||
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
|
|
||||||
assert!(sample_mean.abs() < 0.1);
|
|
||||||
assert!((sample_var - 1.0).abs() < 0.2);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_two_instances_different_values() {
|
|
||||||
let mut a = CryptoRng::new();
|
|
||||||
let mut b = CryptoRng::new();
|
|
||||||
let va = a.next_u64();
|
|
||||||
let vb = b.next_u64();
|
|
||||||
assert_ne!(va, vb);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_rng_helper_function() {
|
|
||||||
let mut rng = crypto_rng();
|
|
||||||
let _ = rng.next_u64();
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_normal_zero_sd() {
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
for _ in 0..5 {
|
|
||||||
let v = rng.normal(10.0, 0.0);
|
|
||||||
assert_eq!(v, 10.0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_shuffle_empty_slice() {
|
|
||||||
use crate::random::SliceRandom;
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
let mut arr: [u8; 0] = [];
|
|
||||||
arr.shuffle(&mut rng);
|
|
||||||
assert!(arr.is_empty());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_chi_square_uniform() {
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
let mut counts = [0usize; 10];
|
|
||||||
let samples = 10000;
|
|
||||||
for _ in 0..samples {
|
|
||||||
let v = rng.random_range(0..10usize);
|
|
||||||
counts[v] += 1;
|
|
||||||
}
|
|
||||||
let expected = samples as f64 / 10.0;
|
|
||||||
let chi2: f64 = counts
|
|
||||||
.iter()
|
|
||||||
.map(|&c| {
|
|
||||||
let diff = c as f64 - expected;
|
|
||||||
diff * diff / expected
|
|
||||||
})
|
|
||||||
.sum();
|
|
||||||
assert!(chi2 < 40.0, "chi-square statistic too high: {chi2}");
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_crypto_monobit() {
|
|
||||||
let mut rng = CryptoRng::new();
|
|
||||||
let mut ones = 0usize;
|
|
||||||
let samples = 1000;
|
|
||||||
for _ in 0..samples {
|
|
||||||
ones += rng.next_u64().count_ones() as usize;
|
|
||||||
}
|
|
||||||
let total_bits = samples * 64;
|
|
||||||
let ratio = ones as f64 / total_bits as f64;
|
|
||||||
// "bit ratio far from 0.5: {ratio}"
|
|
||||||
assert!((ratio - 0.5).abs() < 0.02);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,14 +0,0 @@
|
|||||||
pub mod crypto;
|
|
||||||
pub mod prng;
|
|
||||||
pub mod random_core;
|
|
||||||
pub mod seq;
|
|
||||||
|
|
||||||
pub use crypto::{crypto_rng, CryptoRng};
|
|
||||||
pub use prng::{rng, Prng};
|
|
||||||
pub use random_core::{RangeSample, Rng};
|
|
||||||
pub use seq::SliceRandom;
|
|
||||||
|
|
||||||
pub mod prelude {
|
|
||||||
pub use super::seq::SliceRandom;
|
|
||||||
pub use super::{crypto_rng, rng, CryptoRng, Prng, RangeSample, Rng};
|
|
||||||
}
|
|
@ -1,227 +0,0 @@
|
|||||||
use std::time::{SystemTime, UNIX_EPOCH};
|
|
||||||
|
|
||||||
use crate::random::Rng;
|
|
||||||
|
|
||||||
/// Simple XorShift64-based pseudo random number generator.
|
|
||||||
#[derive(Clone)]
|
|
||||||
pub struct Prng {
|
|
||||||
state: u64,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Prng {
|
|
||||||
/// Create a new generator from the given seed.
|
|
||||||
pub fn new(seed: u64) -> Self {
|
|
||||||
Self { state: seed }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a generator seeded from the current time.
|
|
||||||
pub fn from_entropy() -> Self {
|
|
||||||
let nanos = SystemTime::now()
|
|
||||||
.duration_since(UNIX_EPOCH)
|
|
||||||
.unwrap()
|
|
||||||
.as_nanos() as u64;
|
|
||||||
Self::new(nanos)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Rng for Prng {
|
|
||||||
fn next_u64(&mut self) -> u64 {
|
|
||||||
let mut x = self.state;
|
|
||||||
x ^= x << 13;
|
|
||||||
x ^= x >> 7;
|
|
||||||
x ^= x << 17;
|
|
||||||
self.state = x;
|
|
||||||
x
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience constructor using system entropy.
|
|
||||||
pub fn rng() -> Prng {
|
|
||||||
Prng::from_entropy()
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
use crate::random::Rng;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_prng_determinism() {
|
|
||||||
let mut a = Prng::new(42);
|
|
||||||
let mut b = Prng::new(42);
|
|
||||||
for _ in 0..5 {
|
|
||||||
assert_eq!(a.next_u64(), b.next_u64());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_random_range_f64() {
|
|
||||||
let mut rng = Prng::new(1);
|
|
||||||
for _ in 0..10 {
|
|
||||||
let v = rng.random_range(-1.0..1.0);
|
|
||||||
assert!(v >= -1.0 && v < 1.0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_random_range_usize() {
|
|
||||||
let mut rng = Prng::new(9);
|
|
||||||
for _ in 0..100 {
|
|
||||||
let v = rng.random_range(10..20);
|
|
||||||
assert!(v >= 10 && v < 20);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_gen_bool_balance() {
|
|
||||||
let mut rng = Prng::new(123);
|
|
||||||
let mut trues = 0;
|
|
||||||
for _ in 0..1000 {
|
|
||||||
if rng.gen_bool() {
|
|
||||||
trues += 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
let ratio = trues as f64 / 1000.0;
|
|
||||||
assert!(ratio > 0.4 && ratio < 0.6);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_normal_distribution() {
|
|
||||||
let mut rng = Prng::new(7);
|
|
||||||
let mut sum = 0.0;
|
|
||||||
let mut sum_sq = 0.0;
|
|
||||||
let mean = 5.0;
|
|
||||||
let sd = 2.0;
|
|
||||||
let n = 5000;
|
|
||||||
for _ in 0..n {
|
|
||||||
let val = rng.normal(mean, sd);
|
|
||||||
sum += val;
|
|
||||||
sum_sq += val * val;
|
|
||||||
}
|
|
||||||
let sample_mean = sum / n as f64;
|
|
||||||
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
|
|
||||||
assert!((sample_mean - mean).abs() < 0.1);
|
|
||||||
assert!((sample_var - sd * sd).abs() < 0.2 * sd * sd);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_prng_from_entropy_unique() {
|
|
||||||
use std::{collections::HashSet, thread, time::Duration};
|
|
||||||
let mut seen = HashSet::new();
|
|
||||||
for _ in 0..5 {
|
|
||||||
let mut rng = Prng::from_entropy();
|
|
||||||
seen.insert(rng.next_u64());
|
|
||||||
thread::sleep(Duration::from_micros(1));
|
|
||||||
}
|
|
||||||
assert!(seen.len() > 1, "Entropy seeds produced identical outputs");
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_prng_uniform_distribution() {
|
|
||||||
let mut rng = Prng::new(12345);
|
|
||||||
let mut counts = [0usize; 10];
|
|
||||||
for _ in 0..10000 {
|
|
||||||
let v = rng.random_range(0..10usize);
|
|
||||||
counts[v] += 1;
|
|
||||||
}
|
|
||||||
for &c in &counts {
|
|
||||||
// "PRNG counts far from uniform: {c}"
|
|
||||||
assert!((c as isize - 1000).abs() < 150);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_prng_different_seeds_different_output() {
|
|
||||||
let mut a = Prng::new(1);
|
|
||||||
let mut b = Prng::new(2);
|
|
||||||
let va = a.next_u64();
|
|
||||||
let vb = b.next_u64();
|
|
||||||
assert_ne!(va, vb);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_prng_gen_bool_varies() {
|
|
||||||
let mut rng = Prng::new(99);
|
|
||||||
let mut seen_true = false;
|
|
||||||
let mut seen_false = false;
|
|
||||||
for _ in 0..100 {
|
|
||||||
if rng.gen_bool() {
|
|
||||||
seen_true = true;
|
|
||||||
} else {
|
|
||||||
seen_false = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
assert!(seen_true && seen_false);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_random_range_single_usize() {
|
|
||||||
let mut rng = Prng::new(42);
|
|
||||||
for _ in 0..10 {
|
|
||||||
let v = rng.random_range(5..6);
|
|
||||||
assert_eq!(v, 5);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_random_range_single_f64() {
|
|
||||||
let mut rng = Prng::new(42);
|
|
||||||
for _ in 0..10 {
|
|
||||||
let v = rng.random_range(1.234..1.235);
|
|
||||||
assert!(v >= 1.234 && v < 1.235);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_prng_normal_zero_sd() {
|
|
||||||
let mut rng = Prng::new(7);
|
|
||||||
for _ in 0..5 {
|
|
||||||
let v = rng.normal(3.0, 0.0);
|
|
||||||
assert_eq!(v, 3.0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_random_range_extreme_usize() {
|
|
||||||
let mut rng = Prng::new(5);
|
|
||||||
for _ in 0..10 {
|
|
||||||
let v = rng.random_range(0..usize::MAX);
|
|
||||||
assert!(v < usize::MAX);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_prng_chi_square_uniform() {
|
|
||||||
let mut rng = Prng::new(12345);
|
|
||||||
let mut counts = [0usize; 10];
|
|
||||||
let samples = 10000;
|
|
||||||
for _ in 0..samples {
|
|
||||||
let v = rng.random_range(0..10usize);
|
|
||||||
counts[v] += 1;
|
|
||||||
}
|
|
||||||
let expected = samples as f64 / 10.0;
|
|
||||||
let chi2: f64 = counts
|
|
||||||
.iter()
|
|
||||||
.map(|&c| {
|
|
||||||
let diff = c as f64 - expected;
|
|
||||||
diff * diff / expected
|
|
||||||
})
|
|
||||||
.sum();
|
|
||||||
// "chi-square statistic too high: {chi2}"
|
|
||||||
assert!(chi2 < 20.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_prng_monobit() {
|
|
||||||
let mut rng = Prng::new(42);
|
|
||||||
let mut ones = 0usize;
|
|
||||||
let samples = 1000;
|
|
||||||
for _ in 0..samples {
|
|
||||||
ones += rng.next_u64().count_ones() as usize;
|
|
||||||
}
|
|
||||||
let total_bits = samples * 64;
|
|
||||||
let ratio = ones as f64 / total_bits as f64;
|
|
||||||
// "bit ratio far from 0.5: {ratio}"
|
|
||||||
assert!((ratio - 0.5).abs() < 0.01);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,98 +0,0 @@
|
|||||||
use std::f64::consts::PI;
|
|
||||||
use std::ops::Range;
|
|
||||||
|
|
||||||
/// Trait implemented by random number generators.
|
|
||||||
pub trait Rng {
|
|
||||||
/// Generate the next random `u64` value.
|
|
||||||
fn next_u64(&mut self) -> u64;
|
|
||||||
|
|
||||||
/// Generate a value uniformly in the given range.
|
|
||||||
fn random_range<T>(&mut self, range: Range<T>) -> T
|
|
||||||
where
|
|
||||||
T: RangeSample,
|
|
||||||
{
|
|
||||||
T::from_u64(self.next_u64(), &range)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Generate a boolean with probability 0.5 of being `true`.
|
|
||||||
fn gen_bool(&mut self) -> bool {
|
|
||||||
self.random_range(0..2usize) == 1
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Sample from a normal distribution using the Box-Muller transform.
|
|
||||||
fn normal(&mut self, mean: f64, sd: f64) -> f64 {
|
|
||||||
let u1 = self.random_range(0.0..1.0);
|
|
||||||
let u2 = self.random_range(0.0..1.0);
|
|
||||||
mean + sd * (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Conversion from a raw `u64` into a type within a range.
|
|
||||||
pub trait RangeSample: Sized {
|
|
||||||
fn from_u64(value: u64, range: &Range<Self>) -> Self;
|
|
||||||
}
|
|
||||||
|
|
||||||
impl RangeSample for usize {
|
|
||||||
fn from_u64(value: u64, range: &Range<Self>) -> Self {
|
|
||||||
let span = range.end - range.start;
|
|
||||||
(value as usize % span) + range.start
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl RangeSample for f64 {
|
|
||||||
fn from_u64(value: u64, range: &Range<Self>) -> Self {
|
|
||||||
let span = range.end - range.start;
|
|
||||||
range.start + (value as f64 / u64::MAX as f64) * span
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_range_sample_usize_boundary() {
|
|
||||||
assert_eq!(<usize as RangeSample>::from_u64(0, &(0..1)), 0);
|
|
||||||
assert_eq!(<usize as RangeSample>::from_u64(u64::MAX, &(0..1)), 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_range_sample_f64_boundary() {
|
|
||||||
let v0 = <f64 as RangeSample>::from_u64(0, &(0.0..1.0));
|
|
||||||
let vmax = <f64 as RangeSample>::from_u64(u64::MAX, &(0.0..1.0));
|
|
||||||
assert!(v0 >= 0.0 && v0 < 1.0);
|
|
||||||
assert!(vmax > 0.999999999999 && vmax <= 1.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_range_sample_usize_varied() {
|
|
||||||
for i in 0..5 {
|
|
||||||
let v = <usize as RangeSample>::from_u64(i, &(10..15));
|
|
||||||
assert!(v >= 10 && v < 15);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_range_sample_f64_span() {
|
|
||||||
for val in [0, u64::MAX / 2, u64::MAX] {
|
|
||||||
let f = <f64 as RangeSample>::from_u64(val, &(2.0..4.0));
|
|
||||||
assert!(f >= 2.0 && f <= 4.0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_range_sample_usize_single_value() {
|
|
||||||
for val in [0, 1, u64::MAX] {
|
|
||||||
let n = <usize as RangeSample>::from_u64(val, &(5..6));
|
|
||||||
assert_eq!(n, 5);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_range_sample_f64_negative_range() {
|
|
||||||
for val in [0, u64::MAX / 3, u64::MAX] {
|
|
||||||
let f = <f64 as RangeSample>::from_u64(val, &(-2.0..2.0));
|
|
||||||
assert!(f >= -2.0 && f <= 2.0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,105 +0,0 @@
|
|||||||
use crate::random::Rng;
|
|
||||||
|
|
||||||
/// Trait for randomizing slices.
|
|
||||||
pub trait SliceRandom {
|
|
||||||
/// Shuffle the slice in place using the provided RNG.
|
|
||||||
fn shuffle<R: Rng>(&mut self, rng: &mut R);
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T> SliceRandom for [T] {
|
|
||||||
fn shuffle<R: Rng>(&mut self, rng: &mut R) {
|
|
||||||
for i in (1..self.len()).rev() {
|
|
||||||
let j = rng.random_range(0..(i + 1));
|
|
||||||
self.swap(i, j);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
use crate::random::{CryptoRng, Prng};
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_shuffle_slice() {
|
|
||||||
let mut rng = Prng::new(3);
|
|
||||||
let mut arr = [1, 2, 3, 4, 5];
|
|
||||||
let orig = arr.clone();
|
|
||||||
arr.shuffle(&mut rng);
|
|
||||||
assert_eq!(arr.len(), orig.len());
|
|
||||||
let mut sorted = arr.to_vec();
|
|
||||||
sorted.sort();
|
|
||||||
assert_eq!(sorted, orig.to_vec());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_slice_shuffle_deterministic_with_prng() {
|
|
||||||
let mut rng1 = Prng::new(11);
|
|
||||||
let mut rng2 = Prng::new(11);
|
|
||||||
let mut a = [1u8, 2, 3, 4, 5, 6, 7, 8, 9];
|
|
||||||
let mut b = a.clone();
|
|
||||||
a.shuffle(&mut rng1);
|
|
||||||
b.shuffle(&mut rng2);
|
|
||||||
assert_eq!(a, b);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_slice_shuffle_crypto_random_changes() {
|
|
||||||
let mut rng1 = CryptoRng::new();
|
|
||||||
let mut rng2 = CryptoRng::new();
|
|
||||||
let orig = [1u8, 2, 3, 4, 5, 6, 7, 8, 9];
|
|
||||||
let mut a = orig.clone();
|
|
||||||
let mut b = orig.clone();
|
|
||||||
a.shuffle(&mut rng1);
|
|
||||||
b.shuffle(&mut rng2);
|
|
||||||
assert!(a != orig || b != orig, "Shuffles did not change order");
|
|
||||||
assert_ne!(a, b, "Two Crypto RNG shuffles produced same order");
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_shuffle_single_element_no_change() {
|
|
||||||
let mut rng = Prng::new(1);
|
|
||||||
let mut arr = [42];
|
|
||||||
arr.shuffle(&mut rng);
|
|
||||||
assert_eq!(arr, [42]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_multiple_shuffles_different_results() {
|
|
||||||
let mut rng = Prng::new(5);
|
|
||||||
let mut arr1 = [1, 2, 3, 4];
|
|
||||||
let mut arr2 = [1, 2, 3, 4];
|
|
||||||
arr1.shuffle(&mut rng);
|
|
||||||
arr2.shuffle(&mut rng);
|
|
||||||
assert_ne!(arr1, arr2);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_shuffle_empty_slice() {
|
|
||||||
let mut rng = Prng::new(1);
|
|
||||||
let mut arr: [i32; 0] = [];
|
|
||||||
arr.shuffle(&mut rng);
|
|
||||||
assert!(arr.is_empty());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_shuffle_three_uniform() {
|
|
||||||
use std::collections::HashMap;
|
|
||||||
let mut rng = Prng::new(123);
|
|
||||||
let mut counts: HashMap<[u8; 3], usize> = HashMap::new();
|
|
||||||
for _ in 0..6000 {
|
|
||||||
let mut arr = [1u8, 2, 3];
|
|
||||||
arr.shuffle(&mut rng);
|
|
||||||
*counts.entry(arr).or_insert(0) += 1;
|
|
||||||
}
|
|
||||||
let expected = 1000.0;
|
|
||||||
let chi2: f64 = counts
|
|
||||||
.values()
|
|
||||||
.map(|&c| {
|
|
||||||
let diff = c as f64 - expected;
|
|
||||||
diff * diff / expected
|
|
||||||
})
|
|
||||||
.sum();
|
|
||||||
assert!(chi2 < 30.0, "shuffle chi-square too high: {chi2}");
|
|
||||||
}
|
|
||||||
}
|
|
Loading…
x
Reference in New Issue
Block a user