mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-11-19 19:46:09 +00:00
Compare commits
1 Commits
csv
...
ebf0fff5c6
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ebf0fff5c6 |
11
.github/htmldocs/index.html
vendored
11
.github/htmldocs/index.html
vendored
@@ -58,14 +58,6 @@
|
|||||||
<h2>A lightweight dataframe & math toolkit for Rust</h2>
|
<h2>A lightweight dataframe & math toolkit for Rust</h2>
|
||||||
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
|
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
|
||||||
<p>
|
<p>
|
||||||
|
|
||||||
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a>
|
|
||||||
<br><br>
|
|
||||||
|
|
||||||
📖 <a href="https://magnus167.github.io/rustframe/user-guide">User Guide</a>
|
|
||||||
<br><br>
|
|
||||||
|
|
||||||
|
|
||||||
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
|
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
|
||||||
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
|
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
|
||||||
|
|
||||||
@@ -73,7 +65,8 @@
|
|||||||
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
|
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
|
||||||
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
|
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
|
||||||
<br><br>
|
<br><br>
|
||||||
<!-- 🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a> -->
|
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a> |
|
||||||
|
🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a>
|
||||||
</p>
|
</p>
|
||||||
</main>
|
</main>
|
||||||
</body>
|
</body>
|
||||||
|
|||||||
21
.github/workflows/docs-and-testcov.yml
vendored
21
.github/workflows/docs-and-testcov.yml
vendored
@@ -153,6 +153,7 @@ jobs:
|
|||||||
|
|
||||||
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
|
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
|
||||||
|
|
||||||
|
mkdir output
|
||||||
cp tarpaulin-report.html target/doc/docs/
|
cp tarpaulin-report.html target/doc/docs/
|
||||||
cp tarpaulin-report.json target/doc/docs/
|
cp tarpaulin-report.json target/doc/docs/
|
||||||
cp tarpaulin-badge.json target/doc/docs/
|
cp tarpaulin-badge.json target/doc/docs/
|
||||||
@@ -165,30 +166,16 @@ jobs:
|
|||||||
# copy the benchmark report to the output directory
|
# copy the benchmark report to the output directory
|
||||||
cp -r benchmark-report target/doc/
|
cp -r benchmark-report target/doc/
|
||||||
|
|
||||||
mkdir output
|
|
||||||
cp -r target/doc/* output/
|
|
||||||
|
|
||||||
- name: Build user guide
|
|
||||||
run: |
|
|
||||||
cargo binstall mdbook
|
|
||||||
bash ./docs/build.sh
|
|
||||||
|
|
||||||
- name: Copy user guide to output directory
|
|
||||||
run: |
|
|
||||||
mkdir output/user-guide
|
|
||||||
cp -r docs/book/* output/user-guide/
|
|
||||||
|
|
||||||
- name: Add index.html to output directory
|
- name: Add index.html to output directory
|
||||||
run: |
|
run: |
|
||||||
cp .github/htmldocs/index.html output/index.html
|
cp .github/htmldocs/index.html target/doc/index.html
|
||||||
cp .github/rustframe_logo.png output/rustframe_logo.png
|
cp .github/rustframe_logo.png target/doc/rustframe_logo.png
|
||||||
|
|
||||||
- name: Upload Pages artifact
|
- name: Upload Pages artifact
|
||||||
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
|
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
|
||||||
uses: actions/upload-pages-artifact@v3
|
uses: actions/upload-pages-artifact@v3
|
||||||
with:
|
with:
|
||||||
# path: target/doc/
|
path: target/doc/
|
||||||
path: output/
|
|
||||||
|
|
||||||
- name: Deploy to GitHub Pages
|
- name: Deploy to GitHub Pages
|
||||||
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
|
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
|
||||||
|
|||||||
5
.github/workflows/run-unit-tests.yml
vendored
5
.github/workflows/run-unit-tests.yml
vendored
@@ -78,8 +78,3 @@ jobs:
|
|||||||
uses: codecov/test-results-action@v1
|
uses: codecov/test-results-action@v1
|
||||||
with:
|
with:
|
||||||
token: ${{ secrets.CODECOV_TOKEN }}
|
token: ${{ secrets.CODECOV_TOKEN }}
|
||||||
|
|
||||||
- name: Test build user guide
|
|
||||||
run: |
|
|
||||||
cargo binstall mdbook
|
|
||||||
bash ./docs/build.sh
|
|
||||||
|
|||||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -17,5 +17,3 @@ data/
|
|||||||
tarpaulin-report.*
|
tarpaulin-report.*
|
||||||
|
|
||||||
.github/htmldocs/rustframe_logo.png
|
.github/htmldocs/rustframe_logo.png
|
||||||
|
|
||||||
docs/book/
|
|
||||||
@@ -1,12 +1,11 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "rustframe"
|
name = "rustframe"
|
||||||
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
||||||
version = "0.0.1-a.20250805"
|
version = "0.0.1-a.20250716"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
license = "GPL-3.0-or-later"
|
license = "GPL-3.0-or-later"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
description = "A simple dataframe and math toolkit"
|
description = "A simple dataframe library"
|
||||||
documentation = "https://magnus167.github.io/rustframe/"
|
|
||||||
|
|
||||||
[lib]
|
[lib]
|
||||||
name = "rustframe"
|
name = "rustframe"
|
||||||
|
|||||||
18
README.md
18
README.md
@@ -1,12 +1,11 @@
|
|||||||
# rustframe
|
# rustframe
|
||||||
|
|
||||||
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🌐 [Gitea mirror](https://gitea.nulltech.uk/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||||
|
|
||||||
<!-- [](https://github.com/Magnus167/rustframe) -->
|
<!-- [](https://github.com/Magnus167/rustframe) -->
|
||||||
|
|
||||||
[](https://codecov.io/gh/Magnus167/rustframe)
|
[](https://codecov.io/gh/Magnus167/rustframe)
|
||||||
[](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
|
[](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
|
||||||
[](https://gitea.nulltech.uk/Magnus167/rustframe)
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
@@ -153,7 +152,7 @@ let zipped_matrix = a.zip(&b, |x, y| x + y);
|
|||||||
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
||||||
```
|
```
|
||||||
|
|
||||||
## More examples
|
### More examples
|
||||||
|
|
||||||
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
||||||
|
|
||||||
@@ -192,21 +191,10 @@ cargo run --example
|
|||||||
|
|
||||||
Each demo runs a couple of mini-scenarios showcasing the APIs.
|
Each demo runs a couple of mini-scenarios showcasing the APIs.
|
||||||
|
|
||||||
## Running benchmarks
|
### Running benchmarks
|
||||||
|
|
||||||
To run the benchmarks, use:
|
To run the benchmarks, use:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cargo bench --features "bench"
|
cargo bench --features "bench"
|
||||||
```
|
```
|
||||||
|
|
||||||
## Building the user-guide
|
|
||||||
|
|
||||||
To build the user guide, use:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cargo binstall mdbook
|
|
||||||
bash docs/build.sh
|
|
||||||
```
|
|
||||||
|
|
||||||
This will generate the user guide in the `docs/book` directory.
|
|
||||||
|
|||||||
@@ -1,7 +0,0 @@
|
|||||||
[book]
|
|
||||||
title = "Rustframe User Guide"
|
|
||||||
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
|
||||||
description = "Guided journey through Rustframe capabilities."
|
|
||||||
|
|
||||||
[build]
|
|
||||||
build-dir = "book"
|
|
||||||
@@ -1,7 +0,0 @@
|
|||||||
#!/usr/bin/env sh
|
|
||||||
# Build and test the Rustframe user guide using mdBook.
|
|
||||||
set -e
|
|
||||||
|
|
||||||
cd docs
|
|
||||||
bash gen.sh "$@"
|
|
||||||
cd ..
|
|
||||||
14
docs/gen.sh
14
docs/gen.sh
@@ -1,14 +0,0 @@
|
|||||||
#!/usr/bin/env sh
|
|
||||||
|
|
||||||
set -e
|
|
||||||
|
|
||||||
cargo clean
|
|
||||||
|
|
||||||
cargo build --manifest-path ../Cargo.toml
|
|
||||||
|
|
||||||
mdbook test -L ../target/debug/deps "$@"
|
|
||||||
|
|
||||||
mdbook build "$@"
|
|
||||||
|
|
||||||
cargo build
|
|
||||||
# cargo build --release
|
|
||||||
@@ -1,7 +0,0 @@
|
|||||||
# Summary
|
|
||||||
|
|
||||||
- [Introduction](./introduction.md)
|
|
||||||
- [Data Manipulation](./data-manipulation.md)
|
|
||||||
- [Compute Features](./compute.md)
|
|
||||||
- [Machine Learning](./machine-learning.md)
|
|
||||||
- [Utilities](./utilities.md)
|
|
||||||
@@ -1,222 +0,0 @@
|
|||||||
# Compute Features
|
|
||||||
|
|
||||||
The `compute` module hosts numerical routines for exploratory data analysis.
|
|
||||||
It covers descriptive statistics, correlations, probability distributions and
|
|
||||||
some basic inferential tests.
|
|
||||||
|
|
||||||
## Basic Statistics
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
assert_eq!(mean(&m), 2.5);
|
|
||||||
assert_eq!(stddev(&m), 1.118033988749895);
|
|
||||||
assert_eq!(median(&m), 2.5);
|
|
||||||
assert_eq!(population_variance(&m), 1.25);
|
|
||||||
assert_eq!(percentile(&m, 50.0), 3.0);
|
|
||||||
// column averages returned as 1 x n matrix
|
|
||||||
let row_means = mean_horizontal(&m);
|
|
||||||
assert_eq!(row_means.data(), &[2.0, 3.0]);
|
|
||||||
let col_means = mean_vertical(&m);
|
|
||||||
assert_eq!(col_means.data(), & [1.5, 3.5]);
|
|
||||||
```
|
|
||||||
|
|
||||||
### Axis-specific Operations
|
|
||||||
|
|
||||||
Operations can be applied along specific axes (rows or columns):
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
// 3x2 matrix
|
|
||||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
|
|
||||||
|
|
||||||
// Mean along columns (vertical) - returns 1 x cols matrix
|
|
||||||
let col_means = mean_vertical(&m);
|
|
||||||
assert_eq!(col_means.shape(), (1, 2));
|
|
||||||
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
|
|
||||||
|
|
||||||
// Mean along rows (horizontal) - returns rows x 1 matrix
|
|
||||||
let row_means = mean_horizontal(&m);
|
|
||||||
assert_eq!(row_means.shape(), (3, 1));
|
|
||||||
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
|
|
||||||
|
|
||||||
// Standard deviation along columns
|
|
||||||
let col_stddev = stddev_vertical(&m);
|
|
||||||
assert_eq!(col_stddev.shape(), (1, 2));
|
|
||||||
|
|
||||||
// Standard deviation along rows
|
|
||||||
let row_stddev = stddev_horizontal(&m);
|
|
||||||
assert_eq!(row_stddev.shape(), (3, 1));
|
|
||||||
```
|
|
||||||
|
|
||||||
## Correlation
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::{pearson, covariance};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
|
||||||
let corr = pearson(&x, &y);
|
|
||||||
let cov = covariance(&x, &y);
|
|
||||||
assert!((corr - 1.0).abs() < 1e-8);
|
|
||||||
assert!((cov - 2.5).abs() < 1e-8);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Covariance
|
|
||||||
|
|
||||||
### `covariance`
|
|
||||||
|
|
||||||
Computes the population covariance between two equally sized matrices by flattening
|
|
||||||
their values.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::covariance;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
|
||||||
let cov = covariance(&x, &y);
|
|
||||||
assert!((cov - 2.5).abs() < 1e-8);
|
|
||||||
```
|
|
||||||
|
|
||||||
### `covariance_vertical`
|
|
||||||
|
|
||||||
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
|
|
||||||
column pair covariances.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::covariance_vertical;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let cov = covariance_vertical(&m);
|
|
||||||
assert_eq!(cov.shape(), (2, 2));
|
|
||||||
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
|
|
||||||
```
|
|
||||||
|
|
||||||
### `covariance_horizontal`
|
|
||||||
|
|
||||||
Computes covariance between rows (i.e. across columns) returning a matrix that
|
|
||||||
describes how each pair of rows varies together.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::covariance_horizontal;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let cov = covariance_horizontal(&m);
|
|
||||||
assert_eq!(cov.shape(), (2, 2));
|
|
||||||
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
|
|
||||||
```
|
|
||||||
|
|
||||||
### `covariance_matrix`
|
|
||||||
|
|
||||||
Builds a covariance matrix either between columns (`Axis::Col`) or rows
|
|
||||||
(`Axis::Row`). Each entry represents how two series co-vary.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::covariance_matrix;
|
|
||||||
use rustframe::matrix::{Axis, Matrix};
|
|
||||||
|
|
||||||
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
|
|
||||||
// Covariance between columns
|
|
||||||
let cov_cols = covariance_matrix(&data, Axis::Col);
|
|
||||||
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
|
|
||||||
|
|
||||||
// Covariance between rows
|
|
||||||
let cov_rows = covariance_matrix(&data, Axis::Row);
|
|
||||||
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Distributions
|
|
||||||
|
|
||||||
Probability distribution helpers are available for common PDFs and CDFs.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::distributions::normal_pdf;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
|
||||||
let pdf = normal_pdf(x, 0.0, 1.0);
|
|
||||||
assert_eq!(pdf.data().len(), 2);
|
|
||||||
```
|
|
||||||
|
|
||||||
### Additional Distributions
|
|
||||||
|
|
||||||
Rustframe provides several other probability distributions:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
// Normal distribution CDF
|
|
||||||
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
|
||||||
let cdf = normal_cdf(x, 0.0, 1.0);
|
|
||||||
assert_eq!(cdf.data().len(), 2);
|
|
||||||
|
|
||||||
// Binomial distribution PMF
|
|
||||||
// Probability of k successes in n trials with probability p
|
|
||||||
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
|
|
||||||
let pmf = binomial_pmf(3, k.clone(), 0.5);
|
|
||||||
assert_eq!(pmf.data().len(), 4);
|
|
||||||
|
|
||||||
// Binomial distribution CDF
|
|
||||||
let cdf = binomial_cdf(3, k, 0.5);
|
|
||||||
assert_eq!(cdf.data().len(), 4);
|
|
||||||
|
|
||||||
// Poisson distribution PMF
|
|
||||||
// Probability of k events with rate parameter lambda
|
|
||||||
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
|
||||||
let pmf = poisson_pmf(2.0, k);
|
|
||||||
assert_eq!(pmf.data().len(), 3);
|
|
||||||
```
|
|
||||||
|
|
||||||
### Inferential Statistics
|
|
||||||
|
|
||||||
Rustframe provides several inferential statistical tests:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
|
|
||||||
|
|
||||||
// Two-sample t-test
|
|
||||||
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
|
||||||
let (t_statistic, p_value) = t_test(&sample1, &sample2);
|
|
||||||
assert!((t_statistic + 5.0).abs() < 1e-5);
|
|
||||||
assert!(p_value > 0.0 && p_value < 1.0);
|
|
||||||
|
|
||||||
// Chi-square test of independence
|
|
||||||
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
|
||||||
let (chi2_statistic, p_value) = chi2_test(&observed);
|
|
||||||
assert!(chi2_statistic > 0.0);
|
|
||||||
assert!(p_value > 0.0 && p_value < 1.0);
|
|
||||||
|
|
||||||
// One-way ANOVA
|
|
||||||
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
|
||||||
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
|
||||||
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
|
||||||
let groups = vec![&group1, &group2, &group3];
|
|
||||||
let (f_statistic, p_value) = anova(groups);
|
|
||||||
assert!(f_statistic > 0.0);
|
|
||||||
assert!(p_value > 0.0 && p_value < 1.0);
|
|
||||||
```
|
|
||||||
|
|
||||||
With the basics covered, explore predictive models in the
|
|
||||||
[machine learning](./machine-learning.md) chapter.
|
|
||||||
@@ -1,157 +0,0 @@
|
|||||||
# Data Manipulation
|
|
||||||
|
|
||||||
Rustframe's `Frame` type couples tabular data with
|
|
||||||
column labels and a typed row index. Frames expose a familiar API for loading
|
|
||||||
data, selecting rows or columns and performing aggregations.
|
|
||||||
|
|
||||||
## Creating a Frame
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::frame::{Frame, RowIndex};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
|
||||||
let frame = Frame::new(data, vec!["A", "B"], None);
|
|
||||||
assert_eq!(frame["A"], vec![1.0, 2.0]);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Indexing Rows
|
|
||||||
|
|
||||||
Row labels can be integers, dates or a default range. Retrieving a row returns a
|
|
||||||
view that lets you inspect values by column name or position.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
# extern crate chrono;
|
|
||||||
use chrono::NaiveDate;
|
|
||||||
use rustframe::frame::{Frame, RowIndex};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
|
|
||||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
|
||||||
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
|
|
||||||
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
|
|
||||||
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
|
|
||||||
|
|
||||||
// mutate by row key
|
|
||||||
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
|
|
||||||
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Column operations
|
|
||||||
|
|
||||||
Columns can be inserted, renamed, removed or reordered in place.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::frame::{Frame, RowIndex};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
|
||||||
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
|
|
||||||
|
|
||||||
frame.add_column("Z", vec![5, 6]);
|
|
||||||
frame.rename("Y", "W");
|
|
||||||
let removed = frame.delete_column("X");
|
|
||||||
assert_eq!(removed, vec![1, 2]);
|
|
||||||
frame.sort_columns();
|
|
||||||
assert_eq!(frame.columns(), &["W", "Z"]);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Aggregations
|
|
||||||
|
|
||||||
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::frame::Frame;
|
|
||||||
use rustframe::matrix::{Matrix, SeriesOps};
|
|
||||||
|
|
||||||
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
|
|
||||||
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
|
||||||
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Matrix Operations
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
|
||||||
|
|
||||||
let sum = data1.clone() + data2.clone();
|
|
||||||
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
|
|
||||||
|
|
||||||
let product = data1.clone() * data2.clone();
|
|
||||||
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
|
|
||||||
|
|
||||||
let scalar_product = data1.clone() * 2.0;
|
|
||||||
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
|
|
||||||
|
|
||||||
let equals = data1 == data1.clone();
|
|
||||||
assert_eq!(equals, true);
|
|
||||||
```
|
|
||||||
|
|
||||||
### Advanced Matrix Operations
|
|
||||||
|
|
||||||
Matrices support a variety of advanced operations:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::matrix::{Matrix, SeriesOps};
|
|
||||||
|
|
||||||
// Matrix multiplication (dot product)
|
|
||||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
|
||||||
let product = a.matrix_mul(&b);
|
|
||||||
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
|
|
||||||
|
|
||||||
// Transpose
|
|
||||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let transposed = m.transpose();
|
|
||||||
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
|
|
||||||
|
|
||||||
// Map function over all elements
|
|
||||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let squared = m.map(|x| x * x);
|
|
||||||
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
|
|
||||||
|
|
||||||
// Zip two matrices with a function
|
|
||||||
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
|
||||||
let zipped = a.zip(&b, |x, y| x + y);
|
|
||||||
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
|
|
||||||
```
|
|
||||||
|
|
||||||
### Matrix Reductions
|
|
||||||
|
|
||||||
Matrices support various reduction operations:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::matrix::{Matrix, SeriesOps};
|
|
||||||
|
|
||||||
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
|
|
||||||
|
|
||||||
// Sum along columns (vertical)
|
|
||||||
let col_sums = m.sum_vertical();
|
|
||||||
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
|
|
||||||
|
|
||||||
// Sum along rows (horizontal)
|
|
||||||
let row_sums = m.sum_horizontal();
|
|
||||||
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
|
|
||||||
|
|
||||||
// Cumulative sum along columns
|
|
||||||
let col_cumsum = m.cumsum_vertical();
|
|
||||||
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
|
|
||||||
|
|
||||||
// Cumulative sum along rows
|
|
||||||
let row_cumsum = m.cumsum_horizontal();
|
|
||||||
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
|
|
||||||
```
|
|
||||||
|
|
||||||
With the basics covered, continue to the [compute features](./compute.md)
|
|
||||||
chapter for statistics and analytics.
|
|
||||||
@@ -1,40 +0,0 @@
|
|||||||
# Introduction
|
|
||||||
|
|
||||||
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
|
||||||
|
|
||||||
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
|
|
||||||
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
|
|
||||||
API approachable while offering handy features for small analytical or
|
|
||||||
educational projects.
|
|
||||||
|
|
||||||
Rustframe bundles:
|
|
||||||
|
|
||||||
- column‑labelled frames built on a fast column‑major matrix
|
|
||||||
- familiar element‑wise math and aggregation routines
|
|
||||||
- a growing `compute` module for statistics and machine learning
|
|
||||||
- utilities for dates and random numbers
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
|
|
||||||
|
|
||||||
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
|
||||||
let frame = Frame::new(data, vec!["A", "B"], None);
|
|
||||||
|
|
||||||
// Perform column wise aggregation
|
|
||||||
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Resources
|
|
||||||
|
|
||||||
- [GitHub repository](https://github.com/Magnus167/rustframe)
|
|
||||||
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
|
|
||||||
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
|
|
||||||
|
|
||||||
This guide walks through the main building blocks of the library. Each chapter
|
|
||||||
contains runnable snippets so you can follow along:
|
|
||||||
|
|
||||||
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
|
|
||||||
2. [Compute features](./compute.md) for statistics and analytics
|
|
||||||
3. [Machine learning](./machine-learning.md) for predictive models
|
|
||||||
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules
|
|
||||||
@@ -1,282 +0,0 @@
|
|||||||
# Machine Learning
|
|
||||||
|
|
||||||
The `compute::models` module bundles several learning algorithms that operate on
|
|
||||||
`Matrix` structures. These examples highlight the basic training and prediction
|
|
||||||
APIs. For more end‑to‑end walkthroughs see the examples directory in the
|
|
||||||
repository.
|
|
||||||
|
|
||||||
Currently implemented models include:
|
|
||||||
|
|
||||||
- Linear and logistic regression
|
|
||||||
- K‑means clustering
|
|
||||||
- Principal component analysis (PCA)
|
|
||||||
- Gaussian Naive Bayes
|
|
||||||
- Dense neural networks
|
|
||||||
|
|
||||||
## Linear Regression
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::linreg::LinReg;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
|
||||||
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
|
||||||
let mut model = LinReg::new(1);
|
|
||||||
model.fit(&x, &y, 0.01, 100);
|
|
||||||
let preds = model.predict(&x);
|
|
||||||
assert_eq!(preds.rows(), 4);
|
|
||||||
```
|
|
||||||
|
|
||||||
## K-means Walkthrough
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::k_means::KMeans;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
|
|
||||||
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
|
|
||||||
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
|
|
||||||
let cluster = model.predict(&new_point)[0];
|
|
||||||
```
|
|
||||||
|
|
||||||
## Logistic Regression
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::logreg::LogReg;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
|
||||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
|
||||||
let mut model = LogReg::new(1);
|
|
||||||
model.fit(&x, &y, 0.1, 200);
|
|
||||||
let preds = model.predict_proba(&x);
|
|
||||||
assert_eq!(preds.rows(), 4);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Principal Component Analysis
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::pca::PCA;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
let pca = PCA::fit(&data, 1, 0);
|
|
||||||
let transformed = pca.transform(&data);
|
|
||||||
assert_eq!(transformed.cols(), 1);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Gaussian Naive Bayes
|
|
||||||
|
|
||||||
Gaussian Naive Bayes classifier for continuous features:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::gaussian_nb::GaussianNB;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
// Training data with 2 features
|
|
||||||
let x = Matrix::from_rows_vec(vec![
|
|
||||||
1.0, 2.0,
|
|
||||||
2.0, 3.0,
|
|
||||||
3.0, 4.0,
|
|
||||||
4.0, 5.0
|
|
||||||
], 4, 2);
|
|
||||||
|
|
||||||
// Class labels (0 or 1)
|
|
||||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
|
||||||
|
|
||||||
// Train the model
|
|
||||||
let mut model = GaussianNB::new(1e-9, true);
|
|
||||||
model.fit(&x, &y);
|
|
||||||
|
|
||||||
// Make predictions
|
|
||||||
let predictions = model.predict(&x);
|
|
||||||
assert_eq!(predictions.rows(), 4);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Dense Neural Networks
|
|
||||||
|
|
||||||
Simple fully connected neural network:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
// Training data with 2 features
|
|
||||||
let x = Matrix::from_rows_vec(vec![
|
|
||||||
0.0, 0.0,
|
|
||||||
0.0, 1.0,
|
|
||||||
1.0, 0.0,
|
|
||||||
1.0, 1.0
|
|
||||||
], 4, 2);
|
|
||||||
|
|
||||||
// XOR target outputs
|
|
||||||
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
|
|
||||||
|
|
||||||
// Create a neural network with 2 hidden layers
|
|
||||||
let config = DenseNNConfig {
|
|
||||||
input_size: 2,
|
|
||||||
hidden_layers: vec![4, 4],
|
|
||||||
output_size: 1,
|
|
||||||
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
|
|
||||||
initializer: InitializerKind::Uniform(0.5),
|
|
||||||
loss: LossKind::MSE,
|
|
||||||
learning_rate: 0.1,
|
|
||||||
epochs: 1000,
|
|
||||||
};
|
|
||||||
let mut model = DenseNN::new(config);
|
|
||||||
|
|
||||||
// Train the model
|
|
||||||
model.train(&x, &y);
|
|
||||||
|
|
||||||
// Make predictions
|
|
||||||
let predictions = model.predict(&x);
|
|
||||||
assert_eq!(predictions.rows(), 4);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Real-world Examples
|
|
||||||
|
|
||||||
### Housing Price Prediction
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::linreg::LinReg;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
// Features: square feet and bedrooms
|
|
||||||
let features = Matrix::from_rows_vec(vec![
|
|
||||||
2100.0, 3.0,
|
|
||||||
1600.0, 2.0,
|
|
||||||
2400.0, 4.0,
|
|
||||||
1400.0, 2.0,
|
|
||||||
], 4, 2);
|
|
||||||
|
|
||||||
// Sale prices
|
|
||||||
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
|
|
||||||
|
|
||||||
let mut model = LinReg::new(2);
|
|
||||||
model.fit(&features, &target, 1e-8, 10_000);
|
|
||||||
|
|
||||||
// Predict price of a new home
|
|
||||||
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
|
|
||||||
let predicted_price = model.predict(&new_home);
|
|
||||||
println!("Predicted price: ${}", predicted_price.data()[0]);
|
|
||||||
```
|
|
||||||
|
|
||||||
### Spam Detection
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::logreg::LogReg;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
|
|
||||||
let x = Matrix::from_rows_vec(
|
|
||||||
vec![
|
|
||||||
// ─────────── spam examples ───────────
|
|
||||||
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
|
|
||||||
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
|
|
||||||
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
|
|
||||||
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
|
|
||||||
1.0, 0.0, 1.0, 0.0, 1.0, // ...
|
|
||||||
0.0, 1.0, 1.0, 1.0, 0.0, // ...
|
|
||||||
2.0, 0.0, 0.0, 1.0, 1.0, // ...
|
|
||||||
0.0, 1.0, 1.0, 0.0, 1.0, // ...
|
|
||||||
1.0, 1.0, 1.0, 1.0, 0.0, // ...
|
|
||||||
1.0, 0.0, 0.0, 1.0, 1.0, // ...
|
|
||||||
// ─────────── ham examples ───────────
|
|
||||||
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
|
|
||||||
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
|
|
||||||
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
|
|
||||||
0.0, 0.0, 0.0, 1.0, 1.0, // ...
|
|
||||||
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
|
|
||||||
0.0, 0.0, 0.0, 0.0, 0.0, // ...
|
|
||||||
0.0, 0.0, 0.0, 1.0, 0.0, // ...
|
|
||||||
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
|
|
||||||
0.0, 0.0, 0.0, 0.0, 0.0, // ...
|
|
||||||
0.0, 0.0, 0.0, 1.0, 0.0,
|
|
||||||
],
|
|
||||||
20,
|
|
||||||
5,
|
|
||||||
);
|
|
||||||
|
|
||||||
// Labels: 1 = spam, 0 = ham
|
|
||||||
let y = Matrix::from_vec(
|
|
||||||
vec![
|
|
||||||
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
|
|
||||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
|
|
||||||
],
|
|
||||||
20,
|
|
||||||
1,
|
|
||||||
);
|
|
||||||
|
|
||||||
// Train
|
|
||||||
let mut model = LogReg::new(5);
|
|
||||||
model.fit(&x, &y, 0.01, 5000);
|
|
||||||
|
|
||||||
// Predict
|
|
||||||
// e.g. "free money offer"
|
|
||||||
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
|
|
||||||
let email = Matrix::from_vec(email_data, 1, 5);
|
|
||||||
let prob_spam = model.predict_proba(&email);
|
|
||||||
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
|
|
||||||
```
|
|
||||||
|
|
||||||
### Iris Flower Classification
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::gaussian_nb::GaussianNB;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
// Features: sepal length and petal length
|
|
||||||
let x = Matrix::from_rows_vec(vec![
|
|
||||||
5.1, 1.4, // setosa
|
|
||||||
4.9, 1.4, // setosa
|
|
||||||
6.2, 4.5, // versicolor
|
|
||||||
5.9, 5.1, // virginica
|
|
||||||
], 4, 2);
|
|
||||||
|
|
||||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
|
|
||||||
let names = vec!["setosa", "versicolor", "virginica"];
|
|
||||||
|
|
||||||
let mut model = GaussianNB::new(1e-9, true);
|
|
||||||
model.fit(&x, &y);
|
|
||||||
|
|
||||||
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
|
|
||||||
let predicted_class = model.predict(&sample);
|
|
||||||
let class_name = names[predicted_class.data()[0] as usize];
|
|
||||||
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
|
|
||||||
```
|
|
||||||
|
|
||||||
### Customer Segmentation
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::compute::models::k_means::KMeans;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
|
|
||||||
// Each row: [age, annual_income]
|
|
||||||
let customers = Matrix::from_rows_vec(
|
|
||||||
vec![
|
|
||||||
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
|
|
||||||
],
|
|
||||||
4,
|
|
||||||
2,
|
|
||||||
);
|
|
||||||
|
|
||||||
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
|
|
||||||
|
|
||||||
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
|
|
||||||
let cluster = model.predict(&new_customer)[0];
|
|
||||||
println!("New customer belongs to cluster: {}", cluster);
|
|
||||||
println!("Cluster labels: {:?}", labels);
|
|
||||||
```
|
|
||||||
|
|
||||||
For helper functions and upcoming modules, visit the
|
|
||||||
[utilities](./utilities.md) section.
|
|
||||||
@@ -1,63 +0,0 @@
|
|||||||
# Utilities
|
|
||||||
|
|
||||||
Utilities provide handy helpers around the core library. Existing tools
|
|
||||||
include:
|
|
||||||
|
|
||||||
- Date utilities for generating calendar sequences and business‑day sets
|
|
||||||
- Random number generators for simulations and testing
|
|
||||||
|
|
||||||
## Date Helpers
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
|
|
||||||
|
|
||||||
// Calendar sequence
|
|
||||||
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
|
||||||
assert_eq!(list.count().unwrap(), 3);
|
|
||||||
|
|
||||||
// Business days starting from 2024‑01‑02
|
|
||||||
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
|
|
||||||
assert_eq!(bdates.list().unwrap().len(), 3);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Random Numbers
|
|
||||||
|
|
||||||
The `random` module offers deterministic and cryptographically secure RNGs.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::random::{Prng, Rng};
|
|
||||||
|
|
||||||
let mut rng = Prng::new(42);
|
|
||||||
let v1 = rng.next_u64();
|
|
||||||
let v2 = rng.next_u64();
|
|
||||||
assert_ne!(v1, v2);
|
|
||||||
```
|
|
||||||
|
|
||||||
## Stats Functions
|
|
||||||
|
|
||||||
```rust
|
|
||||||
# extern crate rustframe;
|
|
||||||
use rustframe::matrix::Matrix;
|
|
||||||
use rustframe::compute::stats::descriptive::{mean, median, stddev};
|
|
||||||
|
|
||||||
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
|
||||||
|
|
||||||
let mean_value = mean(&data);
|
|
||||||
assert_eq!(mean_value, 3.0);
|
|
||||||
|
|
||||||
let median_value = median(&data);
|
|
||||||
assert_eq!(median_value, 3.0);
|
|
||||||
|
|
||||||
let std_value = stddev(&data);
|
|
||||||
assert_eq!(std_value, 2.0_f64.sqrt());
|
|
||||||
```
|
|
||||||
|
|
||||||
Upcoming utilities will cover:
|
|
||||||
|
|
||||||
- Data import/export helpers
|
|
||||||
- Visualization adapters
|
|
||||||
- Streaming data interfaces
|
|
||||||
|
|
||||||
Contributions to these sections are welcome!
|
|
||||||
@@ -1,16 +1,3 @@
|
|||||||
//! Algorithms and statistical utilities built on top of the core matrices.
|
|
||||||
//!
|
|
||||||
//! This module groups together machine‑learning models and statistical helper
|
|
||||||
//! functions. For quick access to basic statistics see [`stats`](crate::compute::stats), while
|
|
||||||
//! [`models`](crate::compute::models) contains small learning algorithms.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::stats;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0], 3, 1);
|
|
||||||
//! assert_eq!(stats::mean(&m), 2.0);
|
|
||||||
//! ```
|
|
||||||
pub mod models;
|
pub mod models;
|
||||||
|
|
||||||
pub mod stats;
|
pub mod stats;
|
||||||
|
|||||||
@@ -1,15 +1,3 @@
|
|||||||
//! Common activation functions used in neural networks.
|
|
||||||
//!
|
|
||||||
//! Functions operate element-wise on [`Matrix`] values.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::models::activations::sigmoid;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
|
|
||||||
//! let y = sigmoid(&x);
|
|
||||||
//! assert!((y.get(0,0) - 0.5).abs() < 1e-6);
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::{Matrix, SeriesOps};
|
use crate::matrix::{Matrix, SeriesOps};
|
||||||
|
|
||||||
pub fn sigmoid(x: &Matrix<f64>) -> Matrix<f64> {
|
pub fn sigmoid(x: &Matrix<f64>) -> Matrix<f64> {
|
||||||
|
|||||||
@@ -1,30 +1,3 @@
|
|||||||
//! A minimal dense neural network implementation for educational purposes.
|
|
||||||
//!
|
|
||||||
//! Layers operate on [`Matrix`] values and support ReLU and Sigmoid
|
|
||||||
//! activations. This is not meant to be a performant deep‑learning framework
|
|
||||||
//! but rather a small example of how the surrounding matrix utilities can be
|
|
||||||
//! composed.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::models::dense_nn::{ActivationKind, DenseNN, DenseNNConfig, InitializerKind, LossKind};
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! // Tiny network with one input and one output neuron.
|
|
||||||
//! let config = DenseNNConfig {
|
|
||||||
//! input_size: 1,
|
|
||||||
//! hidden_layers: vec![],
|
|
||||||
//! output_size: 1,
|
|
||||||
//! activations: vec![ActivationKind::Relu],
|
|
||||||
//! initializer: InitializerKind::Uniform(0.5),
|
|
||||||
//! loss: LossKind::MSE,
|
|
||||||
//! learning_rate: 0.1,
|
|
||||||
//! epochs: 1,
|
|
||||||
//! };
|
|
||||||
//! let mut nn = DenseNN::new(config);
|
|
||||||
//! let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
|
|
||||||
//! let y = Matrix::from_vec(vec![2.0, 3.0], 2, 1);
|
|
||||||
//! nn.train(&x, &y);
|
|
||||||
//! ```
|
|
||||||
use crate::compute::models::activations::{drelu, relu, sigmoid};
|
use crate::compute::models::activations::{drelu, relu, sigmoid};
|
||||||
use crate::matrix::{Matrix, SeriesOps};
|
use crate::matrix::{Matrix, SeriesOps};
|
||||||
use crate::random::prelude::*;
|
use crate::random::prelude::*;
|
||||||
|
|||||||
@@ -1,16 +1,3 @@
|
|||||||
//! Gaussian Naive Bayes classifier for dense matrices.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::models::gaussian_nb::GaussianNB;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 1.0, 2.0], 2, 2); // two samples
|
|
||||||
//! let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
|
|
||||||
//! let mut model = GaussianNB::new(1e-9, false);
|
|
||||||
//! model.fit(&x, &y);
|
|
||||||
//! let preds = model.predict(&x);
|
|
||||||
//! assert_eq!(preds.rows(), 2);
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::Matrix;
|
use crate::matrix::Matrix;
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
|
|
||||||
|
|||||||
@@ -1,14 +1,3 @@
|
|||||||
//! Simple k-means clustering working on [`Matrix`] data.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::models::k_means::KMeans;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
|
|
||||||
//! let (model, labels) = KMeans::fit(&data, 2, 10, 1e-4);
|
|
||||||
//! assert_eq!(model.centroids.rows(), 2);
|
|
||||||
//! assert_eq!(labels.len(), 2);
|
|
||||||
//! ```
|
|
||||||
use crate::compute::stats::mean_vertical;
|
use crate::compute::stats::mean_vertical;
|
||||||
use crate::matrix::Matrix;
|
use crate::matrix::Matrix;
|
||||||
use crate::random::prelude::*;
|
use crate::random::prelude::*;
|
||||||
|
|||||||
@@ -1,16 +1,3 @@
|
|||||||
//! Ordinary least squares linear regression.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::models::linreg::LinReg;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
|
||||||
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
|
||||||
//! let mut model = LinReg::new(1);
|
|
||||||
//! model.fit(&x, &y, 0.01, 100);
|
|
||||||
//! let preds = model.predict(&x);
|
|
||||||
//! assert_eq!(preds.rows(), 4);
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::{Matrix, SeriesOps};
|
use crate::matrix::{Matrix, SeriesOps};
|
||||||
|
|
||||||
pub struct LinReg {
|
pub struct LinReg {
|
||||||
|
|||||||
@@ -1,16 +1,3 @@
|
|||||||
//! Binary logistic regression classifier.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::models::logreg::LogReg;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
|
||||||
//! let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
|
||||||
//! let mut model = LogReg::new(1);
|
|
||||||
//! model.fit(&x, &y, 0.1, 100);
|
|
||||||
//! let preds = model.predict(&x);
|
|
||||||
//! assert_eq!(preds[(0,0)], 0.0);
|
|
||||||
//! ```
|
|
||||||
use crate::compute::models::activations::sigmoid;
|
use crate::compute::models::activations::sigmoid;
|
||||||
use crate::matrix::{Matrix, SeriesOps};
|
use crate::matrix::{Matrix, SeriesOps};
|
||||||
|
|
||||||
|
|||||||
@@ -1,19 +1,3 @@
|
|||||||
//! Lightweight machine‑learning models built on matrices.
|
|
||||||
//!
|
|
||||||
//! Models are intentionally minimal and operate on the [`Matrix`](crate::matrix::Matrix) type for
|
|
||||||
//! inputs and parameters.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::models::linreg::LinReg;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
|
||||||
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
|
|
||||||
//! let mut model = LinReg::new(1);
|
|
||||||
//! model.fit(&x, &y, 0.01, 1000);
|
|
||||||
//! let preds = model.predict(&x);
|
|
||||||
//! assert_eq!(preds.rows(), 4);
|
|
||||||
//! ```
|
|
||||||
pub mod activations;
|
pub mod activations;
|
||||||
pub mod dense_nn;
|
pub mod dense_nn;
|
||||||
pub mod gaussian_nb;
|
pub mod gaussian_nb;
|
||||||
|
|||||||
@@ -1,14 +1,3 @@
|
|||||||
//! Principal Component Analysis using covariance matrices.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::models::pca::PCA;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0], 2, 2);
|
|
||||||
//! let pca = PCA::fit(&data, 1, 0);
|
|
||||||
//! let projected = pca.transform(&data);
|
|
||||||
//! assert_eq!(projected.cols(), 1);
|
|
||||||
//! ```
|
|
||||||
use crate::compute::stats::correlation::covariance_matrix;
|
use crate::compute::stats::correlation::covariance_matrix;
|
||||||
use crate::compute::stats::descriptive::mean_vertical;
|
use crate::compute::stats::descriptive::mean_vertical;
|
||||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||||
|
|||||||
@@ -1,16 +1,3 @@
|
|||||||
//! Covariance and correlation helpers.
|
|
||||||
//!
|
|
||||||
//! This module provides routines for measuring the relationship between
|
|
||||||
//! columns or rows of matrices.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::stats::correlation;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
//! let cov = correlation::covariance(&x, &x);
|
|
||||||
//! assert!((cov - 1.25).abs() < 1e-8);
|
|
||||||
//! ```
|
|
||||||
use crate::compute::stats::{mean, mean_horizontal, mean_vertical, stddev};
|
use crate::compute::stats::{mean, mean_horizontal, mean_vertical, stddev};
|
||||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||||
|
|
||||||
|
|||||||
@@ -1,15 +1,3 @@
|
|||||||
//! Descriptive statistics for matrices.
|
|
||||||
//!
|
|
||||||
//! Provides means, variances, medians and other aggregations computed either
|
|
||||||
//! across the whole matrix or along a specific axis.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::stats::descriptive;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
//! assert_eq!(descriptive::mean(&m), 2.5);
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::{Axis, Matrix, SeriesOps};
|
use crate::matrix::{Axis, Matrix, SeriesOps};
|
||||||
|
|
||||||
pub fn mean(x: &Matrix<f64>) -> f64 {
|
pub fn mean(x: &Matrix<f64>) -> f64 {
|
||||||
|
|||||||
@@ -1,16 +1,3 @@
|
|||||||
//! Probability distribution functions applied element-wise to matrices.
|
|
||||||
//!
|
|
||||||
//! Includes approximations for the normal, uniform and gamma distributions as
|
|
||||||
//! well as the error function.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::stats::distributions;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
|
|
||||||
//! let pdf = distributions::normal_pdf(x.clone(), 0.0, 1.0);
|
|
||||||
//! assert!((pdf.get(0,0) - 0.3989).abs() < 1e-3);
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::{Matrix, SeriesOps};
|
use crate::matrix::{Matrix, SeriesOps};
|
||||||
|
|
||||||
use std::f64::consts::PI;
|
use std::f64::consts::PI;
|
||||||
|
|||||||
@@ -1,14 +1,3 @@
|
|||||||
//! Basic inferential statistics such as t‑tests and chi‑square tests.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::stats::inferential;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let a = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
|
|
||||||
//! let b = Matrix::from_vec(vec![1.1, 1.9], 2, 1);
|
|
||||||
//! let (t, _p) = inferential::t_test(&a, &b);
|
|
||||||
//! assert!(t.abs() < 1.0);
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::{Matrix, SeriesOps};
|
use crate::matrix::{Matrix, SeriesOps};
|
||||||
|
|
||||||
use crate::compute::stats::{gamma_cdf, mean, sample_variance};
|
use crate::compute::stats::{gamma_cdf, mean, sample_variance};
|
||||||
|
|||||||
@@ -1,16 +1,3 @@
|
|||||||
//! Statistical routines for matrices.
|
|
||||||
//!
|
|
||||||
//! Functions are grouped into submodules for descriptive statistics,
|
|
||||||
//! correlations, probability distributions and basic inferential tests.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::compute::stats;
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
|
||||||
//! let cov = stats::covariance(&m, &m);
|
|
||||||
//! assert!((cov - 1.25).abs() < 1e-8);
|
|
||||||
//! ```
|
|
||||||
pub mod correlation;
|
pub mod correlation;
|
||||||
pub mod descriptive;
|
pub mod descriptive;
|
||||||
pub mod distributions;
|
pub mod distributions;
|
||||||
|
|||||||
@@ -1,411 +0,0 @@
|
|||||||
use chrono::{NaiveDate, NaiveDateTime};
|
|
||||||
use std::collections::HashMap;
|
|
||||||
use std::fs::File;
|
|
||||||
use std::io::{self, BufRead, BufReader};
|
|
||||||
use std::path::Path;
|
|
||||||
|
|
||||||
/// Represents the target type for a CSV column.
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub enum DataType {
|
|
||||||
Int,
|
|
||||||
Float,
|
|
||||||
Bool,
|
|
||||||
UInt,
|
|
||||||
String,
|
|
||||||
Date,
|
|
||||||
DateTime,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Represents a value parsed from the CSV.
|
|
||||||
#[derive(Debug, Clone, PartialEq)]
|
|
||||||
pub enum Value {
|
|
||||||
Int(i64),
|
|
||||||
Float(f64),
|
|
||||||
Bool(bool),
|
|
||||||
UInt(u64),
|
|
||||||
String(String),
|
|
||||||
Date(NaiveDate),
|
|
||||||
DateTime(NaiveDateTime),
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience alias for a parsed CSV record.
|
|
||||||
pub type Record = HashMap<String, Value>;
|
|
||||||
|
|
||||||
/// A simple CSV reader that reads records line by line.
|
|
||||||
pub struct CsvReader<R: BufRead> {
|
|
||||||
reader: R,
|
|
||||||
separators: Vec<char>,
|
|
||||||
headers: Vec<String>,
|
|
||||||
types: Option<HashMap<String, DataType>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Builder for [`CsvReader`] allowing chained configuration of headers, types, and separators.
|
|
||||||
pub struct CsvReaderBuilder<R: BufRead> {
|
|
||||||
reader: R,
|
|
||||||
separators: Vec<char>,
|
|
||||||
headers: Vec<String>,
|
|
||||||
types: Option<HashMap<String, DataType>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<R: BufRead> CsvReader<R> {
|
|
||||||
/// Create a new CSV reader from a [`BufRead`] source.
|
|
||||||
/// The first line is expected to contain headers.
|
|
||||||
/// `separators` is a list of characters considered as field separators.
|
|
||||||
/// `types` optionally maps column names to target data types.
|
|
||||||
pub fn new(
|
|
||||||
mut reader: R,
|
|
||||||
separators: Vec<char>,
|
|
||||||
types: Option<HashMap<String, DataType>>,
|
|
||||||
) -> io::Result<Self> {
|
|
||||||
let mut first_line = String::new();
|
|
||||||
reader.read_line(&mut first_line)?;
|
|
||||||
let headers = parse_line(&first_line, &separators);
|
|
||||||
Ok(Self {
|
|
||||||
reader,
|
|
||||||
separators,
|
|
||||||
headers,
|
|
||||||
types,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a reader with default settings (comma separator, automatic typing).
|
|
||||||
pub fn new_default(reader: R) -> io::Result<Self> {
|
|
||||||
Self::new(reader, vec![','], None)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a reader with default separators and explicit type mapping.
|
|
||||||
pub fn new_with_types(reader: R, types: HashMap<String, DataType>) -> io::Result<Self> {
|
|
||||||
Self::new(reader, vec![','], Some(types))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Start building a reader from a source that lacks headers.
|
|
||||||
pub fn new_with_headers(reader: R, headers: Vec<String>) -> CsvReaderBuilder<R> {
|
|
||||||
CsvReaderBuilder {
|
|
||||||
reader,
|
|
||||||
separators: vec![','],
|
|
||||||
headers,
|
|
||||||
types: None,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Return the headers of the CSV file.
|
|
||||||
pub fn headers(&self) -> &[String] {
|
|
||||||
&self.headers
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Read the next record. Returns `Ok(None)` on EOF.
|
|
||||||
pub fn read_record(&mut self) -> io::Result<Option<Record>> {
|
|
||||||
let mut line = String::new();
|
|
||||||
if self.reader.read_line(&mut line)? == 0 {
|
|
||||||
return Ok(None);
|
|
||||||
}
|
|
||||||
let fields = parse_line(&line, &self.separators);
|
|
||||||
let mut record = HashMap::new();
|
|
||||||
|
|
||||||
for (i, header) in self.headers.iter().enumerate() {
|
|
||||||
let field = fields.get(i).cloned().unwrap_or_default();
|
|
||||||
let value = match &self.types {
|
|
||||||
Some(map) => {
|
|
||||||
if let Some(dt) = map.get(header) {
|
|
||||||
parse_with_type(&field, dt)
|
|
||||||
} else {
|
|
||||||
Value::String(field)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
None => parse_auto(&field),
|
|
||||||
};
|
|
||||||
record.insert(header.clone(), value);
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(Some(record))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<R: BufRead> Iterator for CsvReader<R> {
|
|
||||||
type Item = io::Result<Record>;
|
|
||||||
|
|
||||||
fn next(&mut self) -> Option<Self::Item> {
|
|
||||||
match self.read_record() {
|
|
||||||
Ok(Some(rec)) => Some(Ok(rec)),
|
|
||||||
Ok(None) => None,
|
|
||||||
Err(e) => Some(Err(e)),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<R: BufRead> CsvReaderBuilder<R> {
|
|
||||||
/// Override field separators for the upcoming reader.
|
|
||||||
pub fn separators(mut self, separators: Vec<char>) -> Self {
|
|
||||||
self.separators = separators;
|
|
||||||
self
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Finalize the builder with an explicit type mapping.
|
|
||||||
pub fn new_with_types(mut self, types: HashMap<String, DataType>) -> CsvReader<R> {
|
|
||||||
self.types = Some(types);
|
|
||||||
self.build()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Finalize the builder without specifying types.
|
|
||||||
pub fn build(self) -> CsvReader<R> {
|
|
||||||
CsvReader {
|
|
||||||
reader: self.reader,
|
|
||||||
separators: self.separators,
|
|
||||||
headers: self.headers,
|
|
||||||
types: self.types,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<R: BufRead> CsvReader<R> {
|
|
||||||
/// Read all remaining records into a vector.
|
|
||||||
pub fn read_all(&mut self) -> io::Result<Vec<Record>> {
|
|
||||||
let mut records = Vec::new();
|
|
||||||
while let Some(rec) = self.read_record()? {
|
|
||||||
records.push(rec);
|
|
||||||
}
|
|
||||||
Ok(records)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl CsvReader<BufReader<File>> {
|
|
||||||
/// Create a [`CsvReader`] from a file path using comma separators and
|
|
||||||
/// automatic type detection.
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
///
|
|
||||||
/// ```
|
|
||||||
/// use rustframe::csv::{CsvReader, Value};
|
|
||||||
/// # let path = std::env::temp_dir().join("from_path_auto.csv");
|
|
||||||
/// # std::fs::write(&path, "a,b\n1,true\n").unwrap();
|
|
||||||
/// let mut reader = CsvReader::from_path_auto(&path).unwrap();
|
|
||||||
/// let rec = reader.next().unwrap().unwrap();
|
|
||||||
/// assert_eq!(rec.get("a"), Some(&Value::Int(1)));
|
|
||||||
/// assert_eq!(rec.get("b"), Some(&Value::Bool(true)));
|
|
||||||
/// # std::fs::remove_file(path).unwrap();
|
|
||||||
/// ```
|
|
||||||
pub fn from_path_auto<P: AsRef<Path>>(path: P) -> io::Result<Self> {
|
|
||||||
let file = File::open(path)?;
|
|
||||||
let reader = BufReader::new(file);
|
|
||||||
CsvReader::new_default(reader)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an iterator over records from a file path using default settings.
|
|
||||||
pub fn reader<P: AsRef<Path>>(path: P) -> io::Result<CsvReader<BufReader<File>>> {
|
|
||||||
reader_with(path, vec![','], None)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an iterator over records from a file path with custom separators and type mapping.
|
|
||||||
pub fn reader_with<P: AsRef<Path>>(
|
|
||||||
path: P,
|
|
||||||
separators: Vec<char>,
|
|
||||||
types: Option<HashMap<String, DataType>>,
|
|
||||||
) -> io::Result<CsvReader<BufReader<File>>> {
|
|
||||||
let file = File::open(path)?;
|
|
||||||
let reader = BufReader::new(file);
|
|
||||||
CsvReader::new(reader, separators, types)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Read an entire CSV file into memory using default settings.
|
|
||||||
pub fn read_file<P: AsRef<Path>>(path: P) -> io::Result<Vec<Record>> {
|
|
||||||
read_file_with(path, vec![','], None)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Read an entire CSV file into memory with custom separators and type mapping.
|
|
||||||
pub fn read_file_with<P: AsRef<Path>>(
|
|
||||||
path: P,
|
|
||||||
separators: Vec<char>,
|
|
||||||
types: Option<HashMap<String, DataType>>,
|
|
||||||
) -> io::Result<Vec<Record>> {
|
|
||||||
let mut reader = reader_with(path, separators, types)?;
|
|
||||||
reader.read_all()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn parse_with_type(s: &str, ty: &DataType) -> Value {
|
|
||||||
match ty {
|
|
||||||
DataType::Int => s
|
|
||||||
.parse::<i64>()
|
|
||||||
.map(Value::Int)
|
|
||||||
.unwrap_or_else(|_| Value::String(s.to_string())),
|
|
||||||
DataType::Float => s
|
|
||||||
.parse::<f64>()
|
|
||||||
.map(Value::Float)
|
|
||||||
.unwrap_or_else(|_| Value::String(s.to_string())),
|
|
||||||
DataType::Bool => s
|
|
||||||
.parse::<bool>()
|
|
||||||
.map(Value::Bool)
|
|
||||||
.unwrap_or_else(|_| Value::String(s.to_string())),
|
|
||||||
DataType::UInt => s
|
|
||||||
.parse::<u64>()
|
|
||||||
.map(Value::UInt)
|
|
||||||
.unwrap_or_else(|_| Value::String(s.to_string())),
|
|
||||||
DataType::String => Value::String(s.to_string()),
|
|
||||||
DataType::Date => s
|
|
||||||
.parse::<NaiveDate>()
|
|
||||||
.map(Value::Date)
|
|
||||||
.unwrap_or_else(|_| Value::String(s.to_string())),
|
|
||||||
DataType::DateTime => NaiveDateTime::parse_from_str(s, "%Y-%m-%d %H:%M:%S")
|
|
||||||
.map(Value::DateTime)
|
|
||||||
.unwrap_or_else(|_| Value::String(s.to_string())),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn parse_auto(s: &str) -> Value {
|
|
||||||
if let Ok(i) = s.parse::<i64>() {
|
|
||||||
Value::Int(i)
|
|
||||||
} else if let Ok(f) = s.parse::<f64>() {
|
|
||||||
Value::Float(f)
|
|
||||||
} else if let Ok(b) = s.parse::<bool>() {
|
|
||||||
Value::Bool(b)
|
|
||||||
} else if let Ok(dt) = NaiveDateTime::parse_from_str(s, "%Y-%m-%d %H:%M:%S") {
|
|
||||||
Value::DateTime(dt)
|
|
||||||
} else if let Ok(d) = NaiveDate::parse_from_str(s, "%Y-%m-%d") {
|
|
||||||
Value::Date(d)
|
|
||||||
} else {
|
|
||||||
Value::String(s.to_string())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn parse_line(line: &str, separators: &[char]) -> Vec<String> {
|
|
||||||
let mut fields = Vec::new();
|
|
||||||
let mut current = String::new();
|
|
||||||
let mut in_quotes: Option<char> = None;
|
|
||||||
let chars: Vec<char> = line.chars().collect();
|
|
||||||
let mut i = 0;
|
|
||||||
|
|
||||||
while i < chars.len() {
|
|
||||||
let c = chars[i];
|
|
||||||
if let Some(q) = in_quotes {
|
|
||||||
if c == q {
|
|
||||||
if i + 1 < chars.len() && chars[i + 1] == q {
|
|
||||||
current.push(q);
|
|
||||||
i += 1; // skip escaped quote
|
|
||||||
} else {
|
|
||||||
in_quotes = None;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
current.push(c);
|
|
||||||
}
|
|
||||||
} else if c == '"' || c == '\'' {
|
|
||||||
in_quotes = Some(c);
|
|
||||||
} else if separators.contains(&c) {
|
|
||||||
fields.push(current.clone());
|
|
||||||
current.clear();
|
|
||||||
} else if c == '\r' {
|
|
||||||
// Ignore carriage returns
|
|
||||||
} else if c == '\n' {
|
|
||||||
break;
|
|
||||||
} else {
|
|
||||||
current.push(c);
|
|
||||||
}
|
|
||||||
i += 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
fields.push(current);
|
|
||||||
fields
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
use chrono::{NaiveDate, NaiveDateTime};
|
|
||||||
use std::io::Cursor;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_parse_line() {
|
|
||||||
let line = "a,'b,c',\"d\"\"e\",f";
|
|
||||||
let fields = parse_line(line, &[',']);
|
|
||||||
assert_eq!(fields, vec!["a", "b,c", "d\"e", "f"]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_reader_auto() {
|
|
||||||
let data = "a,b,c\n1,2.5,true\n4,5.0,false\n";
|
|
||||||
let cursor = Cursor::new(data);
|
|
||||||
let mut reader = CsvReader::new_default(cursor).unwrap();
|
|
||||||
let rec = reader.next().unwrap().unwrap();
|
|
||||||
assert_eq!(rec.get("a"), Some(&Value::Int(1)));
|
|
||||||
assert_eq!(rec.get("b"), Some(&Value::Float(2.5)));
|
|
||||||
assert_eq!(rec.get("c"), Some(&Value::Bool(true)));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_reader_with_types() {
|
|
||||||
let data = "a,b,c\n1,2,3\n";
|
|
||||||
let cursor = Cursor::new(data);
|
|
||||||
let mut types = HashMap::new();
|
|
||||||
types.insert("a".to_string(), DataType::Int);
|
|
||||||
types.insert("b".to_string(), DataType::Int);
|
|
||||||
types.insert("c".to_string(), DataType::String);
|
|
||||||
let mut reader = CsvReader::new_with_types(cursor, types).unwrap();
|
|
||||||
let rec = reader.next().unwrap().unwrap();
|
|
||||||
assert_eq!(rec.get("a"), Some(&Value::Int(1)));
|
|
||||||
assert_eq!(rec.get("b"), Some(&Value::Int(2)));
|
|
||||||
assert_eq!(rec.get("c"), Some(&Value::String("3".to_string())));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_chain_headers_and_types() {
|
|
||||||
let data = "1,2\n3,4\n";
|
|
||||||
let cursor = Cursor::new(data);
|
|
||||||
let headers = vec!["x".to_string(), "y".to_string()];
|
|
||||||
let mut types = HashMap::new();
|
|
||||||
types.insert("x".to_string(), DataType::Int);
|
|
||||||
types.insert("y".to_string(), DataType::UInt);
|
|
||||||
let mut reader = CsvReader::new_with_headers(cursor, headers).new_with_types(types);
|
|
||||||
let rec = reader.next().unwrap().unwrap();
|
|
||||||
assert_eq!(rec.get("x"), Some(&Value::Int(1)));
|
|
||||||
assert_eq!(rec.get("y"), Some(&Value::UInt(2)));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_date_types() {
|
|
||||||
let data = "d,dt\n2024-01-01,2024-01-01 12:00:00\n";
|
|
||||||
let cursor = Cursor::new(data);
|
|
||||||
let mut types = HashMap::new();
|
|
||||||
types.insert("d".to_string(), DataType::Date);
|
|
||||||
types.insert("dt".to_string(), DataType::DateTime);
|
|
||||||
let mut reader = CsvReader::new_with_types(cursor, types).unwrap();
|
|
||||||
let rec = reader.next().unwrap().unwrap();
|
|
||||||
let date = NaiveDate::from_ymd_opt(2024, 1, 1).unwrap();
|
|
||||||
let datetime: NaiveDateTime = NaiveDate::from_ymd_opt(2024, 1, 1)
|
|
||||||
.unwrap()
|
|
||||||
.and_hms_opt(12, 0, 0)
|
|
||||||
.unwrap();
|
|
||||||
assert_eq!(rec.get("d"), Some(&Value::Date(date)));
|
|
||||||
assert_eq!(rec.get("dt"), Some(&Value::DateTime(datetime)));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_read_file_all() {
|
|
||||||
let path = std::env::temp_dir().join("csv_full_test.csv");
|
|
||||||
std::fs::write(&path, "a,b\n1,2\n3,4\n").unwrap();
|
|
||||||
let records = read_file(&path).unwrap();
|
|
||||||
assert_eq!(records.len(), 2);
|
|
||||||
assert_eq!(records[1].get("b"), Some(&Value::Int(4)));
|
|
||||||
std::fs::remove_file(path).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_reader_from_path() {
|
|
||||||
let path = std::env::temp_dir().join("csv_iter_test.csv");
|
|
||||||
std::fs::write(&path, "a,b\n5,6\n").unwrap();
|
|
||||||
let mut iter = reader(&path).unwrap();
|
|
||||||
let rec = iter.next().unwrap().unwrap();
|
|
||||||
assert_eq!(rec.get("a"), Some(&Value::Int(5)));
|
|
||||||
assert_eq!(rec.get("b"), Some(&Value::Int(6)));
|
|
||||||
std::fs::remove_file(path).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_from_path_auto_method() {
|
|
||||||
let path = std::env::temp_dir().join("csv_method_auto.csv");
|
|
||||||
std::fs::write(&path, "a,b\n7,true\n").unwrap();
|
|
||||||
let mut reader = CsvReader::from_path_auto(&path).unwrap();
|
|
||||||
let rec = reader.next().unwrap().unwrap();
|
|
||||||
assert_eq!(rec.get("a"), Some(&Value::Int(7)));
|
|
||||||
assert_eq!(rec.get("b"), Some(&Value::Bool(true)));
|
|
||||||
std::fs::remove_file(path).unwrap();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,69 +0,0 @@
|
|||||||
//! CSV handling utilities.
|
|
||||||
//!
|
|
||||||
//! The [`csv`] module offers a flexible [`CsvReader`] with automatic type
|
|
||||||
//! detection and optional builders for custom headers and types.
|
|
||||||
//!
|
|
||||||
//! # Examples
|
|
||||||
//!
|
|
||||||
//! Read from a file with auto type detection:
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::csv::CsvReader;
|
|
||||||
//! # let path = std::env::temp_dir().join("docs_auto.csv");
|
|
||||||
//! # std::fs::write(&path, "a,b\n1,true\n").unwrap();
|
|
||||||
//! let mut reader = CsvReader::from_path_auto(&path).unwrap();
|
|
||||||
//! for rec in reader {
|
|
||||||
//! let rec = rec.unwrap();
|
|
||||||
//! println!("{:?}", rec);
|
|
||||||
//! }
|
|
||||||
//! # std::fs::remove_file(path).unwrap();
|
|
||||||
//! ```
|
|
||||||
//!
|
|
||||||
//! Specify column types explicitly:
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::csv::{CsvReader, DataType, Value};
|
|
||||||
//! use std::collections::HashMap;
|
|
||||||
//! use std::io::Cursor;
|
|
||||||
//! let data = "a,b\n1,2\n";
|
|
||||||
//! let mut types = HashMap::new();
|
|
||||||
//! types.insert("a".into(), DataType::Int);
|
|
||||||
//! types.insert("b".into(), DataType::Float);
|
|
||||||
//! let mut reader = CsvReader::new_with_types(Cursor::new(data), types).unwrap();
|
|
||||||
//! let rec = reader.next().unwrap().unwrap();
|
|
||||||
//! assert_eq!(rec.get("b"), Some(&Value::Float(2.0)));
|
|
||||||
//! ```
|
|
||||||
//!
|
|
||||||
//! Building from custom headers and types:
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::csv::{CsvReader, DataType, Value};
|
|
||||||
//! use std::collections::HashMap;
|
|
||||||
//! use std::io::Cursor;
|
|
||||||
//! let data = "1,2\n";
|
|
||||||
//! let headers = vec!["x".to_string(), "y".to_string()];
|
|
||||||
//! let mut types = HashMap::new();
|
|
||||||
//! types.insert("x".into(), DataType::Int);
|
|
||||||
//! types.insert("y".into(), DataType::UInt);
|
|
||||||
//! let mut reader = CsvReader::new_with_headers(Cursor::new(data), headers).new_with_types(types);
|
|
||||||
//! let rec = reader.next().unwrap().unwrap();
|
|
||||||
//! assert_eq!(rec.get("y"), Some(&Value::UInt(2)));
|
|
||||||
//! ```
|
|
||||||
//!
|
|
||||||
//! Reading an entire file into memory:
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::csv::read_file;
|
|
||||||
//! # let path = std::env::temp_dir().join("docs_full.csv");
|
|
||||||
//! # std::fs::write(&path, "a,b\n1,2\n3,4\n").unwrap();
|
|
||||||
//! let records = read_file(&path).unwrap();
|
|
||||||
//! assert_eq!(records.len(), 2);
|
|
||||||
//! # std::fs::remove_file(path).unwrap();
|
|
||||||
//! ```
|
|
||||||
|
|
||||||
pub mod csv_core;
|
|
||||||
|
|
||||||
pub use csv_core::{
|
|
||||||
CsvReader, CsvReaderBuilder, DataType, Record, Value, reader, reader_with,
|
|
||||||
read_file, read_file_with,
|
|
||||||
};
|
|
||||||
@@ -1,19 +1,3 @@
|
|||||||
//! Core data-frame structures such as [`Frame`] and [`RowIndex`].
|
|
||||||
//!
|
|
||||||
//! The [`Frame`] type stores column-labelled data with an optional row index
|
|
||||||
//! and builds upon the [`crate::matrix::Matrix`] type.
|
|
||||||
//!
|
|
||||||
//! # Examples
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::frame::{Frame, RowIndex};
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
|
||||||
//! let frame = Frame::new(data, vec!["L", "R"], Some(RowIndex::Int(vec![10, 20])));
|
|
||||||
//! assert_eq!(frame.columns(), &["L", "R"]);
|
|
||||||
//! assert_eq!(frame.index(), &RowIndex::Int(vec![10, 20]));
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::Matrix;
|
use crate::matrix::Matrix;
|
||||||
use chrono::NaiveDate;
|
use chrono::NaiveDate;
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
|
|||||||
@@ -1,21 +1,3 @@
|
|||||||
//! High-level interface for working with columnar data and row indices.
|
|
||||||
//!
|
|
||||||
//! The [`Frame`](crate::frame::Frame) type combines a matrix with column labels and a typed row
|
|
||||||
//! index, similar to data frames in other data-analysis libraries.
|
|
||||||
//!
|
|
||||||
//! # Examples
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::frame::{Frame, RowIndex};
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! // Build a frame from two columns labelled "A" and "B".
|
|
||||||
//! let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
|
||||||
//! let frame = Frame::new(data, vec!["A", "B"], None);
|
|
||||||
//!
|
|
||||||
//! assert_eq!(frame["A"], vec![1.0, 2.0]);
|
|
||||||
//! assert_eq!(frame.index(), &RowIndex::Range(0..2));
|
|
||||||
//! ```
|
|
||||||
pub mod base;
|
pub mod base;
|
||||||
pub mod ops;
|
pub mod ops;
|
||||||
|
|
||||||
|
|||||||
@@ -1,16 +1,3 @@
|
|||||||
//! Trait implementations that allow [`Frame`] to reuse matrix operations.
|
|
||||||
//!
|
|
||||||
//! These modules forward numeric and boolean aggregation methods from the
|
|
||||||
//! underlying [`Matrix`](crate::matrix::Matrix) type so that they can be called
|
|
||||||
//! directly on a [`Frame`].
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::frame::Frame;
|
|
||||||
//! use rustframe::matrix::{Matrix, SeriesOps};
|
|
||||||
//!
|
|
||||||
//! let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
|
|
||||||
//! assert_eq!(frame.sum_vertical(), vec![3.0]);
|
|
||||||
//! ```
|
|
||||||
use crate::frame::Frame;
|
use crate::frame::Frame;
|
||||||
use crate::matrix::{Axis, BoolMatrix, BoolOps, FloatMatrix, SeriesOps};
|
use crate::matrix::{Axis, BoolMatrix, BoolOps, FloatMatrix, SeriesOps};
|
||||||
|
|
||||||
|
|||||||
@@ -14,6 +14,3 @@ pub mod compute;
|
|||||||
|
|
||||||
/// Documentation for the [`crate::random`] module.
|
/// Documentation for the [`crate::random`] module.
|
||||||
pub mod random;
|
pub mod random;
|
||||||
|
|
||||||
/// Documentation for the [`crate::csv`] module.
|
|
||||||
pub mod csv;
|
|
||||||
|
|||||||
@@ -1,14 +1,3 @@
|
|||||||
//! Logical reductions for boolean matrices.
|
|
||||||
//!
|
|
||||||
//! The [`BoolOps`] trait mirrors common boolean aggregations such as `any` and
|
|
||||||
//! `all` over rows or columns of a [`BoolMatrix`].
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::matrix::{BoolMatrix, BoolOps};
|
|
||||||
//!
|
|
||||||
//! let m = BoolMatrix::from_vec(vec![true, false], 2, 1);
|
|
||||||
//! assert!(m.any());
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::{Axis, BoolMatrix};
|
use crate::matrix::{Axis, BoolMatrix};
|
||||||
|
|
||||||
/// Boolean operations on `Matrix<bool>`
|
/// Boolean operations on `Matrix<bool>`
|
||||||
|
|||||||
@@ -1,18 +1,3 @@
|
|||||||
//! Core matrix types and operations.
|
|
||||||
//!
|
|
||||||
//! The [`Matrix`](crate::matrix::Matrix) struct provides a simple column‑major 2D array with a
|
|
||||||
//! suite of numeric helpers. Additional traits like [`SeriesOps`](crate::matrix::SeriesOps) and
|
|
||||||
//! [`BoolOps`](crate::matrix::BoolOps) extend functionality for common statistics and logical reductions.
|
|
||||||
//!
|
|
||||||
//! # Examples
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::matrix::Matrix;
|
|
||||||
//!
|
|
||||||
//! let m = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
|
|
||||||
//! assert_eq!(m.shape(), (2, 2));
|
|
||||||
//! assert_eq!(m[(0,1)], 3);
|
|
||||||
//! ```
|
|
||||||
pub mod boolops;
|
pub mod boolops;
|
||||||
pub mod mat;
|
pub mod mat;
|
||||||
pub mod seriesops;
|
pub mod seriesops;
|
||||||
|
|||||||
@@ -1,14 +1,3 @@
|
|||||||
//! Numeric reductions and transformations over matrix axes.
|
|
||||||
//!
|
|
||||||
//! [`SeriesOps`] provides methods like [`SeriesOps::sum_vertical`] or
|
|
||||||
//! [`SeriesOps::map`] that operate on [`FloatMatrix`] values.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::matrix::{Matrix, SeriesOps};
|
|
||||||
//!
|
|
||||||
//! let m = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
|
||||||
//! assert_eq!(m.sum_horizontal(), vec![4.0, 6.0]);
|
|
||||||
//! ```
|
|
||||||
use crate::matrix::{Axis, BoolMatrix, FloatMatrix};
|
use crate::matrix::{Axis, BoolMatrix, FloatMatrix};
|
||||||
|
|
||||||
/// "Series-like" helpers that work along a single axis.
|
/// "Series-like" helpers that work along a single axis.
|
||||||
|
|||||||
@@ -1,13 +1,3 @@
|
|||||||
//! Cryptographically secure random number generator.
|
|
||||||
//!
|
|
||||||
//! On Unix systems this reads from `/dev/urandom`; on Windows it uses the
|
|
||||||
//! system's preferred CNG provider.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::random::{crypto_rng, Rng};
|
|
||||||
//! let mut rng = crypto_rng();
|
|
||||||
//! let _v = rng.next_u64();
|
|
||||||
//! ```
|
|
||||||
#[cfg(unix)]
|
#[cfg(unix)]
|
||||||
use std::{fs::File, io::Read};
|
use std::{fs::File, io::Read};
|
||||||
|
|
||||||
|
|||||||
@@ -1,18 +1,3 @@
|
|||||||
//! Random number generation utilities.
|
|
||||||
//!
|
|
||||||
//! Provides both a simple pseudo-random generator [`Prng`](crate::random::Prng) and a
|
|
||||||
//! cryptographically secure alternative [`CryptoRng`](crate::random::CryptoRng). The
|
|
||||||
//! [`SliceRandom`](crate::random::SliceRandom) trait offers shuffling of slices using any RNG
|
|
||||||
//! implementing [`Rng`](crate::random::Rng).
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::random::{rng, SliceRandom};
|
|
||||||
//!
|
|
||||||
//! let mut rng = rng();
|
|
||||||
//! let mut data = [1, 2, 3, 4];
|
|
||||||
//! data.shuffle(&mut rng);
|
|
||||||
//! assert_eq!(data.len(), 4);
|
|
||||||
//! ```
|
|
||||||
pub mod crypto;
|
pub mod crypto;
|
||||||
pub mod prng;
|
pub mod prng;
|
||||||
pub mod random_core;
|
pub mod random_core;
|
||||||
|
|||||||
@@ -1,11 +1,3 @@
|
|||||||
//! A tiny XorShift64-based pseudo random number generator.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::random::{rng, Rng};
|
|
||||||
//! let mut rng = rng();
|
|
||||||
//! let x = rng.next_u64();
|
|
||||||
//! assert!(x >= 0);
|
|
||||||
//! ```
|
|
||||||
use std::time::{SystemTime, UNIX_EPOCH};
|
use std::time::{SystemTime, UNIX_EPOCH};
|
||||||
|
|
||||||
use crate::random::Rng;
|
use crate::random::Rng;
|
||||||
|
|||||||
@@ -1,11 +1,3 @@
|
|||||||
//! Core traits for random number generators and sampling ranges.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::random::{rng, Rng};
|
|
||||||
//! let mut r = rng();
|
|
||||||
//! let value: f64 = r.random_range(0.0..1.0);
|
|
||||||
//! assert!(value >= 0.0 && value < 1.0);
|
|
||||||
//! ```
|
|
||||||
use std::f64::consts::PI;
|
use std::f64::consts::PI;
|
||||||
use std::ops::Range;
|
use std::ops::Range;
|
||||||
|
|
||||||
|
|||||||
@@ -1,11 +1,3 @@
|
|||||||
//! Extensions for shuffling slices with a random number generator.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::random::{rng, SliceRandom};
|
|
||||||
//! let mut data = [1, 2, 3];
|
|
||||||
//! data.shuffle(&mut rng());
|
|
||||||
//! assert_eq!(data.len(), 3);
|
|
||||||
//! ```
|
|
||||||
use crate::random::Rng;
|
use crate::random::Rng;
|
||||||
|
|
||||||
/// Trait for randomizing slices.
|
/// Trait for randomizing slices.
|
||||||
|
|||||||
@@ -1,10 +1,3 @@
|
|||||||
//! Generation and manipulation of calendar date sequences.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::utils::dateutils::dates::{DateFreq, DatesList};
|
|
||||||
//! let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
|
||||||
//! assert_eq!(list.count().unwrap(), 3);
|
|
||||||
//! ```
|
|
||||||
use chrono::{Datelike, Duration, NaiveDate, Weekday};
|
use chrono::{Datelike, Duration, NaiveDate, Weekday};
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
use std::error::Error;
|
use std::error::Error;
|
||||||
|
|||||||
@@ -1,13 +1,3 @@
|
|||||||
//! Generators for sequences of calendar and business dates.
|
|
||||||
//!
|
|
||||||
//! See [`dates`] for all-day calendars and [`bdates`] for business-day aware
|
|
||||||
//! variants.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::utils::dateutils::{DatesList, DateFreq};
|
|
||||||
//! let list = DatesList::new("2024-01-01".into(), "2024-01-02".into(), DateFreq::Daily);
|
|
||||||
//! assert_eq!(list.count().unwrap(), 2);
|
|
||||||
//! ```
|
|
||||||
pub mod bdates;
|
pub mod bdates;
|
||||||
pub mod dates;
|
pub mod dates;
|
||||||
|
|
||||||
|
|||||||
@@ -1,14 +1,3 @@
|
|||||||
//! Assorted helper utilities.
|
|
||||||
//!
|
|
||||||
//! Currently this module exposes date generation utilities in [`dateutils`](crate::utils::dateutils),
|
|
||||||
//! including calendar and business date sequences.
|
|
||||||
//!
|
|
||||||
//! ```
|
|
||||||
//! use rustframe::utils::DatesList;
|
|
||||||
//! use rustframe::utils::DateFreq;
|
|
||||||
//! let dates = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
|
|
||||||
//! assert_eq!(dates.count().unwrap(), 3);
|
|
||||||
//! ```
|
|
||||||
pub mod dateutils;
|
pub mod dateutils;
|
||||||
|
|
||||||
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};
|
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};
|
||||||
|
|||||||
Reference in New Issue
Block a user