mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00
Add spigot utilities for π, τ, γ, e, and √2 approximations
This commit is contained in:
parent
2cb4e46217
commit
ff97e6b0b6
@ -10,6 +10,7 @@
|
||||
//! assert_eq!(dates.count().unwrap(), 3);
|
||||
//! ```
|
||||
pub mod dateutils;
|
||||
pub mod spigots;
|
||||
|
||||
pub use dateutils::{BDateFreq, BDatesGenerator, BDatesList};
|
||||
pub use dateutils::{DateFreq, DatesGenerator, DatesList};
|
||||
|
243
src/utils/spigots.rs
Normal file
243
src/utils/spigots.rs
Normal file
@ -0,0 +1,243 @@
|
||||
/// Iterator producing successive approximations of π using the Nilakantha series.
|
||||
pub struct PiSpigot {
|
||||
k: u64,
|
||||
current: f64,
|
||||
}
|
||||
|
||||
impl Iterator for PiSpigot {
|
||||
type Item = f64;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.k == 0 {
|
||||
self.k = 1;
|
||||
self.current = 3.0;
|
||||
return Some(self.current);
|
||||
}
|
||||
let k = self.k as f64;
|
||||
let term = 4.0 / ((2.0 * k) * (2.0 * k + 1.0) * (2.0 * k + 2.0));
|
||||
if self.k % 2 == 1 {
|
||||
self.current += term;
|
||||
} else {
|
||||
self.current -= term;
|
||||
}
|
||||
self.k += 1;
|
||||
Some(self.current)
|
||||
}
|
||||
}
|
||||
|
||||
/// Generator yielding approximations of π indefinitely.
|
||||
pub fn pi_spigot() -> PiSpigot {
|
||||
PiSpigot { k: 0, current: 0.0 }
|
||||
}
|
||||
|
||||
/// Return the first `n` approximations of π as a vector.
|
||||
pub fn pi_values(n: usize) -> Vec<f64> {
|
||||
pi_spigot().take(n).collect()
|
||||
}
|
||||
|
||||
/// Generator yielding approximations of τ = 2π indefinitely.
|
||||
pub fn tau_spigot() -> impl Iterator<Item = f64> {
|
||||
pi_spigot().map(|v| v * 2.0)
|
||||
}
|
||||
|
||||
/// Return the first `n` approximations of τ as a vector.
|
||||
pub fn tau_values(n: usize) -> Vec<f64> {
|
||||
tau_spigot().take(n).collect()
|
||||
}
|
||||
|
||||
/// Iterator producing successive approximations of the Euler-Mascheroni constant γ.
|
||||
pub struct GammaSpigot {
|
||||
n: u64,
|
||||
harmonic: f64,
|
||||
}
|
||||
|
||||
impl Iterator for GammaSpigot {
|
||||
type Item = f64;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
self.n += 1;
|
||||
self.harmonic += 1.0 / self.n as f64;
|
||||
let value = self.harmonic - (self.n as f64).ln();
|
||||
Some(value)
|
||||
}
|
||||
}
|
||||
|
||||
/// Generator yielding approximations of γ indefinitely.
|
||||
pub fn gamma_spigot() -> GammaSpigot {
|
||||
GammaSpigot {
|
||||
n: 0,
|
||||
harmonic: 0.0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the first `n` approximations of γ as a vector.
|
||||
pub fn gamma_values(n: usize) -> Vec<f64> {
|
||||
gamma_spigot().take(n).collect()
|
||||
}
|
||||
|
||||
/// Iterator producing successive approximations of e using the series Σ 1/n!.
|
||||
pub struct ESpigot {
|
||||
n: u64,
|
||||
sum: f64,
|
||||
factorial: f64,
|
||||
}
|
||||
|
||||
impl Iterator for ESpigot {
|
||||
type Item = f64;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.n == 0 {
|
||||
self.n = 1;
|
||||
self.sum = 1.0;
|
||||
self.factorial = 1.0;
|
||||
return Some(self.sum);
|
||||
}
|
||||
self.factorial *= self.n as f64;
|
||||
self.sum += 1.0 / self.factorial;
|
||||
self.n += 1;
|
||||
Some(self.sum)
|
||||
}
|
||||
}
|
||||
|
||||
/// Generator yielding approximations of e indefinitely.
|
||||
pub fn e_spigot() -> ESpigot {
|
||||
ESpigot {
|
||||
n: 0,
|
||||
sum: 0.0,
|
||||
factorial: 1.0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the first `n` approximations of e as a vector.
|
||||
pub fn e_values(n: usize) -> Vec<f64> {
|
||||
e_spigot().take(n).collect()
|
||||
}
|
||||
|
||||
/// Iterator producing successive approximations of √2 using Newton's method.
|
||||
pub struct Sqrt2Spigot {
|
||||
x: f64,
|
||||
first: bool,
|
||||
}
|
||||
|
||||
impl Iterator for Sqrt2Spigot {
|
||||
type Item = f64;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.first {
|
||||
self.first = false;
|
||||
Some(self.x)
|
||||
} else {
|
||||
self.x = 0.5 * (self.x + 2.0 / self.x);
|
||||
Some(self.x)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Generator yielding approximations of √2 indefinitely.
|
||||
pub fn sqrt2_spigot() -> Sqrt2Spigot {
|
||||
Sqrt2Spigot {
|
||||
x: 1.0,
|
||||
first: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the first `n` approximations of √2 as a vector.
|
||||
pub fn sqrt2_values(n: usize) -> Vec<f64> {
|
||||
sqrt2_spigot().take(n).collect()
|
||||
}
|
||||
|
||||
fn look_and_say(s: &str) -> String {
|
||||
let mut chars = s.chars().peekable();
|
||||
let mut result = String::new();
|
||||
while let Some(c) = chars.next() {
|
||||
let mut count = 1;
|
||||
while let Some(&next) = chars.peek() {
|
||||
if next == c {
|
||||
chars.next();
|
||||
count += 1;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
result.push_str(&format!("{}{}", count, c));
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
/// Iterator producing successive ratios of lengths of the look-and-say sequence.
|
||||
pub struct ConwaySpigot {
|
||||
current: String,
|
||||
}
|
||||
|
||||
impl Iterator for ConwaySpigot {
|
||||
type Item = f64;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let next = look_and_say(&self.current);
|
||||
let ratio = next.len() as f64 / self.current.len() as f64;
|
||||
self.current = next;
|
||||
Some(ratio)
|
||||
}
|
||||
}
|
||||
|
||||
/// Generator yielding approximations of Conway's constant λ indefinitely.
|
||||
pub fn conway_spigot() -> ConwaySpigot {
|
||||
ConwaySpigot {
|
||||
current: "1".to_string(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the first `n` approximations of Conway's constant as a vector.
|
||||
pub fn conway_values(n: usize) -> Vec<f64> {
|
||||
conway_spigot().take(n).collect()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use std::f64::consts::{E, PI, TAU};
|
||||
|
||||
#[test]
|
||||
fn test_pi_spigot() {
|
||||
let vals = pi_values(1000);
|
||||
let approx = vals.last().cloned().unwrap();
|
||||
assert!((approx - PI).abs() < 1e-8);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_tau_spigot() {
|
||||
let vals = tau_values(1000);
|
||||
let approx = vals.last().cloned().unwrap();
|
||||
assert!((approx - TAU).abs() < 1e-8);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gamma_spigot() {
|
||||
let vals = gamma_values(100000);
|
||||
let approx = vals.last().cloned().unwrap();
|
||||
let gamma_true = 0.5772156649015329_f64;
|
||||
assert!((approx - gamma_true).abs() < 1e-5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_e_spigot() {
|
||||
let vals = e_values(10);
|
||||
let approx = vals.last().cloned().unwrap();
|
||||
assert!((approx - E).abs() < 1e-6);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sqrt2_spigot() {
|
||||
let vals = sqrt2_values(6);
|
||||
let approx = vals.last().cloned().unwrap();
|
||||
assert!((approx - 2_f64.sqrt()).abs() < 1e-12);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_conway_spigot() {
|
||||
let vals = conway_values(25);
|
||||
let approx = vals.last().cloned().unwrap();
|
||||
let conway = 1.3035772690342964_f64;
|
||||
assert!((approx - conway).abs() < 1e-2);
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user