Add Gaussian Naive Bayes implementation with fit and predict methods

This commit is contained in:
Palash Tyagi 2025-07-06 17:43:04 +01:00
parent d4c0f174b1
commit eb948c1f49

View File

@ -0,0 +1,124 @@
use crate::matrix::{Matrix};
use std::collections::HashMap;
pub struct GaussianNB {
classes: Vec<f64>, // distinct labels
priors: Vec<f64>, // P(class)
means: Vec<Matrix<f64>>,
variances: Vec<Matrix<f64>>,
eps: f64, // var-smoothing
}
impl GaussianNB {
pub fn new(var_smoothing: f64) -> Self {
Self {
classes: vec![],
priors: vec![],
means: vec![],
variances: vec![],
eps: var_smoothing,
}
}
pub fn fit(&mut self, x: &Matrix<f64>, y: &Matrix<f64>) {
let m = x.rows();
let n = x.cols();
assert_eq!(y.rows(), m);
assert_eq!(y.cols(), 1);
if m == 0 || n == 0 {
panic!("Input matrix x or y is empty");
}
// ----- group samples by label -----
let mut groups: HashMap<u64, Vec<usize>> = HashMap::new();
for i in 0..m {
let label_bits = y[(i, 0)].to_bits();
groups.entry(label_bits).or_default().push(i);
}
if groups.is_empty() {
panic!("No class labels found in y");
}
self.classes = groups
.keys()
.cloned()
.map(f64::from_bits)
.collect::<Vec<_>>();
// Note: If NaN is present in class labels, this may panic. Ensure labels are valid floats.
self.classes.sort_by(|a, b| a.partial_cmp(b).unwrap());
self.priors.clear();
self.means.clear();
self.variances.clear();
for &c in &self.classes {
let label_bits = c.to_bits();
let idx = &groups[&label_bits];
let count = idx.len();
if count == 0 {
panic!("Class group for label {c} is empty");
}
self.priors.push(count as f64 / m as f64);
let mut mean = Matrix::zeros(1, n);
let mut var = Matrix::zeros(1, n);
// mean
for &i in idx {
for j in 0..n {
mean[(0, j)] += x[(i, j)];
}
}
for j in 0..n {
mean[(0, j)] /= count as f64;
}
// variance
for &i in idx {
for j in 0..n {
let d = x[(i, j)] - mean[(0, j)];
var[(0, j)] += d * d;
}
}
for j in 0..n {
var[(0, j)] = var[(0, j)] / count as f64 + self.eps; // always add eps after division
if var[(0, j)] <= 0.0 {
var[(0, j)] = self.eps; // ensure strictly positive variance
}
}
self.means.push(mean);
self.variances.push(var);
}
}
/// Return class labels (shape m×1) for samples in X.
pub fn predict(&self, x: &Matrix<f64>) -> Matrix<f64> {
let m = x.rows();
let k = self.classes.len();
let n = x.cols();
let mut preds = Matrix::zeros(m, 1);
let ln_2pi = (2.0 * std::f64::consts::PI).ln();
for i in 0..m {
let mut best_class = 0usize;
let mut best_log_prob = f64::NEG_INFINITY;
for c in 0..k {
// log P(y=c) + Σ log N(x_j | μ, σ²)
let mut log_prob = self.priors[c].ln();
for j in 0..n {
let mean = self.means[c][(0, j)];
let var = self.variances[c][(0, j)];
let diff = x[(i, j)] - mean;
log_prob += -0.5 * (diff * diff / var + var.ln() + ln_2pi);
}
if log_prob > best_log_prob {
best_log_prob = log_prob;
best_class = c;
}
}
preds[(i, 0)] = self.classes[best_class];
}
preds
}
}