mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-11-19 17:56:10 +00:00
Compare commits
10 Commits
b687fd4e6b
...
develop
| Author | SHA1 | Date | |
|---|---|---|---|
| c53693fa7b | |||
| 109d39b248 | |||
|
|
18ad6c689a | ||
| 1fead78b69 | |||
|
|
6fb32e743c | ||
| 2cb4e46217 | |||
|
|
a53ba63f30 | ||
|
|
dae60ea1bd | ||
|
|
755dee58e7 | ||
|
|
9e6e22fc37 |
@@ -1,11 +1,12 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "rustframe"
|
name = "rustframe"
|
||||||
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
authors = ["Palash Tyagi (https://github.com/Magnus167)"]
|
||||||
version = "0.0.1-a.20250716"
|
version = "0.0.1-a.20250805"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
license = "GPL-3.0-or-later"
|
license = "GPL-3.0-or-later"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
description = "A simple dataframe library"
|
description = "A simple dataframe and math toolkit"
|
||||||
|
documentation = "https://magnus167.github.io/rustframe/"
|
||||||
|
|
||||||
[lib]
|
[lib]
|
||||||
name = "rustframe"
|
name = "rustframe"
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
# rustframe
|
# rustframe
|
||||||
|
|
||||||
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||||
|
|
||||||
<!-- [](https://github.com/Magnus167/rustframe) -->
|
<!-- [](https://github.com/Magnus167/rustframe) -->
|
||||||
|
|
||||||
|
|||||||
@@ -70,6 +70,77 @@ assert!((corr - 1.0).abs() < 1e-8);
|
|||||||
assert!((cov - 2.5).abs() < 1e-8);
|
assert!((cov - 2.5).abs() < 1e-8);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Covariance
|
||||||
|
|
||||||
|
### `covariance`
|
||||||
|
|
||||||
|
Computes the population covariance between two equally sized matrices by flattening
|
||||||
|
their values.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::stats::covariance;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let y = Matrix::from_vec(vec![2.0, 4.0, 6.0, 8.0], 2, 2);
|
||||||
|
let cov = covariance(&x, &y);
|
||||||
|
assert!((cov - 2.5).abs() < 1e-8);
|
||||||
|
```
|
||||||
|
|
||||||
|
### `covariance_vertical`
|
||||||
|
|
||||||
|
Evaluates covariance between columns (i.e. across rows) and returns a matrix of
|
||||||
|
column pair covariances.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::stats::covariance_vertical;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let cov = covariance_vertical(&m);
|
||||||
|
assert_eq!(cov.shape(), (2, 2));
|
||||||
|
assert!(cov.data().iter().all(|&v| (v - 1.0).abs() < 1e-8));
|
||||||
|
```
|
||||||
|
|
||||||
|
### `covariance_horizontal`
|
||||||
|
|
||||||
|
Computes covariance between rows (i.e. across columns) returning a matrix that
|
||||||
|
describes how each pair of rows varies together.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::stats::covariance_horizontal;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let cov = covariance_horizontal(&m);
|
||||||
|
assert_eq!(cov.shape(), (2, 2));
|
||||||
|
assert!(cov.data().iter().all(|&v| (v - 0.25).abs() < 1e-8));
|
||||||
|
```
|
||||||
|
|
||||||
|
### `covariance_matrix`
|
||||||
|
|
||||||
|
Builds a covariance matrix either between columns (`Axis::Col`) or rows
|
||||||
|
(`Axis::Row`). Each entry represents how two series co-vary.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::stats::covariance_matrix;
|
||||||
|
use rustframe::matrix::{Axis, Matrix};
|
||||||
|
|
||||||
|
let data = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
|
||||||
|
// Covariance between columns
|
||||||
|
let cov_cols = covariance_matrix(&data, Axis::Col);
|
||||||
|
assert!((cov_cols.get(0, 0) - 2.0).abs() < 1e-8);
|
||||||
|
|
||||||
|
// Covariance between rows
|
||||||
|
let cov_rows = covariance_matrix(&data, Axis::Row);
|
||||||
|
assert!((cov_rows.get(0, 1) + 0.5).abs() < 1e-8);
|
||||||
|
```
|
||||||
|
|
||||||
## Distributions
|
## Distributions
|
||||||
|
|
||||||
Probability distribution helpers are available for common PDFs and CDFs.
|
Probability distribution helpers are available for common PDFs and CDFs.
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
# Introduction
|
# Introduction
|
||||||
|
|
||||||
📚 [Docs](https://magnus167.github.io/rustframe/) | 🐙 [GitHub](https://github.com/Magnus167/rustframe) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
🐙 [GitHub](https://github.com/Magnus167/rustframe) | 📚 [Docs](https://magnus167.github.io/rustframe/) | 📖 [User Guide](https://magnus167.github.io/rustframe/user-guide/) | 🦀 [Crates.io](https://crates.io/crates/rustframe) | 🔖 [docs.rs](https://docs.rs/rustframe/latest/rustframe/)
|
||||||
|
|
||||||
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
|
Welcome to the **Rustframe User Guide**. Rustframe is a lightweight dataframe
|
||||||
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
|
and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the
|
||||||
|
|||||||
@@ -41,9 +41,6 @@ let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2);
|
|||||||
let cluster = model.predict(&new_point)[0];
|
let cluster = model.predict(&new_point)[0];
|
||||||
```
|
```
|
||||||
|
|
||||||
For helper functions and upcoming modules, visit the
|
|
||||||
[utilities](./utilities.md) section.
|
|
||||||
|
|
||||||
## Logistic Regression
|
## Logistic Regression
|
||||||
|
|
||||||
```rust
|
```rust
|
||||||
@@ -72,7 +69,7 @@ let transformed = pca.transform(&data);
|
|||||||
assert_eq!(transformed.cols(), 1);
|
assert_eq!(transformed.cols(), 1);
|
||||||
```
|
```
|
||||||
|
|
||||||
### Gaussian Naive Bayes
|
## Gaussian Naive Bayes
|
||||||
|
|
||||||
Gaussian Naive Bayes classifier for continuous features:
|
Gaussian Naive Bayes classifier for continuous features:
|
||||||
|
|
||||||
@@ -101,7 +98,7 @@ let predictions = model.predict(&x);
|
|||||||
assert_eq!(predictions.rows(), 4);
|
assert_eq!(predictions.rows(), 4);
|
||||||
```
|
```
|
||||||
|
|
||||||
### Dense Neural Networks
|
## Dense Neural Networks
|
||||||
|
|
||||||
Simple fully connected neural network:
|
Simple fully connected neural network:
|
||||||
|
|
||||||
@@ -142,5 +139,144 @@ let predictions = model.predict(&x);
|
|||||||
assert_eq!(predictions.rows(), 4);
|
assert_eq!(predictions.rows(), 4);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Real-world Examples
|
||||||
|
|
||||||
|
### Housing Price Prediction
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::models::linreg::LinReg;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
// Features: square feet and bedrooms
|
||||||
|
let features = Matrix::from_rows_vec(vec![
|
||||||
|
2100.0, 3.0,
|
||||||
|
1600.0, 2.0,
|
||||||
|
2400.0, 4.0,
|
||||||
|
1400.0, 2.0,
|
||||||
|
], 4, 2);
|
||||||
|
|
||||||
|
// Sale prices
|
||||||
|
let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1);
|
||||||
|
|
||||||
|
let mut model = LinReg::new(2);
|
||||||
|
model.fit(&features, &target, 1e-8, 10_000);
|
||||||
|
|
||||||
|
// Predict price of a new home
|
||||||
|
let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2);
|
||||||
|
let predicted_price = model.predict(&new_home);
|
||||||
|
println!("Predicted price: ${}", predicted_price.data()[0]);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Spam Detection
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::models::logreg::LogReg;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
// 20 e-mails × 5 features = 100 numbers (row-major, spam first)
|
||||||
|
let x = Matrix::from_rows_vec(
|
||||||
|
vec![
|
||||||
|
// ─────────── spam examples ───────────
|
||||||
|
2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!"
|
||||||
|
1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!"
|
||||||
|
0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…"
|
||||||
|
1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…"
|
||||||
|
1.0, 0.0, 1.0, 0.0, 1.0, // ...
|
||||||
|
0.0, 1.0, 1.0, 1.0, 0.0, // ...
|
||||||
|
2.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||||
|
0.0, 1.0, 1.0, 0.0, 1.0, // ...
|
||||||
|
1.0, 1.0, 1.0, 1.0, 0.0, // ...
|
||||||
|
1.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||||
|
// ─────────── ham examples ───────────
|
||||||
|
0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow."
|
||||||
|
0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link."
|
||||||
|
0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached."
|
||||||
|
0.0, 0.0, 0.0, 1.0, 1.0, // ...
|
||||||
|
0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?"
|
||||||
|
0.0, 0.0, 0.0, 0.0, 0.0, // ...
|
||||||
|
0.0, 0.0, 0.0, 1.0, 0.0, // ...
|
||||||
|
1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch."
|
||||||
|
0.0, 0.0, 0.0, 0.0, 0.0, // ...
|
||||||
|
0.0, 0.0, 0.0, 1.0, 0.0,
|
||||||
|
],
|
||||||
|
20,
|
||||||
|
5,
|
||||||
|
);
|
||||||
|
|
||||||
|
// Labels: 1 = spam, 0 = ham
|
||||||
|
let y = Matrix::from_vec(
|
||||||
|
vec![
|
||||||
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam
|
||||||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham
|
||||||
|
],
|
||||||
|
20,
|
||||||
|
1,
|
||||||
|
);
|
||||||
|
|
||||||
|
// Train
|
||||||
|
let mut model = LogReg::new(5);
|
||||||
|
model.fit(&x, &y, 0.01, 5000);
|
||||||
|
|
||||||
|
// Predict
|
||||||
|
// e.g. "free money offer"
|
||||||
|
let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0];
|
||||||
|
let email = Matrix::from_vec(email_data, 1, 5);
|
||||||
|
let prob_spam = model.predict_proba(&email);
|
||||||
|
println!("Probability of spam: {:.4}", prob_spam.data()[0]);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Iris Flower Classification
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::models::gaussian_nb::GaussianNB;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
// Features: sepal length and petal length
|
||||||
|
let x = Matrix::from_rows_vec(vec![
|
||||||
|
5.1, 1.4, // setosa
|
||||||
|
4.9, 1.4, // setosa
|
||||||
|
6.2, 4.5, // versicolor
|
||||||
|
5.9, 5.1, // virginica
|
||||||
|
], 4, 2);
|
||||||
|
|
||||||
|
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1);
|
||||||
|
let names = vec!["setosa", "versicolor", "virginica"];
|
||||||
|
|
||||||
|
let mut model = GaussianNB::new(1e-9, true);
|
||||||
|
model.fit(&x, &y);
|
||||||
|
|
||||||
|
let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2);
|
||||||
|
let predicted_class = model.predict(&sample);
|
||||||
|
let class_name = names[predicted_class.data()[0] as usize];
|
||||||
|
println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Customer Segmentation
|
||||||
|
|
||||||
|
```rust
|
||||||
|
# extern crate rustframe;
|
||||||
|
use rustframe::compute::models::k_means::KMeans;
|
||||||
|
use rustframe::matrix::Matrix;
|
||||||
|
|
||||||
|
// Each row: [age, annual_income]
|
||||||
|
let customers = Matrix::from_rows_vec(
|
||||||
|
vec![
|
||||||
|
25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0,
|
||||||
|
],
|
||||||
|
4,
|
||||||
|
2,
|
||||||
|
);
|
||||||
|
|
||||||
|
let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4);
|
||||||
|
|
||||||
|
let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2);
|
||||||
|
let cluster = model.predict(&new_customer)[0];
|
||||||
|
println!("New customer belongs to cluster: {}", cluster);
|
||||||
|
println!("Cluster labels: {:?}", labels);
|
||||||
|
```
|
||||||
|
|
||||||
For helper functions and upcoming modules, visit the
|
For helper functions and upcoming modules, visit the
|
||||||
[utilities](./utilities.md) section.
|
[utilities](./utilities.md) section.
|
||||||
|
|||||||
Reference in New Issue
Block a user