18 Commits

Author SHA1 Message Date
Palash Tyagi
927f4af5f9 Merge cd3aa84e60 into 2926a8a6e8 2025-08-03 01:05:03 +01:00
cd3aa84e60 Merge branch 'main' into csv 2025-07-06 11:35:13 +01:00
27275e2479 Merge branch 'main' into csv 2025-07-06 11:05:20 +01:00
9ef719316a Merge branch 'main' into csv 2025-07-06 01:04:10 +01:00
960fd345c2 Merge branch 'main' into csv 2025-07-04 00:59:25 +01:00
325e75419c Merge branch 'main' into csv 2025-06-07 13:38:30 +01:00
b1dc18d05b Merge branch 'main' into csv 2025-05-15 18:35:46 +01:00
8cbb957764 Merge branch 'main' into csv 2025-05-13 00:08:38 +01:00
b937ed1cdf Merge branch 'main' into csv 2025-05-11 02:00:25 +01:00
2e071a6974 Merge branch 'main' into csv 2025-05-05 02:13:15 +01:00
689169bab2 Merge branch 'main' into csv 2025-05-05 02:01:45 +01:00
a45a5ecf4e Merge branch 'main' into csv 2025-05-04 02:29:12 +01:00
84e1b423f4 Merge branch 'main' into csv 2025-05-04 02:10:55 +01:00
197739bc2f Merge branch 'main' into csv 2025-05-04 01:07:58 +01:00
d2c2ebca0f Merge branch 'main' into csv 2025-05-03 01:32:05 +01:00
f5f3f2c100 Merge branch 'main' into csv 2025-05-02 23:38:37 +01:00
9fcb1ea2cf Merge branch 'main' into csv 2025-05-01 01:14:09 +01:00
Palash Tyagi
623303cf72 Update README to include upcoming features for CSV I/O, Date Utils, and more math functions 2025-05-01 01:13:34 +01:00
48 changed files with 292 additions and 1316 deletions

34
.github/.archive/pr-checks.yml vendored Normal file
View File

@@ -0,0 +1,34 @@
# name: pr-checks
# on:
# pull_request:
# branches: [pr_checks_disabled_for_now]
# types:
# - opened
# # - synchronize
# - reopened
# - edited
# - ready_for_review
# concurrency:
# group: pr-checks-${{ github.event.number }}
# permissions:
# contents: read
# pull-requests: read
# checks: write
# jobs:
# pr-checks:
# name: pr-checks
# runs-on: ubuntu-latest
# steps:
# - uses: actions/checkout@v4
# - name: Run PR checks
# shell: bash
# env:
# GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# PR_NUMBER: ${{ github.event.number }}
# run: |
# python .github/scripts/pr_checks.py $PR_NUMBER

View File

@@ -58,14 +58,6 @@
<h2>A lightweight dataframe & math toolkit for Rust</h2>
<hr style="border: 1px solid #d4d4d4; margin: 20px 0;">
<p>
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a>
<br><br>
📖 <a href="https://magnus167.github.io/rustframe/user-guide">User Guide</a>
<br><br>
📚 <a href="https://magnus167.github.io/rustframe/docs">Docs</a> |
📊 <a href="https://magnus167.github.io/rustframe/benchmark-report/">Benchmarks</a>
@@ -73,7 +65,8 @@
🦀 <a href="https://crates.io/crates/rustframe">Crates.io</a> |
🔖 <a href="https://docs.rs/rustframe/latest/rustframe/">docs.rs</a>
<br><br>
<!-- 🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a> -->
🐙 <a href="https://github.com/Magnus167/rustframe">GitHub</a> |
🌐 <a href="https://gitea.nulltech.uk/Magnus167/rustframe">Gitea mirror</a>
</p>
</main>
</body>

View File

@@ -1,64 +0,0 @@
import os
import sys
from typing import Any, Dict, Optional
import tomllib
import packaging.version
import requests
sys.path.append(os.getcwd())
ACCESS_TOKEN: Optional[str] = os.getenv("GH_TOKEN", None)
GITHUB_REQUEST_CONFIG = {
"Accept": "application/vnd.github.v3+json",
"Authorization": f"token {ACCESS_TOKEN}",
"X-GitHub-Api-Version": "2022-11-28",
}
REPO_OWNER_USERNAME: str = "Magnus167"
REPO_NAME: str = "rustframe"
REPOSITORY_WEB_LINK: str = f"github.com/{REPO_OWNER_USERNAME}/{REPO_NAME}"
CARGO_TOML_PATH: str = "Cargo.toml"
def load_cargo_toml() -> Dict[str, Any]:
if not os.path.exists(CARGO_TOML_PATH):
raise FileNotFoundError(f"{CARGO_TOML_PATH} does not exist.")
with open(CARGO_TOML_PATH, "rb") as file:
return tomllib.load(file)
def get_latest_crates_io_version() -> str:
url = "https://crates.io/api/v1/crates/rustframe"
try:
response = requests.get(url, headers=GITHUB_REQUEST_CONFIG)
response.raise_for_status()
data = response.json()
return data["crate"]["max_version"]
except requests.RequestException as e:
raise RuntimeError(f"Failed to fetch latest version from crates.io: {e}")
def get_current_version() -> str:
cargo_toml = load_cargo_toml()
version = cargo_toml.get("package", {}).get("version", None)
if not version:
raise ValueError("Version not found in Cargo.toml")
return version
def check_version() -> None:
latest_version = get_latest_crates_io_version()
latest_version_tuple = packaging.version.parse(latest_version)
current_version = get_current_version()
current_version_tuple = packaging.version.parse(current_version)
if latest_version_tuple >= current_version_tuple:
print(f"Current version {current_version_tuple} is less than or equal to latest version {latest_version_tuple} on crates.io.")
sys.exit(1)
print(f"Current version: {current_version_tuple}")
if __name__ == "__main__":
check_version()

236
.github/scripts/pr_checks.py vendored Normal file
View File

@@ -0,0 +1,236 @@
import os
import sys
import urllib.request
import urllib.error
import json
from typing import Any, Dict, List, Optional, Tuple
import warnings
import urllib.parse
from time import sleep
sys.path.append(os.getcwd())
ACCESS_TOKEN: Optional[str] = os.getenv("GH_TOKEN", None)
REQUEST_CONFIG = {
"Accept": "application/vnd.github.v3+json",
"Authorization": f"token {ACCESS_TOKEN}",
"X-GitHub-Api-Version": "2022-11-28",
}
REPO_OWNER_USERNAME: str = "Magnus167"
REPO_NAME: str = "rustframe"
REPOSITORY_WEB_LINK: str = f"github.com/{REPO_OWNER_USERNAME}/{REPO_NAME}"
def perform_api_call(
target_url: str,
call_headers: Optional[dict] = REQUEST_CONFIG,
query_parameters: Dict[str, Any] = {},
http_method: str = "GET",
maximum_attempts: int = 5,
) -> Any:
assert http_method in ["GET", "DELETE", "POST", "PATCH", "PUT"]
attempt_count = 0
while attempt_count < maximum_attempts:
try:
if query_parameters:
encoded_parameters = urllib.parse.urlencode(query_parameters)
target_url = f"{target_url}?{encoded_parameters}"
http_request_object = urllib.request.Request(target_url, method=http_method)
if call_headers:
for key, value in call_headers.items():
http_request_object.add_header(key, value)
with urllib.request.urlopen(http_request_object) as server_response:
if server_response.status == 404:
raise Exception(f"404: {target_url} not found.")
return json.loads(server_response.read().decode())
except urllib.error.HTTPError as error_details:
unrecoverable_codes = [403, 404, 422]
if error_details.code in unrecoverable_codes:
raise Exception(f"Request failed: {error_details}")
print(f"Request failed: {error_details}")
attempt_count += 1
sleep(1)
except Exception as error_details:
print(f"Request failed: {error_details}")
attempt_count += 1
sleep(1)
raise Exception("Request failed")
valid_title_prefixes: List[str] = [
"Feature:",
"Bugfix:",
"Documentation:",
"CI/CD:",
"Misc:",
"Suggestion:",
]
def validate_title_format(
item_title: str,
) -> bool:
estr = "Skipping PR title validation"
for _ in range(5):
warnings.warn(estr)
print(estr)
return True
is_format_correct: bool = False
for prefix_pattern in valid_title_prefixes:
cleaned_input: str = item_title.strip()
if cleaned_input.startswith(prefix_pattern):
is_format_correct = True
break
if not is_format_correct:
issue_message: str = (
f"PR title '{item_title}' does not match any "
f"of the accepted patterns: {valid_title_prefixes}"
)
raise ValueError(issue_message)
return is_format_correct
def _locate_segment_indices(
content_string: str,
search_pattern: str,
expect_numeric_segment: bool = False,
) -> Tuple[int, int]:
numeric_characters: List[str] = list(map(str, range(10))) + ["."]
assert bool(content_string)
assert bool(search_pattern)
assert search_pattern in content_string
start_index: int = content_string.find(search_pattern)
end_index: int = content_string.find("-", start_index)
if end_index == -1 and not expect_numeric_segment:
return (start_index, len(content_string))
if expect_numeric_segment:
start_index = start_index + len(search_pattern)
for char_index, current_character in enumerate(content_string[start_index:]):
if current_character not in numeric_characters:
break
end_index = start_index + char_index
return (start_index, end_index)
def _verify_no_merge_flag(
content_string: str,
) -> bool:
assert bool(content_string)
return "DO-NOT-MERGE" not in content_string
def _verify_merge_dependency(
content_string: str,
) -> bool:
assert bool(content_string)
dependency_marker: str = "MERGE-AFTER-#"
if dependency_marker not in content_string:
return True
start_index, end_index = _locate_segment_indices(
content_string=content_string, pattern=dependency_marker, numeric=True
)
dependent_item_id: str = content_string[start_index:end_index].strip()
try:
dependent_item_id = int(dependent_item_id)
except ValueError:
issue_message: str = f"PR number '{dependent_item_id}' is not an integer."
raise ValueError(issue_message)
dependent_item_data: Dict[str, Any] = fetch_item_details(
item_identifier=dependent_item_id
)
is_dependent_item_closed: bool = dependent_item_data["state"] == "closed"
return is_dependent_item_closed
def evaluate_merge_conditions(
item_details: Dict[str, Any],
) -> bool:
item_body_content: str = item_details["body"]
if item_body_content is None:
return True
item_body_content = item_body_content.strip().replace(" ", "-").upper()
item_body_content = f" {item_body_content} "
condition_outcomes: List[bool] = [
_verify_no_merge_flag(content_string=item_body_content),
_verify_merge_dependency(content_string=item_body_content),
]
return all(condition_outcomes)
def validate_item_for_merge(
item_data: Dict[str, Any],
) -> bool:
assert set(["number", "title", "state", "body"]).issubset(item_data.keys())
accumulated_issues: str = ""
if not validate_title_format(item_title=item_data["title"]):
accumulated_issues += (
f"PR #{item_data['number']} is not mergable due to invalid title.\n"
)
if not evaluate_merge_conditions(item_details=item_data):
accumulated_issues += (
f"PR #{item_data['number']} is not mergable due to merge restrictions"
" specified in the PR body."
)
if accumulated_issues:
raise ValueError(accumulated_issues.strip())
return True
def fetch_item_details(
item_identifier: int,
):
api_request_url: str = f"https://api.github.com/repos/{REPO_OWNER_USERNAME}/{REPO_NAME}/pulls/{item_identifier}"
raw_api_response_data: Dict[str, Any] = perform_api_call(target_url=api_request_url)
extracted_item_info: Dict[str, Any] = {
"number": raw_api_response_data["number"],
"title": raw_api_response_data["title"],
"state": raw_api_response_data["state"],
"body": raw_api_response_data["body"],
}
return extracted_item_info
def process_item_request(requested_item_id: int):
extracted_item_info: Dict[str, Any] = fetch_item_details(
item_identifier=requested_item_id
)
if not validate_item_for_merge(item_data=extracted_item_info):
raise ValueError("PR is not mergable.")
print("PR is mergable.")
return True
if __name__ == "__main__":
requested_item_id: int = int(sys.argv[1])
process_item_request(requested_item_id=requested_item_id)

View File

@@ -1,41 +0,0 @@
name: ci-checks
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
on:
push:
branches: [main]
pull_request:
types: [review_requested, ready_for_review, synchronize, opened, reopened]
branches:
- main
- test
- develop
workflow_dispatch:
permissions:
contents: read
id-token: write
pages: write
jobs:
ci-checks:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install Python
uses: actions/setup-python@v5
- name: Install uv
uses: astral-sh/setup-uv@v6
- name: Install dependencies
run: |
uv venv
uv pip install requests packaging
- name: Run CI checks
run: |
uv run .github/scripts/ci_checks.py

View File

@@ -153,6 +153,7 @@ jobs:
echo "<meta http-equiv=\"refresh\" content=\"0; url=../docs/index.html\">" > target/doc/rustframe/index.html
mkdir output
cp tarpaulin-report.html target/doc/docs/
cp tarpaulin-report.json target/doc/docs/
cp tarpaulin-badge.json target/doc/docs/
@@ -165,30 +166,16 @@ jobs:
# copy the benchmark report to the output directory
cp -r benchmark-report target/doc/
mkdir output
cp -r target/doc/* output/
- name: Build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh
- name: Copy user guide to output directory
run: |
mkdir output/user-guide
cp -r docs/book/* output/user-guide/
- name: Add index.html to output directory
run: |
cp .github/htmldocs/index.html output/index.html
cp .github/rustframe_logo.png output/rustframe_logo.png
cp .github/htmldocs/index.html target/doc/index.html
cp .github/rustframe_logo.png target/doc/rustframe_logo.png
- name: Upload Pages artifact
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'
uses: actions/upload-pages-artifact@v3
with:
# path: target/doc/
path: output/
path: target/doc/
- name: Deploy to GitHub Pages
# if: github.event_name == 'push' || github.event_name == 'workflow_dispatch'

View File

@@ -2,12 +2,9 @@ name: run-benchmarks
on:
workflow_dispatch:
pull_request:
branches:
- main
push:
branches:
- test
- main
jobs:
pick-runner:
@@ -37,9 +34,9 @@ jobs:
toolchain: stable
- name: Install Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
uses: astral-sh/setup-uv@v5
- name: Setup venv
run: |
uv venv

View File

@@ -5,8 +5,6 @@ on:
types: [review_requested, ready_for_review, synchronize, opened, reopened]
branches:
- main
- test
- develop
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
@@ -80,8 +78,3 @@ jobs:
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Test build user guide
run: |
cargo binstall mdbook
bash ./docs/build.sh

2
.gitignore vendored
View File

@@ -17,5 +17,3 @@ data/
tarpaulin-report.*
.github/htmldocs/rustframe_logo.png
docs/book/

View File

@@ -1,12 +1,11 @@
[package]
name = "rustframe"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
version = "0.0.1-a.20250805"
version = "0.0.1-a.20250716"
edition = "2021"
license = "GPL-3.0-or-later"
readme = "README.md"
description = "A simple dataframe and math toolkit"
documentation = "https://magnus167.github.io/rustframe/"
description = "A simple dataframe library"
[lib]
name = "rustframe"

View File

@@ -1,12 +1,11 @@
# rustframe
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🌐 [Gitea mirror](https://gitea.nulltech.uk/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
<!-- [![Last commit](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/rustframe/last-commit-date.json)](https://github.com/Magnus167/rustframe) -->
[![codecov](https://codecov.io/gh/Magnus167/rustframe/graph/badge.svg?token=J7ULJEFTVI)](https://codecov.io/gh/Magnus167/rustframe)
[![Coverage](https://img.shields.io/endpoint?url=https://magnus167.github.io/rustframe/docs/tarpaulin-badge.json)](https://magnus167.github.io/rustframe/docs/tarpaulin-report.html)
[![gitea-mirror](https://img.shields.io/badge/git_mirror-blue)](https://gitea.nulltech.uk/Magnus167/rustframe)
---
@@ -50,6 +49,12 @@ The `compute` module provides implementations for various statistical computatio
- Logistic Regression
- Principal Component Analysis
### Coming soon
- **CSV I/O** - read/write CSV files with a simple API.
- **Date Utils** - date math, calendar slicing, indexing, and more.
- **More math** - more math functions and aggregations.
### Heads up
- **Not memoryefficient (yet)** - footprint needs work.
@@ -59,6 +64,7 @@ The `compute` module provides implementations for various statistical computatio
- Optional GPU acceleration (Vulkan or similar) for heavier workloads.
- Straightforward Python bindings using `pyo3`.
- Integration with common ML libraries, or introduce simple ML features.
---
@@ -153,7 +159,7 @@ let zipped_matrix = a.zip(&b, |x, y| x + y);
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
```
## More examples
### More examples
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
@@ -192,21 +198,10 @@ cargo run --example
Each demo runs a couple of mini-scenarios showcasing the APIs.
## Running benchmarks
### Running benchmarks
To run the benchmarks, use:
```bash
cargo bench --features "bench"
```
## Building the user-guide
To build the user guide, use:
```bash
cargo binstall mdbook
bash docs/build.sh
```
This will generate the user guide in the `docs/book` directory.

View File

@@ -1,7 +0,0 @@
[book]
title = "Rustframe User Guide"
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
description = "Guided journey through Rustframe capabilities."
[build]
build-dir = "book"

View File

@@ -1,7 +0,0 @@
#!/usr/bin/env sh
# Build and test the Rustframe user guide using mdBook.
set -e
cd docs
bash gen.sh "$@"
cd ..

View File

@@ -1,14 +0,0 @@
#!/usr/bin/env sh
set -e
cargo clean
cargo build --manifest-path ../Cargo.toml
mdbook test -L ../target/debug/deps "$@"
mdbook build "$@"
cargo build
# cargo build --release

View File

@@ -1,7 +0,0 @@
# Summary
- [Introduction](./introduction.md)
- [Data Manipulation](./data-manipulation.md)
- [Compute Features](./compute.md)
- [Machine Learning](./machine-learning.md)
- [Utilities](./utilities.md)

View File

@@ -1,222 +0,0 @@
# Compute Features
The `compute` module hosts numerical routines for exploratory data analysis.
It covers descriptive statistics, correlations, probability distributions and
some basic inferential tests.
## Basic Statistics
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
use rustframe::matrix::Matrix;
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
assert_eq!(mean(&m), 2.5);
assert_eq!(stddev(&m), 1.118033988749895);
assert_eq!(median(&m), 2.5);
assert_eq!(population_variance(&m), 1.25);
assert_eq!(percentile(&m, 50.0), 3.0);
// column averages returned as 1 x n matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.data(), &[2.0, 3.0]);
let col_means = mean_vertical(&m);
assert_eq!(col_means.data(), & [1.5, 3.5]);
```
### Axis-specific Operations
Operations can be applied along specific axes (rows or columns):
```rust
# extern crate rustframe;
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
use rustframe::matrix::Matrix;
// 3x2 matrix
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Mean along columns (vertical) - returns 1 x cols matrix
let col_means = mean_vertical(&m);
assert_eq!(col_means.shape(), (1, 2));
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
// Mean along rows (horizontal) - returns rows x 1 matrix
let row_means = mean_horizontal(&m);
assert_eq!(row_means.shape(), (3, 1));
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
// Standard deviation along columns
let col_stddev = stddev_vertical(&m);
assert_eq!(col_stddev.shape(), (1, 2));
// Standard deviation along rows
let row_stddev = stddev_horizontal(&m);
assert_eq!(row_stddev.shape(), (3, 1));
```
## Correlation
```rust
# extern crate rustframe;
use rustframe::compute::stats::{pearson, covariance};
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let corr = pearson(&x, &y);
let cov = covariance(&x, &y);
assert!((corr - 1.0).abs() < 1e-8);
assert!((cov - 2.5).abs() < 1e-8);
```
## Covariance
### `covariance`
Computes the population covariance between two equally sized matrices by flattening
their values.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
let cov = covariance(&x, &y);
assert!((cov - 2.5).abs() < 1e-8);
```
### `covariance_vertical`
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
column pair covariances.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_vertical;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_vertical(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
```
### `covariance_horizontal`
Computes covariance between rows (i.e. across columns) returning a matrix that
describes how each pair of rows varies together.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_horizontal;
use rustframe::matrix::Matrix;
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let cov = covariance_horizontal(&m);
assert_eq!(cov.shape(), (2, 2));
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
```
### `covariance_matrix`
Builds a covariance matrix either between columns (`Axis::Col`) or rows
(`Axis::Row`). Each entry represents how two series co-vary.
```rust
# extern crate rustframe;
use rustframe::compute::stats::covariance_matrix;
use rustframe::matrix::{Axis, Matrix};
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
// Covariance between columns
let cov_cols = covariance_matrix(&data, Axis::Col);
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
// Covariance between rows
let cov_rows = covariance_matrix(&data, Axis::Row);
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
```
## Distributions
Probability distribution helpers are available for common PDFs and CDFs.
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::normal_pdf;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let pdf = normal_pdf(x, 0.0, 1.0);
assert_eq!(pdf.data().len(), 2);
```
### Additional Distributions
Rustframe provides several other probability distributions:
```rust
# extern crate rustframe;
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
use rustframe::matrix::Matrix;
// Normal distribution CDF
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
let cdf = normal_cdf(x, 0.0, 1.0);
assert_eq!(cdf.data().len(), 2);
// Binomial distribution PMF
// Probability of k successes in n trials with probability p
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
let pmf = binomial_pmf(3, k.clone(), 0.5);
assert_eq!(pmf.data().len(), 4);
// Binomial distribution CDF
let cdf = binomial_cdf(3, k, 0.5);
assert_eq!(cdf.data().len(), 4);
// Poisson distribution PMF
// Probability of k events with rate parameter lambda
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
let pmf = poisson_pmf(2.0, k);
assert_eq!(pmf.data().len(), 3);
```
### Inferential Statistics
Rustframe provides several inferential statistical tests:
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
// Two-sample t-test
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_statistic, p_value) = t_test(&sample1, &sample2);
assert!((t_statistic + 5.0).abs() < 1e-5);
assert!(p_value > 0.0 && p_value < 1.0);
// Chi-square test of independence
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2_statistic, p_value) = chi2_test(&observed);
assert!(chi2_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
// One-way ANOVA
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
let groups = vec![&group1, &group2, &group3];
let (f_statistic, p_value) = anova(groups);
assert!(f_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
```
With the basics covered, explore predictive models in the
[machine learning](./machine-learning.md) chapter.

View File

@@ -1,157 +0,0 @@
# Data Manipulation
Rustframe's `Frame` type couples tabular data with
column labels and a typed row index. Frames expose a familiar API for loading
data, selecting rows or columns and performing aggregations.
## Creating a Frame
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
assert_eq!(frame["A"], vec![1.0, 2.0]);
```
## Indexing Rows
Row labels can be integers, dates or a default range. Retrieving a row returns a
view that lets you inspect values by column name or position.
```rust
# extern crate rustframe;
# extern crate chrono;
use chrono::NaiveDate;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let d = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let index = RowIndex::Date(vec![d(2024, 1, 1), d(2024, 1, 2)]);
let mut frame = Frame::new(data, vec!["A", "B"], Some(index));
assert_eq!(frame.get_row_date(d(2024, 1, 2))["B"], 4.0);
// mutate by row key
frame.get_row_date_mut(d(2024, 1, 1)).set_by_index(0, 9.0);
assert_eq!(frame.get_row_date(d(2024, 1, 1))["A"], 9.0);
```
## Column operations
Columns can be inserted, renamed, removed or reordered in place.
```rust
# extern crate rustframe;
use rustframe::frame::{Frame, RowIndex};
use rustframe::matrix::Matrix;
let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
let mut frame = Frame::new(data, vec!["X", "Y"], Some(RowIndex::Range(0..2)));
frame.add_column("Z", vec![5, 6]);
frame.rename("Y", "W");
let removed = frame.delete_column("X");
assert_eq!(removed, vec![1, 2]);
frame.sort_columns();
assert_eq!(frame.columns(), &["W", "Z"]);
```
## Aggregations
Any numeric aggregation available on `Matrix` is forwarded to `Frame`.
```rust
# extern crate rustframe;
use rustframe::frame::Frame;
use rustframe::matrix::{Matrix, SeriesOps};
let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]), vec!["A", "B"], None);
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
```
## Matrix Operations
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let sum = data1.clone() + data2.clone();
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
let product = data1.clone() * data2.clone();
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
let scalar_product = data1.clone() * 2.0;
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
let equals = data1 == data1.clone();
assert_eq!(equals, true);
```
### Advanced Matrix Operations
Matrices support a variety of advanced operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
// Matrix multiplication (dot product)
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let product = a.matrix_mul(&b);
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
// Transpose
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let transposed = m.transpose();
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
// Map function over all elements
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let squared = m.map(|x| x * x);
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
// Zip two matrices with a function
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
let zipped = a.zip(&b, |x, y| x + y);
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
```
### Matrix Reductions
Matrices support various reduction operations:
```rust
# extern crate rustframe;
use rustframe::matrix::{Matrix, SeriesOps};
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
// Sum along columns (vertical)
let col_sums = m.sum_vertical();
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
// Sum along rows (horizontal)
let row_sums = m.sum_horizontal();
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
// Cumulative sum along columns
let col_cumsum = m.cumsum_vertical();
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
// Cumulative sum along rows
let row_cumsum = m.cumsum_horizontal();
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
```
With the basics covered, continue to the [compute features](./compute.md)
chapter for statistics and analytics.

View File

@@ -1,40 +0,0 @@
# Introduction
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
API approachable while offering handy features for small analytical or
educational projects.
Rustframe bundles:
- columnlabelled frames built on a fast columnmajor matrix
- familiar elementwise math and aggregation routines
- a growing `compute` module for statistics and machine learning
- utilities for dates and random numbers
```rust
# extern crate rustframe;
use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}};
let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
let frame = Frame::new(data, vec!["A", "B"], None);
// Perform column wise aggregation
assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
```
## Resources
- [GitHub repository](https://github.com/Magnus167/rustframe)
- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe)
- [Code coverage](https://codecov.io/gh/Magnus167/rustframe)
This guide walks through the main building blocks of the library. Each chapter
contains runnable snippets so you can follow along:
1. [Data manipulation](./data-manipulation.md) for loading and transforming data
2. [Compute features](./compute.md) for statistics and analytics
3. [Machine learning](./machine-learning.md) for predictive models
4. [Utilities](./utilities.md) for supporting helpers and upcoming modules

View File

@@ -1,282 +0,0 @@
# Machine Learning
The `compute::models` module bundles several learning algorithms that operate on
`Matrix` structures. These examples highlight the basic training and prediction
APIs. For more endtoend walkthroughs see the examples directory in the
repository.
Currently implemented models include:
- Linear and logistic regression
- Kmeans clustering
- Principal component analysis (PCA)
- Gaussian Naive Bayes
- Dense neural networks
## Linear Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
let mut model = LinReg::new(1);
model.fit(&x, &y, 0.01, 100);
let preds = model.predict(&x);
assert_eq!(preds.rows(), 4);
```
## K-means Walkthrough
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
let (model, _labels) = KMeans::fit(&data, 2, 10, 1e-4);
let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
let cluster = model.predict(&new_point)[0];
```
## Logistic Regression
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
let mut model = LogReg::new(1);
model.fit(&x, &y, 0.1, 200);
let preds = model.predict_proba(&x);
assert_eq!(preds.rows(), 4);
```
## Principal Component Analysis
```rust
# extern crate rustframe;
use rustframe::compute::models::pca::PCA;
use rustframe::matrix::Matrix;
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
let pca = PCA::fit(&data, 1, 0);
let transformed = pca.transform(&data);
assert_eq!(transformed.cols(), 1);
```
## Gaussian Naive Bayes
Gaussian Naive Bayes classifier for continuous features:
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
1.0, 2.0,
2.0, 3.0,
3.0, 4.0,
4.0, 5.0
], 4, 2);
// Class labels (0 or 1)
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
// Train the model
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Dense Neural Networks
Simple fully connected neural network:
```rust
# extern crate rustframe;
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
use rustframe::matrix::Matrix;
// Training data with 2 features
let x = Matrix::from_rows_vec(vec![
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
1.0, 1.0
], 4, 2);
// XOR target outputs
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
// Create a neural network with 2 hidden layers
let config = DenseNNConfig {
input_size: 2,
hidden_layers: vec![4, 4],
output_size: 1,
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
initializer: InitializerKind::Uniform(0.5),
loss: LossKind::MSE,
learning_rate: 0.1,
epochs: 1000,
};
let mut model = DenseNN::new(config);
// Train the model
model.train(&x, &y);
// Make predictions
let predictions = model.predict(&x);
assert_eq!(predictions.rows(), 4);
```
## Real-world Examples
### Housing Price Prediction
```rust
# extern crate rustframe;
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
// Features: square feet and bedrooms
let features = Matrix::from_rows_vec(vec![
2100.0, 3.0,
1600.0, 2.0,
2400.0, 4.0,
1400.0, 2.0,
], 4, 2);
// Sale prices
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
let mut model = LinReg::new(2);
model.fit(&features, &target, 1e-8, 10_000);
// Predict price of a new home
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
let predicted_price = model.predict(&new_home);
println!("Predicted price: ${}", predicted_price.data()[0]);
```
### Spam Detection
```rust
# extern crate rustframe;
use rustframe::compute::models::logreg::LogReg;
use rustframe::matrix::Matrix;
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
let x = Matrix::from_rows_vec(
vec![
// ─────────── spam examples ───────────
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
1.0, 0.0, 1.0, 0.0, 1.0, // ...
0.0, 1.0, 1.0, 1.0, 0.0, // ...
2.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 1.0, 0.0, 1.0, // ...
1.0, 1.0, 1.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 1.0, 1.0, // ...
// ─────────── ham examples ───────────
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
0.0, 0.0, 0.0, 1.0, 1.0, // ...
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0, // ...
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
0.0, 0.0, 0.0, 0.0, 0.0, // ...
0.0, 0.0, 0.0, 1.0, 0.0,
],
20,
5,
);
// Labels: 1 = spam, 0 = ham
let y = Matrix::from_vec(
vec![
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
],
20,
1,
);
// Train
let mut model = LogReg::new(5);
model.fit(&x, &y, 0.01, 5000);
// Predict
// e.g. "free money offer"
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
let email = Matrix::from_vec(email_data, 1, 5);
let prob_spam = model.predict_proba(&email);
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
```
### Iris Flower Classification
```rust
# extern crate rustframe;
use rustframe::compute::models::gaussian_nb::GaussianNB;
use rustframe::matrix::Matrix;
// Features: sepal length and petal length
let x = Matrix::from_rows_vec(vec![
5.1, 1.4, // setosa
4.9, 1.4, // setosa
6.2, 4.5, // versicolor
5.9, 5.1, // virginica
], 4, 2);
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
let names = vec!["setosa", "versicolor", "virginica"];
let mut model = GaussianNB::new(1e-9, true);
model.fit(&x, &y);
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
let predicted_class = model.predict(&sample);
let class_name = names[predicted_class.data()[0] as usize];
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
```
### Customer Segmentation
```rust
# extern crate rustframe;
use rustframe::compute::models::k_means::KMeans;
use rustframe::matrix::Matrix;
// Each row: [age, annual_income]
let customers = Matrix::from_rows_vec(
vec![
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
],
4,
2,
);
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
let cluster = model.predict(&new_customer)[0];
println!("New customer belongs to cluster: {}", cluster);
println!("Cluster labels: {:?}", labels);
```
For helper functions and upcoming modules, visit the
[utilities](./utilities.md) section.

View File

@@ -1,63 +0,0 @@
# Utilities
Utilities provide handy helpers around the core library. Existing tools
include:
- Date utilities for generating calendar sequences and businessday sets
- Random number generators for simulations and testing
## Date Helpers
```rust
# extern crate rustframe;
use rustframe::utils::dateutils::{BDatesList, BDateFreq, DatesList, DateFreq};
// Calendar sequence
let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
assert_eq!(list.count().unwrap(), 3);
// Business days starting from 20240102
let bdates = BDatesList::from_n_periods("2024-01-02".into(), BDateFreq::Daily, 3).unwrap();
assert_eq!(bdates.list().unwrap().len(), 3);
```
## Random Numbers
The `random` module offers deterministic and cryptographically secure RNGs.
```rust
# extern crate rustframe;
use rustframe::random::{Prng, Rng};
let mut rng = Prng::new(42);
let v1 = rng.next_u64();
let v2 = rng.next_u64();
assert_ne!(v1, v2);
```
## Stats Functions
```rust
# extern crate rustframe;
use rustframe::matrix::Matrix;
use rustframe::compute::stats::descriptive::{mean, median, stddev};
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let mean_value = mean(&data);
assert_eq!(mean_value, 3.0);
let median_value = median(&data);
assert_eq!(median_value, 3.0);
let std_value = stddev(&data);
assert_eq!(std_value, 2.0_f64.sqrt());
```
Upcoming utilities will cover:
- Data import/export helpers
- Visualization adapters
- Streaming data interfaces
Contributions to these sections are welcome!

View File

@@ -1,16 +1,3 @@
//! Algorithms and statistical utilities built on top of the core matrices.
//!
//! This module groups together machinelearning models and statistical helper
//! functions. For quick access to basic statistics see [`stats`](crate::compute::stats), while
//! [`models`](crate::compute::models) contains small learning algorithms.
//!
//! ```
//! use rustframe::compute::stats;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0], 3, 1);
//! assert_eq!(stats::mean(&m), 2.0);
//! ```
pub mod models;
pub mod stats;

View File

@@ -1,15 +1,3 @@
//! Common activation functions used in neural networks.
//!
//! Functions operate element-wise on [`Matrix`] values.
//!
//! ```
//! use rustframe::compute::models::activations::sigmoid;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
//! let y = sigmoid(&x);
//! assert!((y.get(0,0) - 0.5).abs() < 1e-6);
//! ```
use crate::matrix::{Matrix, SeriesOps};
pub fn sigmoid(x: &Matrix<f64>) -> Matrix<f64> {

View File

@@ -1,30 +1,3 @@
//! A minimal dense neural network implementation for educational purposes.
//!
//! Layers operate on [`Matrix`] values and support ReLU and Sigmoid
//! activations. This is not meant to be a performant deeplearning framework
//! but rather a small example of how the surrounding matrix utilities can be
//! composed.
//!
//! ```
//! use rustframe::compute::models::dense_nn::{ActivationKind, DenseNN, DenseNNConfig, InitializerKind, LossKind};
//! use rustframe::matrix::Matrix;
//!
//! // Tiny network with one input and one output neuron.
//! let config = DenseNNConfig {
//! input_size: 1,
//! hidden_layers: vec![],
//! output_size: 1,
//! activations: vec![ActivationKind::Relu],
//! initializer: InitializerKind::Uniform(0.5),
//! loss: LossKind::MSE,
//! learning_rate: 0.1,
//! epochs: 1,
//! };
//! let mut nn = DenseNN::new(config);
//! let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0], 2, 1);
//! nn.train(&x, &y);
//! ```
use crate::compute::models::activations::{drelu, relu, sigmoid};
use crate::matrix::{Matrix, SeriesOps};
use crate::random::prelude::*;

View File

@@ -1,16 +1,3 @@
//! Gaussian Naive Bayes classifier for dense matrices.
//!
//! ```
//! use rustframe::compute::models::gaussian_nb::GaussianNB;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 1.0, 2.0], 2, 2); // two samples
//! let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
//! let mut model = GaussianNB::new(1e-9, false);
//! model.fit(&x, &y);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 2);
//! ```
use crate::matrix::Matrix;
use std::collections::HashMap;

View File

@@ -1,14 +1,3 @@
//! Simple k-means clustering working on [`Matrix`] data.
//!
//! ```
//! use rustframe::compute::models::k_means::KMeans;
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_vec(vec![1.0, 1.0, 5.0, 5.0], 2, 2);
//! let (model, labels) = KMeans::fit(&data, 2, 10, 1e-4);
//! assert_eq!(model.centroids.rows(), 2);
//! assert_eq!(labels.len(), 2);
//! ```
use crate::compute::stats::mean_vertical;
use crate::matrix::Matrix;
use crate::random::prelude::*;

View File

@@ -1,16 +1,3 @@
//! Ordinary least squares linear regression.
//!
//! ```
//! use rustframe::compute::models::linreg::LinReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
//! let mut model = LinReg::new(1);
//! model.fit(&x, &y, 0.01, 100);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 4);
//! ```
use crate::matrix::{Matrix, SeriesOps};
pub struct LinReg {

View File

@@ -1,16 +1,3 @@
//! Binary logistic regression classifier.
//!
//! ```
//! use rustframe::compute::models::logreg::LogReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
//! let mut model = LogReg::new(1);
//! model.fit(&x, &y, 0.1, 100);
//! let preds = model.predict(&x);
//! assert_eq!(preds[(0,0)], 0.0);
//! ```
use crate::compute::models::activations::sigmoid;
use crate::matrix::{Matrix, SeriesOps};

View File

@@ -1,19 +1,3 @@
//! Lightweight machinelearning models built on matrices.
//!
//! Models are intentionally minimal and operate on the [`Matrix`](crate::matrix::Matrix) type for
//! inputs and parameters.
//!
//! ```
//! use rustframe::compute::models::linreg::LinReg;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
//! let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
//! let mut model = LinReg::new(1);
//! model.fit(&x, &y, 0.01, 1000);
//! let preds = model.predict(&x);
//! assert_eq!(preds.rows(), 4);
//! ```
pub mod activations;
pub mod dense_nn;
pub mod gaussian_nb;

View File

@@ -1,14 +1,3 @@
//! Principal Component Analysis using covariance matrices.
//!
//! ```
//! use rustframe::compute::models::pca::PCA;
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_rows_vec(vec![1.0, 1.0, 2.0, 2.0], 2, 2);
//! let pca = PCA::fit(&data, 1, 0);
//! let projected = pca.transform(&data);
//! assert_eq!(projected.cols(), 1);
//! ```
use crate::compute::stats::correlation::covariance_matrix;
use crate::compute::stats::descriptive::mean_vertical;
use crate::matrix::{Axis, Matrix, SeriesOps};

View File

@@ -1,16 +1,3 @@
//! Covariance and correlation helpers.
//!
//! This module provides routines for measuring the relationship between
//! columns or rows of matrices.
//!
//! ```
//! use rustframe::compute::stats::correlation;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! let cov = correlation::covariance(&x, &x);
//! assert!((cov - 1.25).abs() < 1e-8);
//! ```
use crate::compute::stats::{mean, mean_horizontal, mean_vertical, stddev};
use crate::matrix::{Axis, Matrix, SeriesOps};

View File

@@ -1,15 +1,3 @@
//! Descriptive statistics for matrices.
//!
//! Provides means, variances, medians and other aggregations computed either
//! across the whole matrix or along a specific axis.
//!
//! ```
//! use rustframe::compute::stats::descriptive;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! assert_eq!(descriptive::mean(&m), 2.5);
//! ```
use crate::matrix::{Axis, Matrix, SeriesOps};
pub fn mean(x: &Matrix<f64>) -> f64 {

View File

@@ -1,16 +1,3 @@
//! Probability distribution functions applied element-wise to matrices.
//!
//! Includes approximations for the normal, uniform and gamma distributions as
//! well as the error function.
//!
//! ```
//! use rustframe::compute::stats::distributions;
//! use rustframe::matrix::Matrix;
//!
//! let x = Matrix::from_vec(vec![0.0], 1, 1);
//! let pdf = distributions::normal_pdf(x.clone(), 0.0, 1.0);
//! assert!((pdf.get(0,0) - 0.3989).abs() < 1e-3);
//! ```
use crate::matrix::{Matrix, SeriesOps};
use std::f64::consts::PI;

View File

@@ -1,14 +1,3 @@
//! Basic inferential statistics such as ttests and chisquare tests.
//!
//! ```
//! use rustframe::compute::stats::inferential;
//! use rustframe::matrix::Matrix;
//!
//! let a = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
//! let b = Matrix::from_vec(vec![1.1, 1.9], 2, 1);
//! let (t, _p) = inferential::t_test(&a, &b);
//! assert!(t.abs() < 1.0);
//! ```
use crate::matrix::{Matrix, SeriesOps};
use crate::compute::stats::{gamma_cdf, mean, sample_variance};

View File

@@ -1,16 +1,3 @@
//! Statistical routines for matrices.
//!
//! Functions are grouped into submodules for descriptive statistics,
//! correlations, probability distributions and basic inferential tests.
//!
//! ```
//! use rustframe::compute::stats;
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
//! let cov = stats::covariance(&m, &m);
//! assert!((cov - 1.25).abs() < 1e-8);
//! ```
pub mod correlation;
pub mod descriptive;
pub mod distributions;

View File

@@ -1,19 +1,3 @@
//! Core data-frame structures such as [`Frame`] and [`RowIndex`].
//!
//! The [`Frame`] type stores column-labelled data with an optional row index
//! and builds upon the [`crate::matrix::Matrix`] type.
//!
//! # Examples
//!
//! ```
//! use rustframe::frame::{Frame, RowIndex};
//! use rustframe::matrix::Matrix;
//!
//! let data = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
//! let frame = Frame::new(data, vec!["L", "R"], Some(RowIndex::Int(vec![10, 20])));
//! assert_eq!(frame.columns(), &["L", "R"]);
//! assert_eq!(frame.index(), &RowIndex::Int(vec![10, 20]));
//! ```
use crate::matrix::Matrix;
use chrono::NaiveDate;
use std::collections::HashMap;

View File

@@ -1,21 +1,3 @@
//! High-level interface for working with columnar data and row indices.
//!
//! The [`Frame`](crate::frame::Frame) type combines a matrix with column labels and a typed row
//! index, similar to data frames in other data-analysis libraries.
//!
//! # Examples
//!
//! ```
//! use rustframe::frame::{Frame, RowIndex};
//! use rustframe::matrix::Matrix;
//!
//! // Build a frame from two columns labelled "A" and "B".
//! let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
//! let frame = Frame::new(data, vec!["A", "B"], None);
//!
//! assert_eq!(frame["A"], vec![1.0, 2.0]);
//! assert_eq!(frame.index(), &RowIndex::Range(0..2));
//! ```
pub mod base;
pub mod ops;

View File

@@ -1,16 +1,3 @@
//! Trait implementations that allow [`Frame`] to reuse matrix operations.
//!
//! These modules forward numeric and boolean aggregation methods from the
//! underlying [`Matrix`](crate::matrix::Matrix) type so that they can be called
//! directly on a [`Frame`].
//!
//! ```
//! use rustframe::frame::Frame;
//! use rustframe::matrix::{Matrix, SeriesOps};
//!
//! let frame = Frame::new(Matrix::from_cols(vec![vec![1.0, 2.0]]), vec!["A"], None);
//! assert_eq!(frame.sum_vertical(), vec![3.0]);
//! ```
use crate::frame::Frame;
use crate::matrix::{Axis, BoolMatrix, BoolOps, FloatMatrix, SeriesOps};

View File

@@ -1,14 +1,3 @@
//! Logical reductions for boolean matrices.
//!
//! The [`BoolOps`] trait mirrors common boolean aggregations such as `any` and
//! `all` over rows or columns of a [`BoolMatrix`].
//!
//! ```
//! use rustframe::matrix::{BoolMatrix, BoolOps};
//!
//! let m = BoolMatrix::from_vec(vec![true, false], 2, 1);
//! assert!(m.any());
//! ```
use crate::matrix::{Axis, BoolMatrix};
/// Boolean operations on `Matrix<bool>`

View File

@@ -1,18 +1,3 @@
//! Core matrix types and operations.
//!
//! The [`Matrix`](crate::matrix::Matrix) struct provides a simple columnmajor 2D array with a
//! suite of numeric helpers. Additional traits like [`SeriesOps`](crate::matrix::SeriesOps) and
//! [`BoolOps`](crate::matrix::BoolOps) extend functionality for common statistics and logical reductions.
//!
//! # Examples
//!
//! ```
//! use rustframe::matrix::Matrix;
//!
//! let m = Matrix::from_cols(vec![vec![1, 2], vec![3, 4]]);
//! assert_eq!(m.shape(), (2, 2));
//! assert_eq!(m[(0,1)], 3);
//! ```
pub mod boolops;
pub mod mat;
pub mod seriesops;

View File

@@ -1,14 +1,3 @@
//! Numeric reductions and transformations over matrix axes.
//!
//! [`SeriesOps`] provides methods like [`SeriesOps::sum_vertical`] or
//! [`SeriesOps::map`] that operate on [`FloatMatrix`] values.
//!
//! ```
//! use rustframe::matrix::{Matrix, SeriesOps};
//!
//! let m = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
//! assert_eq!(m.sum_horizontal(), vec![4.0, 6.0]);
//! ```
use crate::matrix::{Axis, BoolMatrix, FloatMatrix};
/// "Series-like" helpers that work along a single axis.

View File

@@ -1,13 +1,3 @@
//! Cryptographically secure random number generator.
//!
//! On Unix systems this reads from `/dev/urandom`; on Windows it uses the
//! system's preferred CNG provider.
//!
//! ```
//! use rustframe::random::{crypto_rng, Rng};
//! let mut rng = crypto_rng();
//! let _v = rng.next_u64();
//! ```
#[cfg(unix)]
use std::{fs::File, io::Read};

View File

@@ -1,18 +1,3 @@
//! Random number generation utilities.
//!
//! Provides both a simple pseudo-random generator [`Prng`](crate::random::Prng) and a
//! cryptographically secure alternative [`CryptoRng`](crate::random::CryptoRng). The
//! [`SliceRandom`](crate::random::SliceRandom) trait offers shuffling of slices using any RNG
//! implementing [`Rng`](crate::random::Rng).
//!
//! ```
//! use rustframe::random::{rng, SliceRandom};
//!
//! let mut rng = rng();
//! let mut data = [1, 2, 3, 4];
//! data.shuffle(&mut rng);
//! assert_eq!(data.len(), 4);
//! ```
pub mod crypto;
pub mod prng;
pub mod random_core;

View File

@@ -1,11 +1,3 @@
//! A tiny XorShift64-based pseudo random number generator.
//!
//! ```
//! use rustframe::random::{rng, Rng};
//! let mut rng = rng();
//! let x = rng.next_u64();
//! assert!(x >= 0);
//! ```
use std::time::{SystemTime, UNIX_EPOCH};
use crate::random::Rng;

View File

@@ -1,11 +1,3 @@
//! Core traits for random number generators and sampling ranges.
//!
//! ```
//! use rustframe::random::{rng, Rng};
//! let mut r = rng();
//! let value: f64 = r.random_range(0.0..1.0);
//! assert!(value >= 0.0 && value < 1.0);
//! ```
use std::f64::consts::PI;
use std::ops::Range;

View File

@@ -1,11 +1,3 @@
//! Extensions for shuffling slices with a random number generator.
//!
//! ```
//! use rustframe::random::{rng, SliceRandom};
//! let mut data = [1, 2, 3];
//! data.shuffle(&mut rng());
//! assert_eq!(data.len(), 3);
//! ```
use crate::random::Rng;
/// Trait for randomizing slices.

View File

@@ -1,10 +1,3 @@
//! Generation and manipulation of calendar date sequences.
//!
//! ```
//! use rustframe::utils::dateutils::dates::{DateFreq, DatesList};
//! let list = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
//! assert_eq!(list.count().unwrap(), 3);
//! ```
use chrono::{Datelike, Duration, NaiveDate, Weekday};
use std::collections::HashMap;
use std::error::Error;

View File

@@ -1,13 +1,3 @@
//! Generators for sequences of calendar and business dates.
//!
//! See [`dates`] for all-day calendars and [`bdates`] for business-day aware
//! variants.
//!
//! ```
//! use rustframe::utils::dateutils::{DatesList, DateFreq};
//! let list = DatesList::new("2024-01-01".into(), "2024-01-02".into(), DateFreq::Daily);
//! assert_eq!(list.count().unwrap(), 2);
//! ```
pub mod bdates;
pub mod dates;

View File

@@ -1,14 +1,3 @@
//! Assorted helper utilities.
//!
//! Currently this module exposes date generation utilities in [`dateutils`](crate::utils::dateutils),
//! including calendar and business date sequences.
//!
//! ```
//! use rustframe::utils::DatesList;
//! use rustframe::utils::DateFreq;
//! let dates = DatesList::new("2024-01-01".into(), "2024-01-03".into(), DateFreq::Daily);
//! assert_eq!(dates.count().unwrap(), 3);
//! ```
pub mod dateutils;
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};