mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:30:01 +00:00
Compare commits
3 Commits
c8c62a9f6a
...
3d2771bec8
Author | SHA1 | Date | |
---|---|---|---|
![]() |
3d2771bec8 | ||
![]() |
b687fd4e6b | ||
![]() |
68a01ab528 |
@ -8,21 +8,54 @@ some basic inferential tests.
|
|||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate rustframe;
|
# extern crate rustframe;
|
||||||
use rustframe::compute::stats::{mean, mean_vertical, stddev, median};
|
use rustframe::compute::stats::{mean, mean_horizontal, mean_vertical, stddev, median, population_variance, percentile};
|
||||||
use rustframe::matrix::Matrix;
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
assert_eq!(mean(&m), 2.5);
|
assert_eq!(mean(&m), 2.5);
|
||||||
assert_eq!(stddev(&m), 1.118033988749895);
|
assert_eq!(stddev(&m), 1.118033988749895);
|
||||||
assert_eq!(median(&m), 2.5);
|
assert_eq!(median(&m), 2.5);
|
||||||
|
assert_eq!(population_variance(&m), 1.25);
|
||||||
|
assert_eq!(percentile(&m, 50.0), 3.0);
|
||||||
// column averages returned as 1 x n matrix
|
// column averages returned as 1 x n matrix
|
||||||
|
let row_means = mean_horizontal(&m);
|
||||||
|
assert_eq!(row_means.data(), &[2.0, 3.0]);
|
||||||
let col_means = mean_vertical(&m);
|
let col_means = mean_vertical(&m);
|
||||||
assert_eq!(col_means.data(), & [1.5, 3.5]);
|
assert_eq!(col_means.data(), & [1.5, 3.5]);
|
||||||
```
|
```
|
||||||
|
|
||||||
## Correlation
|
### Axis-specific Operations
|
||||||
|
|
||||||
Correlation functions help measure linear relationships between datasets.
|
Operations can be applied along specific axes (rows or columns):
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::stats::{mean_vertical, mean_horizontal, stddev_vertical, stddev_horizontal};
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
// 3x2 matrix
|
||||||
|
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
|
||||||
|
|
||||||
|
// Mean along columns (vertical) - returns 1 x cols matrix
|
||||||
|
let col_means = mean_vertical(&m);
|
||||||
|
assert_eq!(col_means.shape(), (1, 2));
|
||||||
|
assert_eq!(col_means.data(), &[3.0, 4.0]); // [(1+3+5)/3, (2+4+6)/3]
|
||||||
|
|
||||||
|
// Mean along rows (horizontal) - returns rows x 1 matrix
|
||||||
|
let row_means = mean_horizontal(&m);
|
||||||
|
assert_eq!(row_means.shape(), (3, 1));
|
||||||
|
assert_eq!(row_means.data(), &[1.5, 3.5, 5.5]); // [(1+2)/2, (3+4)/2, (5+6)/2]
|
||||||
|
|
||||||
|
// Standard deviation along columns
|
||||||
|
let col_stddev = stddev_vertical(&m);
|
||||||
|
assert_eq!(col_stddev.shape(), (1, 2));
|
||||||
|
|
||||||
|
// Standard deviation along rows
|
||||||
|
let row_stddev = stddev_horizontal(&m);
|
||||||
|
assert_eq!(row_stddev.shape(), (3, 1));
|
||||||
|
```
|
||||||
|
|
||||||
|
## Correlation
|
||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate rustframe;
|
# extern crate rustframe;
|
||||||
@ -51,5 +84,68 @@ let pdf = normal_pdf(x, 0.0, 1.0);
|
|||||||
assert_eq!(pdf.data().len(), 2);
|
assert_eq!(pdf.data().len(), 2);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Additional Distributions
|
||||||
|
|
||||||
|
Rustframe provides several other probability distributions:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::stats::distributions::{normal_cdf, binomial_pmf, binomial_cdf, poisson_pmf};
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
// Normal distribution CDF
|
||||||
|
let x = Matrix::from_vec(vec![0.0, 1.0], 1, 2);
|
||||||
|
let cdf = normal_cdf(x, 0.0, 1.0);
|
||||||
|
assert_eq!(cdf.data().len(), 2);
|
||||||
|
|
||||||
|
// Binomial distribution PMF
|
||||||
|
// Probability of k successes in n trials with probability p
|
||||||
|
let k = Matrix::from_vec(vec![0_u64, 1, 2, 3], 1, 4);
|
||||||
|
let pmf = binomial_pmf(3, k.clone(), 0.5);
|
||||||
|
assert_eq!(pmf.data().len(), 4);
|
||||||
|
|
||||||
|
// Binomial distribution CDF
|
||||||
|
let cdf = binomial_cdf(3, k, 0.5);
|
||||||
|
assert_eq!(cdf.data().len(), 4);
|
||||||
|
|
||||||
|
// Poisson distribution PMF
|
||||||
|
// Probability of k events with rate parameter lambda
|
||||||
|
let k = Matrix::from_vec(vec![0_u64, 1, 2], 1, 3);
|
||||||
|
let pmf = poisson_pmf(2.0, k);
|
||||||
|
assert_eq!(pmf.data().len(), 3);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Inferential Statistics
|
||||||
|
|
||||||
|
Rustframe provides several inferential statistical tests:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
use rustframe::compute::stats::inferential::{t_test, chi2_test, anova};
|
||||||
|
|
||||||
|
// Two-sample t-test
|
||||||
|
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
|
||||||
|
let (t_statistic, p_value) = t_test(&sample1, &sample2);
|
||||||
|
assert!((t_statistic + 5.0).abs() < 1e-5);
|
||||||
|
assert!(p_value > 0.0 && p_value < 1.0);
|
||||||
|
|
||||||
|
// Chi-square test of independence
|
||||||
|
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
|
||||||
|
let (chi2_statistic, p_value) = chi2_test(&observed);
|
||||||
|
assert!(chi2_statistic > 0.0);
|
||||||
|
assert!(p_value > 0.0 && p_value < 1.0);
|
||||||
|
|
||||||
|
// One-way ANOVA
|
||||||
|
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0], 1, 3);
|
||||||
|
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0], 1, 3);
|
||||||
|
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0], 1, 3);
|
||||||
|
let groups = vec![&group1, &group2, &group3];
|
||||||
|
let (f_statistic, p_value) = anova(groups);
|
||||||
|
assert!(f_statistic > 0.0);
|
||||||
|
assert!(p_value > 0.0 && p_value < 1.0);
|
||||||
|
```
|
||||||
|
|
||||||
With the basics covered, explore predictive models in the
|
With the basics covered, explore predictive models in the
|
||||||
[machine learning](./machine-learning.md) chapter.
|
[machine learning](./machine-learning.md) chapter.
|
||||||
|
@ -73,5 +73,85 @@ assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]);
|
|||||||
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
|
assert_eq!(frame.sum_horizontal(), vec![4.0, 6.0]);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Matrix Operations
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
let data1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let data2 = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||||
|
|
||||||
|
let sum = data1.clone() + data2.clone();
|
||||||
|
assert_eq!(sum.data(), vec![6.0, 8.0, 10.0, 12.0]);
|
||||||
|
|
||||||
|
let product = data1.clone() * data2.clone();
|
||||||
|
assert_eq!(product.data(), vec![5.0, 12.0, 21.0, 32.0]);
|
||||||
|
|
||||||
|
let scalar_product = data1.clone() * 2.0;
|
||||||
|
assert_eq!(scalar_product.data(), vec![2.0, 4.0, 6.0, 8.0]);
|
||||||
|
|
||||||
|
let equals = data1 == data1.clone();
|
||||||
|
assert_eq!(equals, true);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Advanced Matrix Operations
|
||||||
|
|
||||||
|
Matrices support a variety of advanced operations:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::matrix::{Matrix, SeriesOps};
|
||||||
|
|
||||||
|
// Matrix multiplication (dot product)
|
||||||
|
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||||
|
let product = a.matrix_mul(&b);
|
||||||
|
assert_eq!(product.data(), vec![23.0, 34.0, 31.0, 46.0]);
|
||||||
|
|
||||||
|
// Transpose
|
||||||
|
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let transposed = m.transpose();
|
||||||
|
assert_eq!(transposed.data(), vec![1.0, 3.0, 2.0, 4.0]);
|
||||||
|
|
||||||
|
// Map function over all elements
|
||||||
|
let m = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let squared = m.map(|x| x * x);
|
||||||
|
assert_eq!(squared.data(), vec![1.0, 4.0, 9.0, 16.0]);
|
||||||
|
|
||||||
|
// Zip two matrices with a function
|
||||||
|
let a = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let b = Matrix::from_vec(vec![5.0, 6.0, 7.0, 8.0], 2, 2);
|
||||||
|
let zipped = a.zip(&b, |x, y| x + y);
|
||||||
|
assert_eq!(zipped.data(), vec![6.0, 8.0, 10.0, 12.0]);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Matrix Reductions
|
||||||
|
|
||||||
|
Matrices support various reduction operations:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::matrix::{Matrix, SeriesOps};
|
||||||
|
|
||||||
|
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 3, 2);
|
||||||
|
|
||||||
|
// Sum along columns (vertical)
|
||||||
|
let col_sums = m.sum_vertical();
|
||||||
|
assert_eq!(col_sums, vec![9.0, 12.0]); // [1+3+5, 2+4+6]
|
||||||
|
|
||||||
|
// Sum along rows (horizontal)
|
||||||
|
let row_sums = m.sum_horizontal();
|
||||||
|
assert_eq!(row_sums, vec![3.0, 7.0, 11.0]); // [1+2, 3+4, 5+6]
|
||||||
|
|
||||||
|
// Cumulative sum along columns
|
||||||
|
let col_cumsum = m.cumsum_vertical();
|
||||||
|
assert_eq!(col_cumsum.data(), vec![1.0, 4.0, 9.0, 2.0, 6.0, 12.0]);
|
||||||
|
|
||||||
|
// Cumulative sum along rows
|
||||||
|
let row_cumsum = m.cumsum_horizontal();
|
||||||
|
assert_eq!(row_cumsum.data(), vec![1.0, 3.0, 5.0, 3.0, 7.0, 11.0]);
|
||||||
|
```
|
||||||
|
|
||||||
With the basics covered, continue to the [compute features](./compute.md)
|
With the basics covered, continue to the [compute features](./compute.md)
|
||||||
chapter for statistics and analytics.
|
chapter for statistics and analytics.
|
||||||
|
@ -72,5 +72,75 @@ let transformed = pca.transform(&data);
|
|||||||
assert_eq!(transformed.cols(), 1);
|
assert_eq!(transformed.cols(), 1);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Gaussian Naive Bayes
|
||||||
|
|
||||||
|
Gaussian Naive Bayes classifier for continuous features:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::models::gaussian_nb::GaussianNB;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
// Training data with 2 features
|
||||||
|
let x = Matrix::from_rows_vec(vec![
|
||||||
|
1.0, 2.0,
|
||||||
|
2.0, 3.0,
|
||||||
|
3.0, 4.0,
|
||||||
|
4.0, 5.0
|
||||||
|
], 4, 2);
|
||||||
|
|
||||||
|
// Class labels (0 or 1)
|
||||||
|
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||||
|
|
||||||
|
// Train the model
|
||||||
|
let mut model = GaussianNB::new(1e-9, true);
|
||||||
|
model.fit(&x, &y);
|
||||||
|
|
||||||
|
// Make predictions
|
||||||
|
let predictions = model.predict(&x);
|
||||||
|
assert_eq!(predictions.rows(), 4);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Dense Neural Networks
|
||||||
|
|
||||||
|
Simple fully connected neural network:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::models::dense_nn::{DenseNN, DenseNNConfig, ActivationKind, InitializerKind, LossKind};
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
// Training data with 2 features
|
||||||
|
let x = Matrix::from_rows_vec(vec![
|
||||||
|
0.0, 0.0,
|
||||||
|
0.0, 1.0,
|
||||||
|
1.0, 0.0,
|
||||||
|
1.0, 1.0
|
||||||
|
], 4, 2);
|
||||||
|
|
||||||
|
// XOR target outputs
|
||||||
|
let y = Matrix::from_vec(vec![0.0, 1.0, 1.0, 0.0], 4, 1);
|
||||||
|
|
||||||
|
// Create a neural network with 2 hidden layers
|
||||||
|
let config = DenseNNConfig {
|
||||||
|
input_size: 2,
|
||||||
|
hidden_layers: vec![4, 4],
|
||||||
|
output_size: 1,
|
||||||
|
activations: vec![ActivationKind::Sigmoid, ActivationKind::Sigmoid, ActivationKind::Sigmoid],
|
||||||
|
initializer: InitializerKind::Uniform(0.5),
|
||||||
|
loss: LossKind::MSE,
|
||||||
|
learning_rate: 0.1,
|
||||||
|
epochs: 1000,
|
||||||
|
};
|
||||||
|
let mut model = DenseNN::new(config);
|
||||||
|
|
||||||
|
// Train the model
|
||||||
|
model.train(&x, &y);
|
||||||
|
|
||||||
|
// Make predictions
|
||||||
|
let predictions = model.predict(&x);
|
||||||
|
assert_eq!(predictions.rows(), 4);
|
||||||
|
```
|
||||||
|
|
||||||
For helper functions and upcoming modules, visit the
|
For helper functions and upcoming modules, visit the
|
||||||
[utilities](./utilities.md) section.
|
[utilities](./utilities.md) section.
|
||||||
|
@ -35,6 +35,25 @@ let v2 = rng.next_u64();
|
|||||||
assert_ne!(v1, v2);
|
assert_ne!(v1, v2);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Stats Functions
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
use rustframe::compute::stats::descriptive::{mean, median, stddev};
|
||||||
|
|
||||||
|
let data = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
|
||||||
|
|
||||||
|
let mean_value = mean(&data);
|
||||||
|
assert_eq!(mean_value, 3.0);
|
||||||
|
|
||||||
|
let median_value = median(&data);
|
||||||
|
assert_eq!(median_value, 3.0);
|
||||||
|
|
||||||
|
let std_value = stddev(&data);
|
||||||
|
assert_eq!(std_value, 2.0_f64.sqrt());
|
||||||
|
```
|
||||||
|
|
||||||
Upcoming utilities will cover:
|
Upcoming utilities will cover:
|
||||||
|
|
||||||
- Data import/export helpers
|
- Data import/export helpers
|
||||||
|
Loading…
x
Reference in New Issue
Block a user