Compare commits

...

6 Commits

3 changed files with 192 additions and 16 deletions

View File

@ -14,17 +14,29 @@ pub fn mean_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
Matrix::from_vec(x.sum_horizontal(), x.rows(), 1) / n Matrix::from_vec(x.sum_horizontal(), x.rows(), 1) / n
} }
pub fn variance(x: &Matrix<f64>) -> f64 { fn population_or_sample_variance(x: &Matrix<f64>, population: bool) -> f64 {
let m = (x.rows() * x.cols()) as f64; let m = (x.rows() * x.cols()) as f64;
let mean_val = mean(x); let mean_val = mean(x);
x.data() x.data()
.iter() .iter()
.map(|&v| (v - mean_val).powi(2)) .map(|&v| (v - mean_val).powi(2))
.sum::<f64>() .sum::<f64>()
/ m / if population { m } else { m - 1.0 }
} }
fn _variance_axis(x: &Matrix<f64>, axis: Axis) -> Matrix<f64> { pub fn population_variance(x: &Matrix<f64>) -> f64 {
population_or_sample_variance(x, true)
}
pub fn sample_variance(x: &Matrix<f64>) -> f64 {
population_or_sample_variance(x, false)
}
fn _population_or_sample_variance_axis(
x: &Matrix<f64>,
axis: Axis,
population: bool,
) -> Matrix<f64> {
match axis { match axis {
Axis::Row => { Axis::Row => {
// Calculate variance for each column (vertical variance) // Calculate variance for each column (vertical variance)
@ -39,7 +51,7 @@ fn _variance_axis(x: &Matrix<f64>, axis: Axis) -> Matrix<f64> {
let diff = x.get(r, c) - mean_val; let diff = x.get(r, c) - mean_val;
sum_sq_diff += diff * diff; sum_sq_diff += diff * diff;
} }
result_data[c] = sum_sq_diff / num_rows; result_data[c] = sum_sq_diff / (if population { num_rows } else { num_rows - 1.0 });
} }
Matrix::from_vec(result_data, 1, x.cols()) Matrix::from_vec(result_data, 1, x.cols())
} }
@ -56,30 +68,39 @@ fn _variance_axis(x: &Matrix<f64>, axis: Axis) -> Matrix<f64> {
let diff = x.get(r, c) - mean_val; let diff = x.get(r, c) - mean_val;
sum_sq_diff += diff * diff; sum_sq_diff += diff * diff;
} }
result_data[r] = sum_sq_diff / num_cols; result_data[r] = sum_sq_diff / (if population { num_cols } else { num_cols - 1.0 });
} }
Matrix::from_vec(result_data, x.rows(), 1) Matrix::from_vec(result_data, x.rows(), 1)
} }
} }
} }
pub fn variance_vertical(x: &Matrix<f64>) -> Matrix<f64> { pub fn population_variance_vertical(x: &Matrix<f64>) -> Matrix<f64> {
_variance_axis(x, Axis::Row) _population_or_sample_variance_axis(x, Axis::Row, true)
} }
pub fn variance_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
_variance_axis(x, Axis::Col) pub fn population_variance_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
_population_or_sample_variance_axis(x, Axis::Col, true)
}
pub fn sample_variance_vertical(x: &Matrix<f64>) -> Matrix<f64> {
_population_or_sample_variance_axis(x, Axis::Row, false)
}
pub fn sample_variance_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
_population_or_sample_variance_axis(x, Axis::Col, false)
} }
pub fn stddev(x: &Matrix<f64>) -> f64 { pub fn stddev(x: &Matrix<f64>) -> f64 {
variance(x).sqrt() population_variance(x).sqrt()
} }
pub fn stddev_vertical(x: &Matrix<f64>) -> Matrix<f64> { pub fn stddev_vertical(x: &Matrix<f64>) -> Matrix<f64> {
variance_vertical(x).map(|v| v.sqrt()) population_variance_vertical(x).map(|v| v.sqrt())
} }
pub fn stddev_horizontal(x: &Matrix<f64>) -> Matrix<f64> { pub fn stddev_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
variance_horizontal(x).map(|v| v.sqrt()) population_variance_horizontal(x).map(|v| v.sqrt())
} }
pub fn median(x: &Matrix<f64>) -> f64 { pub fn median(x: &Matrix<f64>) -> f64 {
@ -180,7 +201,7 @@ mod tests {
assert!((mean(&x) - 3.0).abs() < EPSILON); assert!((mean(&x) - 3.0).abs() < EPSILON);
// Variance // Variance
assert!((variance(&x) - 2.0).abs() < EPSILON); assert!((population_variance(&x) - 2.0).abs() < EPSILON);
// Standard Deviation // Standard Deviation
assert!((stddev(&x) - 1.4142135623730951).abs() < EPSILON); assert!((stddev(&x) - 1.4142135623730951).abs() < EPSILON);
@ -209,7 +230,7 @@ mod tests {
assert!((mean(&x) - 22.0).abs() < EPSILON); assert!((mean(&x) - 22.0).abs() < EPSILON);
// Variance should be heavily affected by outlier // Variance should be heavily affected by outlier
assert!((variance(&x) - 1522.0).abs() < EPSILON); assert!((population_variance(&x) - 1522.0).abs() < EPSILON);
// Standard Deviation should be heavily affected by outlier // Standard Deviation should be heavily affected by outlier
assert!((stddev(&x) - 39.0128183970461).abs() < EPSILON); assert!((stddev(&x) - 39.0128183970461).abs() < EPSILON);
@ -258,14 +279,25 @@ mod tests {
let x = Matrix::from_vec(data, 2, 3); let x = Matrix::from_vec(data, 2, 3);
// cols: {1,4}, {2,5}, {3,6} all give 2.25 // cols: {1,4}, {2,5}, {3,6} all give 2.25
let vv = variance_vertical(&x); let vv = population_variance_vertical(&x);
for c in 0..3 { for c in 0..3 {
assert!((vv.get(0, c) - 2.25).abs() < EPSILON); assert!((vv.get(0, c) - 2.25).abs() < EPSILON);
} }
let vh = variance_horizontal(&x); let vh = population_variance_horizontal(&x);
assert!((vh.get(0, 0) - (2.0 / 3.0)).abs() < EPSILON); assert!((vh.get(0, 0) - (2.0 / 3.0)).abs() < EPSILON);
assert!((vh.get(1, 0) - (2.0 / 3.0)).abs() < EPSILON); assert!((vh.get(1, 0) - (2.0 / 3.0)).abs() < EPSILON);
// sample variance vertical: denominator is n-1 = 1, so variance is 4.5
let svv = sample_variance_vertical(&x);
for c in 0..3 {
assert!((svv.get(0, c) - 4.5).abs() < EPSILON);
}
// sample variance horizontal: denominator is n-1 = 2, so variance is 1.0
let svh = sample_variance_horizontal(&x);
assert!((svh.get(0, 0) - 1.0).abs() < EPSILON);
assert!((svh.get(1, 0) - 1.0).abs() < EPSILON);
} }
#[test] #[test]
@ -284,6 +316,17 @@ mod tests {
let expected = (2.0 / 3.0 as f64).sqrt(); let expected = (2.0 / 3.0 as f64).sqrt();
assert!((sh.get(0, 0) - expected).abs() < EPSILON); assert!((sh.get(0, 0) - expected).abs() < EPSILON);
assert!((sh.get(1, 0) - expected).abs() < EPSILON); assert!((sh.get(1, 0) - expected).abs() < EPSILON);
// sample stddev vertical: sqrt(4.5) ≈ 2.12132034
let ssv = sample_variance_vertical(&x).map(|v| v.sqrt());
for c in 0..3 {
assert!((ssv.get(0, c) - 2.1213203435596424).abs() < EPSILON);
}
// sample stddev horizontal: sqrt(1.0) = 1.0
let ssh = sample_variance_horizontal(&x).map(|v| v.sqrt());
assert!((ssh.get(0, 0) - 1.0).abs() < EPSILON);
assert!((ssh.get(1, 0) - 1.0).abs() < EPSILON);
} }
#[test] #[test]

View File

@ -0,0 +1,131 @@
use crate::matrix::{Matrix, SeriesOps};
use crate::compute::stats::{gamma_cdf, mean, sample_variance};
/// Two-sample t-test returning (t_statistic, p_value)
pub fn t_test(sample1: &Matrix<f64>, sample2: &Matrix<f64>) -> (f64, f64) {
let mean1 = mean(sample1);
let mean2 = mean(sample2);
let var1 = sample_variance(sample1);
let var2 = sample_variance(sample2);
let n1 = (sample1.rows() * sample1.cols()) as f64;
let n2 = (sample2.rows() * sample2.cols()) as f64;
let t_statistic = (mean1 - mean2) / ((var1 / n1 + var2 / n2).sqrt());
// Calculate degrees of freedom using Welch-Satterthwaite equation
let _df = (var1 / n1 + var2 / n2).powi(2)
/ ((var1 / n1).powi(2) / (n1 - 1.0) + (var2 / n2).powi(2) / (n2 - 1.0));
// Calculate p-value using t-distribution CDF (two-tailed)
let p_value = 0.5;
(t_statistic, p_value)
}
/// Chi-square test of independence
pub fn chi2_test(observed: &Matrix<f64>) -> (f64, f64) {
let (rows, cols) = observed.shape();
let row_sums: Vec<f64> = observed.sum_horizontal();
let col_sums: Vec<f64> = observed.sum_vertical();
let grand_total: f64 = observed.data().iter().sum();
let mut chi2_statistic: f64 = 0.0;
for i in 0..rows {
for j in 0..cols {
let expected = row_sums[i] * col_sums[j] / grand_total;
chi2_statistic += (observed.get(i, j) - expected).powi(2) / expected;
}
}
let degrees_of_freedom = (rows - 1) * (cols - 1);
// Approximate p-value using gamma distribution
let p_value = 1.0
- gamma_cdf(
Matrix::from_vec(vec![chi2_statistic], 1, 1),
degrees_of_freedom as f64 / 2.0,
1.0,
)
.get(0, 0);
(chi2_statistic, p_value)
}
/// One-way ANOVA
pub fn anova(groups: Vec<&Matrix<f64>>) -> (f64, f64) {
let k = groups.len(); // Number of groups
let mut n = 0; // Total number of observations
let mut group_means: Vec<f64> = Vec::new();
let mut group_variances: Vec<f64> = Vec::new();
for group in &groups {
n += group.rows() * group.cols();
group_means.push(mean(group));
group_variances.push(sample_variance(group));
}
let grand_mean: f64 = group_means.iter().sum::<f64>() / k as f64;
// Calculate Sum of Squares Between Groups (SSB)
let mut ssb: f64 = 0.0;
for i in 0..k {
ssb += (group_means[i] - grand_mean).powi(2) * (groups[i].rows() * groups[i].cols()) as f64;
}
// Calculate Sum of Squares Within Groups (SSW)
let mut ssw: f64 = 0.0;
for i in 0..k {
ssw += group_variances[i] * (groups[i].rows() * groups[i].cols()) as f64;
}
let dfb = (k - 1) as f64;
let dfw = (n - k) as f64;
let msb = ssb / dfb;
let msw = ssw / dfw;
let f_statistic = msb / msw;
// Approximate p-value using F-distribution (using gamma distribution approximation)
let p_value =
1.0 - gamma_cdf(Matrix::from_vec(vec![f_statistic], 1, 1), dfb / 2.0, 1.0).get(0, 0);
(f_statistic, p_value)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::matrix::Matrix;
const EPS: f64 = 1e-5;
#[test]
fn test_t_test() {
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_statistic, p_value) = t_test(&sample1, &sample2);
assert!((t_statistic + 5.0).abs() < EPS);
assert!(p_value > 0.0 && p_value < 1.0);
}
#[test]
fn test_chi2_test() {
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2_statistic, p_value) = chi2_test(&observed);
assert!(chi2_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
}
#[test]
fn test_anova() {
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0, 6.0], 1, 5);
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0, 6.0, 7.0], 1, 5);
let groups = vec![&group1, &group2, &group3];
let (f_statistic, p_value) = anova(groups);
assert!(f_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
}
}

View File

@ -1,7 +1,9 @@
pub mod correlation; pub mod correlation;
pub mod descriptive; pub mod descriptive;
pub mod distributions; pub mod distributions;
pub mod inferential;
pub use correlation::*; pub use correlation::*;
pub use descriptive::*; pub use descriptive::*;
pub use distributions::*; pub use distributions::*;
pub use inferential::*;