mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 08:49:59 +00:00
Compare commits
9 Commits
c0f82d5ce8
...
bfdd3ca9ec
Author | SHA1 | Date | |
---|---|---|---|
![]() |
bfdd3ca9ec | ||
![]() |
261d0d7007 | ||
![]() |
005c10e816 | ||
![]() |
4c626bf09c | ||
![]() |
ab6d5f9f8f | ||
![]() |
1c8fcc0bad | ||
![]() |
2ca496cfd1 | ||
![]() |
85154a3be0 | ||
![]() |
54a266b630 |
@ -17,14 +17,25 @@ pub fn drelu(x: &Matrix<f64>) -> Matrix<f64> {
|
||||
x.map(|v| if v > 0.0 { 1.0 } else { 0.0 })
|
||||
}
|
||||
|
||||
pub fn leaky_relu(x: &Matrix<f64>) -> Matrix<f64> {
|
||||
x.map(|v| if v > 0.0 { v } else { 0.01 * v })
|
||||
}
|
||||
|
||||
pub fn dleaky_relu(x: &Matrix<f64>) -> Matrix<f64> {
|
||||
x.map(|v| if v > 0.0 { 1.0 } else { 0.01 })
|
||||
}
|
||||
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
|
||||
// Helper function to round all elements in a matrix to n decimal places
|
||||
fn _round_matrix(mat: &Matrix<f64>, decimals: u32) -> Matrix<f64> {
|
||||
let factor = 10f64.powi(decimals as i32);
|
||||
let rounded: Vec<f64> = mat.to_vec().iter().map(|v| (v * factor).round() / factor).collect();
|
||||
let rounded: Vec<f64> = mat
|
||||
.to_vec()
|
||||
.iter()
|
||||
.map(|v| (v * factor).round() / factor)
|
||||
.collect();
|
||||
Matrix::from_vec(rounded, mat.rows(), mat.cols())
|
||||
}
|
||||
|
||||
@ -36,6 +47,17 @@ mod tests {
|
||||
assert_eq!(_round_matrix(&result, 6), _round_matrix(&expected, 6));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sigmoid_edge_case() {
|
||||
let x = Matrix::from_vec(vec![-1000.0, 0.0, 1000.0], 3, 1);
|
||||
let expected = Matrix::from_vec(vec![0.0, 0.5, 1.0], 3, 1);
|
||||
let result = sigmoid(&x);
|
||||
|
||||
for (r, e) in result.data().iter().zip(expected.data().iter()) {
|
||||
assert!((r - e).abs() < 1e-6);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_relu() {
|
||||
let x = Matrix::from_vec(vec![-1.0, 0.0, 1.0], 3, 1);
|
||||
@ -43,6 +65,13 @@ mod tests {
|
||||
assert_eq!(relu(&x), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_relu_edge_case() {
|
||||
let x = Matrix::from_vec(vec![-1e-10, 0.0, 1e10], 3, 1);
|
||||
let expected = Matrix::from_vec(vec![0.0, 0.0, 1e10], 3, 1);
|
||||
assert_eq!(relu(&x), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dsigmoid() {
|
||||
let y = Matrix::from_vec(vec![0.26894142, 0.5, 0.73105858], 3, 1);
|
||||
@ -50,11 +79,57 @@ mod tests {
|
||||
let result = dsigmoid(&y);
|
||||
assert_eq!(_round_matrix(&result, 6), _round_matrix(&expected, 6));
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_dsigmoid_edge_case() {
|
||||
let y = Matrix::from_vec(vec![0.0, 0.5, 1.0], 3, 1); // Assume these are outputs from sigmoid(x)
|
||||
let expected = Matrix::from_vec(vec![0.0, 0.25, 0.0], 3, 1);
|
||||
let result = dsigmoid(&y);
|
||||
|
||||
for (r, e) in result.data().iter().zip(expected.data().iter()) {
|
||||
assert!((r - e).abs() < 1e-6);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_drelu() {
|
||||
let x = Matrix::from_vec(vec![-1.0, 0.0, 1.0], 3, 1);
|
||||
let expected = Matrix::from_vec(vec![0.0, 0.0, 1.0], 3, 1);
|
||||
assert_eq!(drelu(&x), expected);
|
||||
assert_eq!(drelu(&x), expected);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_drelu_edge_case() {
|
||||
let x = Matrix::from_vec(vec![-1e-10, 0.0, 1e10], 3, 1);
|
||||
let expected = Matrix::from_vec(vec![0.0, 0.0, 1.0], 3, 1);
|
||||
assert_eq!(drelu(&x), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_leaky_relu() {
|
||||
let x = Matrix::from_vec(vec![-1.0, 0.0, 1.0], 3, 1);
|
||||
let expected = Matrix::from_vec(vec![-0.01, 0.0, 1.0], 3, 1);
|
||||
assert_eq!(leaky_relu(&x), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_leaky_relu_edge_case() {
|
||||
let x = Matrix::from_vec(vec![-1e-10, 0.0, 1e10], 3, 1);
|
||||
let expected = Matrix::from_vec(vec![-1e-12, 0.0, 1e10], 3, 1);
|
||||
assert_eq!(leaky_relu(&x), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dleaky_relu() {
|
||||
let x = Matrix::from_vec(vec![-1.0, 0.0, 1.0], 3, 1);
|
||||
let expected = Matrix::from_vec(vec![0.01, 0.01, 1.0], 3, 1);
|
||||
assert_eq!(dleaky_relu(&x), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dleaky_relu_edge_case() {
|
||||
let x = Matrix::from_vec(vec![-1e-10, 0.0, 1e10], 3, 1);
|
||||
let expected = Matrix::from_vec(vec![0.01, 0.01, 1.0], 3, 1);
|
||||
assert_eq!(dleaky_relu(&x), expected);
|
||||
}
|
||||
}
|
||||
|
@ -1,65 +1,278 @@
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
use crate::compute::activations::{relu, sigmoid, drelu};
|
||||
use rand::Rng;
|
||||
use crate::compute::activations::{relu, drelu, sigmoid};
|
||||
use rand::prelude::*;
|
||||
|
||||
/// Supported activation functions
|
||||
#[derive(Clone)]
|
||||
pub enum ActivationKind {
|
||||
Relu,
|
||||
Sigmoid,
|
||||
Tanh,
|
||||
}
|
||||
|
||||
impl ActivationKind {
|
||||
/// Apply activation elementwise
|
||||
pub fn forward(&self, z: &Matrix<f64>) -> Matrix<f64> {
|
||||
match self {
|
||||
ActivationKind::Relu => relu(z),
|
||||
ActivationKind::Sigmoid => sigmoid(z),
|
||||
ActivationKind::Tanh => z.map(|v| v.tanh()),
|
||||
}
|
||||
}
|
||||
|
||||
/// Compute elementwise derivative w.r.t. pre-activation z
|
||||
pub fn derivative(&self, z: &Matrix<f64>) -> Matrix<f64> {
|
||||
match self {
|
||||
ActivationKind::Relu => drelu(z),
|
||||
ActivationKind::Sigmoid => {
|
||||
let s = sigmoid(z);
|
||||
s.zip(&s, |si, sj| si * (1.0 - sj))
|
||||
}
|
||||
ActivationKind::Tanh => z.map(|v| 1.0 - v.tanh().powi(2)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Weight initialization schemes
|
||||
#[derive(Clone)]
|
||||
pub enum InitializerKind {
|
||||
/// Uniform(-limit .. limit)
|
||||
Uniform(f64),
|
||||
/// Xavier/Glorot uniform
|
||||
Xavier,
|
||||
/// He (Kaiming) uniform
|
||||
He,
|
||||
}
|
||||
|
||||
impl InitializerKind {
|
||||
pub fn initialize(&self, rows: usize, cols: usize) -> Matrix<f64> {
|
||||
let mut rng = rand::rng();
|
||||
let fan_in = rows;
|
||||
let fan_out = cols;
|
||||
let limit = match self {
|
||||
InitializerKind::Uniform(l) => *l,
|
||||
InitializerKind::Xavier => (6.0 / (fan_in + fan_out) as f64).sqrt(),
|
||||
InitializerKind::He => (2.0 / fan_in as f64).sqrt(),
|
||||
};
|
||||
let data = (0..rows * cols)
|
||||
.map(|_| rng.random_range(-limit..limit))
|
||||
.collect::<Vec<_>>();
|
||||
Matrix::from_vec(data, rows, cols)
|
||||
}
|
||||
}
|
||||
|
||||
/// Supported losses
|
||||
#[derive(Clone)]
|
||||
pub enum LossKind {
|
||||
/// Mean Squared Error: L = 1/m * sum((y_hat - y)^2)
|
||||
MSE,
|
||||
/// Binary Cross-Entropy: L = -1/m * sum(y*log(y_hat) + (1-y)*log(1-y_hat))
|
||||
BCE,
|
||||
}
|
||||
|
||||
impl LossKind {
|
||||
/// Compute gradient dL/dy_hat (before applying activation derivative)
|
||||
pub fn gradient(&self, y_hat: &Matrix<f64>, y: &Matrix<f64>) -> Matrix<f64> {
|
||||
let m = y.rows() as f64;
|
||||
match self {
|
||||
LossKind::MSE => (y_hat - y) * (2.0 / m),
|
||||
LossKind::BCE => (y_hat - y) * (1.0 / m),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Configuration for a dense neural network
|
||||
pub struct DenseNNConfig {
|
||||
pub input_size: usize,
|
||||
pub hidden_layers: Vec<usize>,
|
||||
/// Must have length = hidden_layers.len() + 1
|
||||
pub activations: Vec<ActivationKind>,
|
||||
pub output_size: usize,
|
||||
pub initializer: InitializerKind,
|
||||
pub loss: LossKind,
|
||||
pub learning_rate: f64,
|
||||
pub epochs: usize,
|
||||
}
|
||||
|
||||
/// A multi-layer perceptron with full configurability
|
||||
pub struct DenseNN {
|
||||
w1: Matrix<f64>, // (n_in, n_hidden)
|
||||
b1: Matrix<f64>, // (1, n_hidden)
|
||||
w2: Matrix<f64>, // (n_hidden, n_out)
|
||||
b2: Matrix<f64>, // (1, n_out)
|
||||
weights: Vec<Matrix<f64>>,
|
||||
biases: Vec<Matrix<f64>>,
|
||||
activations: Vec<ActivationKind>,
|
||||
loss: LossKind,
|
||||
lr: f64,
|
||||
epochs: usize,
|
||||
}
|
||||
|
||||
impl DenseNN {
|
||||
pub fn new(n_in: usize, n_hidden: usize, n_out: usize) -> Self {
|
||||
let mut rng = rand::rng();
|
||||
let mut init = |rows, cols| {
|
||||
let data = (0..rows * cols)
|
||||
.map(|_| rng.random_range(-1.0..1.0))
|
||||
.collect::<Vec<_>>();
|
||||
Matrix::from_vec(data, rows, cols)
|
||||
};
|
||||
Self {
|
||||
w1: init(n_in, n_hidden),
|
||||
b1: Matrix::zeros(1, n_hidden),
|
||||
w2: init(n_hidden, n_out),
|
||||
b2: Matrix::zeros(1, n_out),
|
||||
/// Build a new DenseNN from the given configuration
|
||||
pub fn new(config: DenseNNConfig) -> Self {
|
||||
let mut sizes = vec![config.input_size];
|
||||
sizes.extend(&config.hidden_layers);
|
||||
sizes.push(config.output_size);
|
||||
|
||||
assert_eq!(
|
||||
config.activations.len(),
|
||||
sizes.len() - 1,
|
||||
"Number of activation functions must match number of layers"
|
||||
);
|
||||
|
||||
let mut weights = Vec::with_capacity(sizes.len() - 1);
|
||||
let mut biases = Vec::with_capacity(sizes.len() - 1);
|
||||
|
||||
for i in 0..sizes.len() - 1 {
|
||||
let w = config.initializer.initialize(sizes[i], sizes[i + 1]);
|
||||
let b = Matrix::zeros(1, sizes[i + 1]);
|
||||
weights.push(w);
|
||||
biases.push(b);
|
||||
}
|
||||
|
||||
DenseNN {
|
||||
weights,
|
||||
biases,
|
||||
activations: config.activations,
|
||||
loss: config.loss,
|
||||
lr: config.learning_rate,
|
||||
epochs: config.epochs,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward(&self, x: &Matrix<f64>) -> (Matrix<f64>, Matrix<f64>, Matrix<f64>) {
|
||||
// z1 = X·W1 + b1 ; a1 = ReLU(z1)
|
||||
let z1 = x.dot(&self.w1) + &self.b1;
|
||||
let a1 = relu(&z1);
|
||||
// z2 = a1·W2 + b2 ; a2 = softmax(z2) (here binary => sigmoid)
|
||||
let z2 = a1.dot(&self.w2) + &self.b2;
|
||||
let a2 = sigmoid(&z2); // binary output
|
||||
(a1, z2, a2) // keep intermediates for back-prop
|
||||
/// Perform a full forward pass, returning pre-activations (z) and activations (a)
|
||||
fn forward_full(&self, x: &Matrix<f64>) -> (Vec<Matrix<f64>>, Vec<Matrix<f64>>) {
|
||||
let mut zs = Vec::with_capacity(self.weights.len());
|
||||
let mut activs = Vec::with_capacity(self.weights.len() + 1);
|
||||
activs.push(x.clone());
|
||||
|
||||
let mut a = x.clone();
|
||||
for (i, (w, b)) in self.weights.iter().zip(self.biases.iter()).enumerate() {
|
||||
let z = &a.dot(w) + &Matrix::repeat_rows(b, a.rows());
|
||||
let a_next = self.activations[i].forward(&z);
|
||||
zs.push(z);
|
||||
activs.push(a_next.clone());
|
||||
a = a_next;
|
||||
}
|
||||
|
||||
(zs, activs)
|
||||
}
|
||||
|
||||
pub fn train(&mut self, x: &Matrix<f64>, y: &Matrix<f64>, lr: f64, epochs: usize) {
|
||||
/// Train the network on inputs X and targets Y
|
||||
pub fn train(&mut self, x: &Matrix<f64>, y: &Matrix<f64>) {
|
||||
let m = x.rows() as f64;
|
||||
for _ in 0..epochs {
|
||||
let (a1, _z2, y_hat) = self.forward(x);
|
||||
for _ in 0..self.epochs {
|
||||
let (zs, activs) = self.forward_full(x);
|
||||
let y_hat = activs.last().unwrap().clone();
|
||||
|
||||
// -------- backwards ----------
|
||||
// dL/da2 = y_hat - y (BCE derivative)
|
||||
let dz2 = &y_hat - y; // (m, n_out)
|
||||
let dw2 = a1.transpose().dot(&dz2) / m; // (n_h, n_out)
|
||||
// let db2 = dz2.sum_vertical() * (1.0 / m); // broadcast ok
|
||||
let db2 = Matrix::from_vec(dz2.sum_vertical(), 1, dz2.cols()) * (1.0 / m); // (1, n_out)
|
||||
let da1 = dz2.dot(&self.w2.transpose()); // (m,n_h)
|
||||
let dz1 = da1.zip(&a1, |g, act| g * drelu(&Matrix::from_cols(vec![vec![act]])).data()[0]); // (m,n_h)
|
||||
|
||||
// real code: drelu returns Matrix, broadcasting needed; you can optimise.
|
||||
// Initial delta (dL/dz) on output
|
||||
let mut delta = match self.loss {
|
||||
LossKind::BCE => self.loss.gradient(&y_hat, y),
|
||||
LossKind::MSE => {
|
||||
let grad = self.loss.gradient(&y_hat, y);
|
||||
let dz = self.activations.last().unwrap().derivative(zs.last().unwrap());
|
||||
grad.zip(&dz, |g, da| g * da)
|
||||
}
|
||||
};
|
||||
|
||||
let dw1 = x.transpose().dot(&dz1) / m; // (n_in,n_h)
|
||||
let db1 = Matrix::from_vec(dz1.sum_vertical(), 1, dz1.cols()) * (1.0 / m); // (1, n_h)
|
||||
// Backpropagate through layers
|
||||
for l in (0..self.weights.len()).rev() {
|
||||
let a_prev = &activs[l];
|
||||
let dw = a_prev.transpose().dot(&delta) / m;
|
||||
let db = Matrix::from_vec(delta.sum_vertical(), 1, delta.cols()) / m;
|
||||
|
||||
// -------- update ----------
|
||||
self.w2 = &self.w2 - &(dw2 * lr);
|
||||
self.b2 = &self.b2 - &(db2 * lr);
|
||||
self.w1 = &self.w1 - &(dw1 * lr);
|
||||
self.b1 = &self.b1 - &(db1 * lr);
|
||||
// Update weights & biases
|
||||
self.weights[l] = &self.weights[l] - &(dw * self.lr);
|
||||
self.biases[l] = &self.biases[l] - &(db * self.lr);
|
||||
|
||||
// Propagate delta to previous layer
|
||||
if l > 0 {
|
||||
let w_t = self.weights[l].transpose();
|
||||
let da = self.activations[l - 1].derivative(&zs[l - 1]);
|
||||
delta = delta.dot(&w_t).zip(&da, |d, a| d * a);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Run a forward pass and return the network's output
|
||||
pub fn predict(&self, x: &Matrix<f64>) -> Matrix<f64> {
|
||||
let mut a = x.clone();
|
||||
for (i, (w, b)) in self.weights.iter().zip(self.biases.iter()).enumerate() {
|
||||
let z = &a.dot(w) + &Matrix::repeat_rows(b, a.rows());
|
||||
a = self.activations[i].forward(&z);
|
||||
}
|
||||
a
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------
|
||||
// Simple tests
|
||||
// ------------------------------
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::matrix::Matrix;
|
||||
|
||||
#[test]
|
||||
fn test_predict_shape() {
|
||||
let config = DenseNNConfig {
|
||||
input_size: 1,
|
||||
hidden_layers: vec![2],
|
||||
activations: vec![ActivationKind::Relu, ActivationKind::Sigmoid],
|
||||
output_size: 1,
|
||||
initializer: InitializerKind::Uniform(0.1),
|
||||
loss: LossKind::MSE,
|
||||
learning_rate: 0.01,
|
||||
epochs: 0,
|
||||
};
|
||||
let model = DenseNN::new(config);
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0], 3, 1);
|
||||
let preds = model.predict(&x);
|
||||
assert_eq!(preds.rows(), 3);
|
||||
assert_eq!(preds.cols(), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_train_no_epochs() {
|
||||
let config = DenseNNConfig {
|
||||
input_size: 1,
|
||||
hidden_layers: vec![2],
|
||||
activations: vec![ActivationKind::Relu, ActivationKind::Sigmoid],
|
||||
output_size: 1,
|
||||
initializer: InitializerKind::Uniform(0.1),
|
||||
loss: LossKind::MSE,
|
||||
learning_rate: 0.01,
|
||||
epochs: 0,
|
||||
};
|
||||
let mut model = DenseNN::new(config);
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
|
||||
let before = model.predict(&x);
|
||||
model.train(&x, &before);
|
||||
let after = model.predict(&x);
|
||||
for i in 0..before.rows() {
|
||||
assert!((before[(i, 0)] - after[(i, 0)]).abs() < 1e-12);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_nn_step() {
|
||||
let config = DenseNNConfig {
|
||||
input_size: 1,
|
||||
hidden_layers: vec![2],
|
||||
activations: vec![ActivationKind::Relu, ActivationKind::Sigmoid],
|
||||
output_size: 1,
|
||||
initializer: InitializerKind::He,
|
||||
loss: LossKind::BCE,
|
||||
learning_rate: 0.01,
|
||||
epochs: 5000,
|
||||
};
|
||||
let mut model = DenseNN::new(config);
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
model.train(&x, &y);
|
||||
let preds = model.predict(&x);
|
||||
assert!((preds[(0, 0)] - 0.0).abs() < 0.5);
|
||||
assert!((preds[(1, 0)] - 0.0).abs() < 0.5);
|
||||
assert!((preds[(2, 0)] - 1.0).abs() < 0.5);
|
||||
assert!((preds[(3, 0)] - 1.0).abs() < 0.5);
|
||||
}
|
||||
}
|
||||
|
@ -34,10 +34,10 @@ impl LinReg {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::LinReg;
|
||||
use crate::matrix::{Matrix};
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_linreg_fit_predict() {
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
use crate::compute::activations::sigmoid;
|
||||
use crate::matrix::{Matrix, SeriesOps};
|
||||
|
||||
pub struct LogReg {
|
||||
w: Matrix<f64>,
|
||||
@ -15,14 +15,14 @@ impl LogReg {
|
||||
}
|
||||
|
||||
pub fn predict_proba(&self, x: &Matrix<f64>) -> Matrix<f64> {
|
||||
sigmoid(&(x.dot(&self.w) + self.b)) // σ(Xw + b)
|
||||
sigmoid(&(x.dot(&self.w) + self.b)) // σ(Xw + b)
|
||||
}
|
||||
|
||||
pub fn fit(&mut self, x: &Matrix<f64>, y: &Matrix<f64>, lr: f64, epochs: usize) {
|
||||
let m = x.rows() as f64;
|
||||
for _ in 0..epochs {
|
||||
let p = self.predict_proba(x); // shape (m,1)
|
||||
let err = &p - y; // derivative of BCE wrt pre-sigmoid
|
||||
let p = self.predict_proba(x); // shape (m,1)
|
||||
let err = &p - y; // derivative of BCE wrt pre-sigmoid
|
||||
let grad_w = x.transpose().dot(&err) / m;
|
||||
let grad_b = err.sum_vertical().iter().sum::<f64>() / m;
|
||||
self.w = &self.w - &(grad_w * lr);
|
||||
@ -31,6 +31,25 @@ impl LogReg {
|
||||
}
|
||||
|
||||
pub fn predict(&self, x: &Matrix<f64>) -> Matrix<f64> {
|
||||
self.predict_proba(x).map(|p| if p >= 0.5 { 1.0 } else { 0.0 })
|
||||
self.predict_proba(x)
|
||||
.map(|p| if p >= 0.5 { 1.0 } else { 0.0 })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_logreg_fit_predict() {
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
let mut model = LogReg::new(1);
|
||||
model.fit(&x, &y, 0.01, 10000);
|
||||
let preds = model.predict(&x);
|
||||
assert_eq!(preds[(0, 0)], 0.0);
|
||||
assert_eq!(preds[(1, 0)], 0.0);
|
||||
assert_eq!(preds[(2, 0)], 1.0);
|
||||
assert_eq!(preds[(3, 0)], 1.0);
|
||||
}
|
||||
}
|
||||
|
@ -89,6 +89,10 @@ impl<T: Clone> Matrix<T> {
|
||||
self.cols
|
||||
}
|
||||
|
||||
pub fn shape(&self) -> (usize, usize) {
|
||||
(self.rows, self.cols)
|
||||
}
|
||||
|
||||
/// Get element reference (immutable). Panics on out-of-bounds.
|
||||
pub fn get(&self, r: usize, c: usize) -> &T {
|
||||
&self[(r, c)]
|
||||
@ -323,6 +327,21 @@ impl<T: Clone> Matrix<T> {
|
||||
self.data = new_data;
|
||||
self.rows = new_rows;
|
||||
}
|
||||
|
||||
/// Return a new matrix where row 0 of `self` is repeated `n` times.
|
||||
pub fn repeat_rows(&self, n: usize) -> Matrix<T>
|
||||
where
|
||||
T: Clone,
|
||||
{
|
||||
let mut data = Vec::with_capacity(n * self.cols());
|
||||
let zeroth_row = self.row(0);
|
||||
for value in &zeroth_row {
|
||||
for _ in 0..n {
|
||||
data.push(value.clone()); // Clone each element
|
||||
}
|
||||
}
|
||||
Matrix::from_vec(data, n, self.cols)
|
||||
}
|
||||
}
|
||||
|
||||
impl Matrix<f64> {
|
||||
@ -1153,6 +1172,25 @@ mod tests {
|
||||
assert_eq!(ma.row(2), &[3, 6, 9]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_shape() {
|
||||
let ma = static_test_matrix_2x4();
|
||||
assert_eq!(ma.shape(), (2, 4));
|
||||
assert_eq!(ma.rows(), 2);
|
||||
assert_eq!(ma.cols(), 4);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_repeat_rows() {
|
||||
let ma = static_test_matrix();
|
||||
// Returns a new matrix where row 0 of `self` is repeated `n` times.
|
||||
let repeated = ma.repeat_rows(3);
|
||||
// assert all rows are equal to the first row
|
||||
for r in 0..repeated.rows() {
|
||||
assert_eq!(repeated.row(r), ma.row(0));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic(expected = "row index 3 out of bounds for 3 rows")]
|
||||
fn test_row_out_of_bounds() {
|
||||
|
Loading…
x
Reference in New Issue
Block a user