diff --git a/tests/mat_ops_tests.rs b/tests/mat_ops_tests.rs new file mode 100644 index 0000000..150aa3a --- /dev/null +++ b/tests/mat_ops_tests.rs @@ -0,0 +1,385 @@ +#[cfg(test)] +mod tests { + use rustframe::matrix::*; + + // Helper function to create a FloatMatrix for SeriesOps testing + fn create_float_test_matrix() -> FloatMatrix { + // 3x3 matrix (column-major) with some NaNs + // 1.0 4.0 7.0 + // 2.0 NaN 8.0 + // 3.0 6.0 NaN + let data = vec![1.0, 2.0, 3.0, 4.0, f64::NAN, 6.0, 7.0, 8.0, f64::NAN]; + FloatMatrix::from_vec(data, 3, 3) + } + + // Helper function to create a BoolMatrix for BoolOps testing + fn create_bool_test_matrix() -> BoolMatrix { + // 3x3 matrix (column-major) + // T F T + // F T F + // T F F + let data = vec![true, false, true, false, true, false, true, false, false]; + BoolMatrix::from_vec(data, 3, 3) + } + + // --- Tests for SeriesOps (FloatMatrix) --- + + #[test] + fn test_series_ops_sum_vertical() { + let matrix = create_float_test_matrix(); + // Col 0: 1.0 + 2.0 + 3.0 = 6.0 + // Col 1: 4.0 + NaN + 6.0 = 10.0 (NaN ignored) + // Col 2: 7.0 + 8.0 + NaN = 15.0 (NaN ignored) + let expected = vec![6.0, 10.0, 15.0]; + assert_eq!(matrix.sum_vertical(), expected); + } + + #[test] + fn test_series_ops_sum_horizontal() { + let matrix = create_float_test_matrix(); + // Row 0: 1.0 + 4.0 + 7.0 = 12.0 + // Row 1: 2.0 + NaN + 8.0 = 10.0 (NaN ignored) + // Row 2: 3.0 + 6.0 + NaN = 9.0 (NaN ignored) + let expected = vec![12.0, 10.0, 9.0]; + assert_eq!(matrix.sum_horizontal(), expected); + } + + #[test] + fn test_series_ops_prod_vertical() { + let matrix = create_float_test_matrix(); + // Col 0: 1.0 * 2.0 * 3.0 = 6.0 + // Col 1: 4.0 * NaN * 6.0 = 24.0 (NaN ignored, starts with 1.0) + // Col 2: 7.0 * 8.0 * NaN = 56.0 (NaN ignored, starts with 1.0) + let expected = vec![6.0, 24.0, 56.0]; + assert_eq!(matrix.prod_vertical(), expected); + } + + #[test] + fn test_series_ops_prod_horizontal() { + let matrix = create_float_test_matrix(); + // Row 0: 1.0 * 4.0 * 7.0 = 28.0 + // Row 1: 2.0 * NaN * 8.0 = 16.0 (NaN ignored, starts with 1.0) + // Row 2: 3.0 * 6.0 * NaN = 18.0 (NaN ignored, starts with 1.0) + let expected = vec![28.0, 16.0, 18.0]; + assert_eq!(matrix.prod_horizontal(), expected); + } + + #[test] + fn test_series_ops_cumsum_vertical() { + let matrix = create_float_test_matrix(); + // Col 0: [1.0, 1.0+2.0=3.0, 3.0+3.0=6.0] + // Col 1: [4.0, 4.0+NaN=4.0, 4.0+6.0=10.0] (NaN ignored, cumulative sum doesn't reset) + // Col 2: [7.0, 7.0+8.0=15.0, 15.0+NaN=15.0] + // Expected data (column-major): [1.0, 3.0, 6.0, 4.0, 4.0, 10.0, 7.0, 15.0, 15.0] + let expected_data = vec![1.0, 3.0, 6.0, 4.0, 4.0, 10.0, 7.0, 15.0, 15.0]; + let expected_matrix = FloatMatrix::from_vec(expected_data, 3, 3); + assert_eq!(matrix.cumsum_vertical(), expected_matrix); + } + + #[test] + fn test_series_ops_cumsum_horizontal() { + let matrix = create_float_test_matrix(); + // Row 0: [1.0, 1.0+4.0=5.0, 5.0+7.0=12.0] + // Row 1: [2.0, 2.0+NaN=2.0, 2.0+8.0=10.0] (NaN ignored, cumulative sum doesn't reset) + // Row 2: [3.0, 3.0+6.0=9.0, 9.0+NaN=9.0] + // Expected data (column-major construction from row results): + // Col 0: (R0,C0)=1.0, (R1,C0)=2.0, (R2,C0)=3.0 => [1.0, 2.0, 3.0] + // Col 1: (R0,C1)=5.0, (R1,C1)=2.0, (R2,C1)=9.0 => [5.0, 2.0, 9.0] + // Col 2: (R0,C2)=12.0, (R1,C2)=10.0, (R2,C2)=9.0 => [12.0, 10.0, 9.0] + // Combined data: [1.0, 2.0, 3.0, 5.0, 2.0, 9.0, 12.0, 10.0, 9.0] + let expected_data = vec![1.0, 2.0, 3.0, 5.0, 2.0, 9.0, 12.0, 10.0, 9.0]; + let expected_matrix = FloatMatrix::from_vec(expected_data, 3, 3); + assert_eq!(matrix.cumsum_horizontal(), expected_matrix); + } + + #[test] + fn test_series_ops_count_nan_vertical() { + let matrix = create_float_test_matrix(); + // Col 0: 0 NaNs + // Col 1: 1 NaN + // Col 2: 1 NaN + let expected = vec![0, 1, 1]; + assert_eq!(matrix.count_nan_vertical(), expected); + } + + #[test] + fn test_series_ops_count_nan_horizontal() { + let matrix = create_float_test_matrix(); + // Row 0: 0 NaNs + // Row 1: 1 NaN + // Row 2: 1 NaN + let expected = vec![0, 1, 1]; + assert_eq!(matrix.count_nan_horizontal(), expected); + } + + #[test] + fn test_series_ops_is_nan() { + let matrix = create_float_test_matrix(); + // Original data (col-major): [1.0, 2.0, 3.0, 4.0, NaN, 6.0, 7.0, 8.0, NaN] + // is_nan() applied: [F, F, F, F, T, F, F, F, T] + let expected_data = vec![false, false, false, false, true, false, false, false, true]; + let expected_matrix = BoolMatrix::from_vec(expected_data, 3, 3); + assert_eq!(matrix.is_nan(), expected_matrix); + } + + // --- Edge Cases for SeriesOps --- + + #[test] + fn test_series_ops_1x1() { + let matrix = FloatMatrix::from_vec(vec![42.0], 1, 1); + assert_eq!(matrix.sum_vertical(), vec![42.0]); + assert_eq!(matrix.sum_horizontal(), vec![42.0]); + assert_eq!(matrix.prod_vertical(), vec![42.0]); + assert_eq!(matrix.prod_horizontal(), vec![42.0]); + assert_eq!(matrix.cumsum_vertical().data(), &[42.0]); + assert_eq!(matrix.cumsum_horizontal().data(), &[42.0]); + assert_eq!(matrix.count_nan_vertical(), vec![0]); + assert_eq!(matrix.count_nan_horizontal(), vec![0]); + assert_eq!(matrix.is_nan().data(), &[false]); + + let matrix_nan = FloatMatrix::from_vec(vec![f64::NAN], 1, 1); + assert_eq!(matrix_nan.sum_vertical(), vec![0.0]); // sum of empty set is 0 + assert_eq!(matrix_nan.sum_horizontal(), vec![0.0]); + assert_eq!(matrix_nan.prod_vertical(), vec![1.0]); // product of empty set is 1 + assert_eq!(matrix_nan.prod_horizontal(), vec![1.0]); + assert_eq!(matrix_nan.cumsum_vertical().data(), &[0.0]); // cumsum starts at 0, nan ignored + assert_eq!(matrix_nan.cumsum_horizontal().data(), &[0.0]); + assert_eq!(matrix_nan.count_nan_vertical(), vec![1]); + assert_eq!(matrix_nan.count_nan_horizontal(), vec![1]); + assert_eq!(matrix_nan.is_nan().data(), &[true]); + } + + #[test] + fn test_series_ops_1xn_matrix() { + let matrix = FloatMatrix::from_vec(vec![1.0, f64::NAN, 3.0, 4.0], 1, 4); // 1 row, 4 cols + // Data: [1.0, NaN, 3.0, 4.0] + + // Vertical (sums/prods/counts per column - each col is just one element) + assert_eq!(matrix.sum_vertical(), vec![1.0, 0.0, 3.0, 4.0]); // NaN sum is 0 + assert_eq!(matrix.prod_vertical(), vec![1.0, 1.0, 3.0, 4.0]); // NaN prod is 1 + assert_eq!(matrix.count_nan_vertical(), vec![0, 1, 0, 0]); + assert_eq!(matrix.cumsum_vertical().data(), &[1.0, 0.0, 3.0, 4.0]); // Cumsum on single element column + + // Horizontal (sums/prods/counts for the single row) + // Row 0: 1.0 + NaN + 3.0 + 4.0 = 8.0 + // Row 0: 1.0 * NaN * 3.0 * 4.0 = 12.0 + // Row 0: 1 NaN + assert_eq!(matrix.sum_horizontal(), vec![8.0]); + assert_eq!(matrix.prod_horizontal(), vec![12.0]); + assert_eq!(matrix.count_nan_horizontal(), vec![1]); + + // Cumsum Horizontal + // Row 0: [1.0, 1.0+NaN=1.0, 1.0+3.0=4.0, 4.0+4.0=8.0] + // Data (col-major): [1.0, 1.0, 4.0, 8.0] (since it's 1 row, data is the same as the row result) + assert_eq!(matrix.cumsum_horizontal().data(), &[1.0, 1.0, 4.0, 8.0]); + + // is_nan + // Data: [1.0, NaN, 3.0, 4.0] + // Expected: [F, T, F, F] + assert_eq!(matrix.is_nan().data(), &[false, true, false, false]); + } + + #[test] + fn test_series_ops_nx1_matrix() { + let matrix = FloatMatrix::from_vec(vec![1.0, 2.0, f64::NAN, 4.0], 4, 1); // 4 rows, 1 col + // Data: [1.0, 2.0, NaN, 4.0] + + // Vertical (sums/prods/counts for the single column) + // Col 0: 1.0 + 2.0 + NaN + 4.0 = 7.0 + // Col 0: 1.0 * 2.0 * NaN * 4.0 = 8.0 + // Col 0: 1 NaN + assert_eq!(matrix.sum_vertical(), vec![7.0]); + assert_eq!(matrix.prod_vertical(), vec![8.0]); + assert_eq!(matrix.count_nan_vertical(), vec![1]); + + // Cumsum Vertical + // Col 0: [1.0, 1.0+2.0=3.0, 3.0+NaN=3.0, 3.0+4.0=7.0] + // Data (col-major): [1.0, 3.0, 3.0, 7.0] (since it's 1 col, data is the same as the col result) + assert_eq!(matrix.cumsum_vertical().data(), &[1.0, 3.0, 3.0, 7.0]); + + // Horizontal (sums/prods/counts per row - each row is just one element) + assert_eq!(matrix.sum_horizontal(), vec![1.0, 2.0, 0.0, 4.0]); // NaN sum is 0 + assert_eq!(matrix.prod_horizontal(), vec![1.0, 2.0, 1.0, 4.0]); // NaN prod is 1 + assert_eq!(matrix.count_nan_horizontal(), vec![0, 0, 1, 0]); + assert_eq!(matrix.cumsum_horizontal().data(), &[1.0, 2.0, 0.0, 4.0]); // Cumsum on single element row + + // is_nan + // Data: [1.0, 2.0, NaN, 4.0] + // Expected: [F, F, T, F] + assert_eq!(matrix.is_nan().data(), &[false, false, true, false]); + } + + #[test] + fn test_series_ops_all_nan_matrix() { + let matrix = FloatMatrix::from_vec(vec![f64::NAN, f64::NAN, f64::NAN, f64::NAN], 2, 2); + // NaN NaN + // NaN NaN + // Data: [NaN, NaN, NaN, NaN] + + assert_eq!(matrix.sum_vertical(), vec![0.0, 0.0]); + assert_eq!(matrix.sum_horizontal(), vec![0.0, 0.0]); + assert_eq!(matrix.prod_vertical(), vec![1.0, 1.0]); + assert_eq!(matrix.prod_horizontal(), vec![1.0, 1.0]); + assert_eq!(matrix.cumsum_vertical().data(), &[0.0, 0.0, 0.0, 0.0]); + assert_eq!(matrix.cumsum_horizontal().data(), &[0.0, 0.0, 0.0, 0.0]); + assert_eq!(matrix.count_nan_vertical(), vec![2, 2]); + assert_eq!(matrix.count_nan_horizontal(), vec![2, 2]); + assert_eq!(matrix.is_nan().data(), &[true, true, true, true]); + } + + // --- Tests for BoolOps (BoolMatrix) --- + + #[test] + fn test_bool_ops_any_vertical() { + let matrix = create_bool_test_matrix(); + // Col 0: T | F | T = T + // Col 1: F | T | F = T + // Col 2: T | F | F = T + let expected = vec![true, true, true]; + assert_eq!(matrix.any_vertical(), expected); + } + + #[test] + fn test_bool_ops_any_horizontal() { + let matrix = create_bool_test_matrix(); + // Row 0: T | F | T = T + // Row 1: F | T | F = T + // Row 2: T | F | F = T + let expected = vec![true, true, true]; + assert_eq!(matrix.any_horizontal(), expected); + } + + #[test] + fn test_bool_ops_all_vertical() { + let matrix = create_bool_test_matrix(); + // Col 0: T & F & T = F + // Col 1: F & T & F = F + // Col 2: T & F & F = F + let expected = vec![false, false, false]; + assert_eq!(matrix.all_vertical(), expected); + } + + #[test] + fn test_bool_ops_all_horizontal() { + let matrix = create_bool_test_matrix(); + // Row 0: T & F & T = F + // Row 1: F & T & F = F + // Row 2: T & F & F = F + let expected = vec![false, false, false]; + assert_eq!(matrix.all_horizontal(), expected); + } + + #[test] + fn test_bool_ops_count_vertical() { + let matrix = create_bool_test_matrix(); + // Col 0: count true in [T, F, T] = 2 + // Col 1: count true in [F, T, F] = 1 + // Col 2: count true in [T, F, F] = 1 + let expected = vec![2, 1, 1]; + assert_eq!(matrix.count_vertical(), expected); + } + + #[test] + fn test_bool_ops_count_horizontal() { + let matrix = create_bool_test_matrix(); + // Row 0: count true in [T, F, T] = 2 + // Row 1: count true in [F, T, F] = 1 + // Row 2: count true in [T, F, F] = 1 + let expected = vec![2, 1, 1]; + assert_eq!(matrix.count_horizontal(), expected); + } + + #[test] + fn test_bool_ops_any_overall() { + let matrix = create_bool_test_matrix(); // Has true values + assert!(matrix.any()); + + let matrix_all_false = BoolMatrix::from_vec(vec![false; 9], 3, 3); + assert!(!matrix_all_false.any()); + } + + #[test] + fn test_bool_ops_all_overall() { + let matrix = create_bool_test_matrix(); // Has false values + assert!(!matrix.all()); + + let matrix_all_true = BoolMatrix::from_vec(vec![true; 9], 3, 3); + assert!(matrix_all_true.all()); + } + + #[test] + fn test_bool_ops_count_overall() { + let matrix = create_bool_test_matrix(); // Data: [T, F, T, F, T, F, T, F, F] + // Count of true values: 4 + assert_eq!(matrix.count(), 4); + + let matrix_all_false = BoolMatrix::from_vec(vec![false; 5], 5, 1); // 5x1 + assert_eq!(matrix_all_false.count(), 0); + + let matrix_all_true = BoolMatrix::from_vec(vec![true; 4], 2, 2); // 2x2 + assert_eq!(matrix_all_true.count(), 4); + } + + // --- Edge Cases for BoolOps --- + + #[test] + fn test_bool_ops_1x1() { + let matrix_t = BoolMatrix::from_vec(vec![true], 1, 1); + assert_eq!(matrix_t.any_vertical(), vec![true]); + assert_eq!(matrix_t.any_horizontal(), vec![true]); + assert_eq!(matrix_t.all_vertical(), vec![true]); + assert_eq!(matrix_t.all_horizontal(), vec![true]); + assert_eq!(matrix_t.count_vertical(), vec![1]); + assert_eq!(matrix_t.count_horizontal(), vec![1]); + assert!(matrix_t.any()); + assert!(matrix_t.all()); + assert_eq!(matrix_t.count(), 1); + + let matrix_f = BoolMatrix::from_vec(vec![false], 1, 1); + assert_eq!(matrix_f.any_vertical(), vec![false]); + assert_eq!(matrix_f.any_horizontal(), vec![false]); + assert_eq!(matrix_f.all_vertical(), vec![false]); + assert_eq!(matrix_f.all_horizontal(), vec![false]); + assert_eq!(matrix_f.count_vertical(), vec![0]); + assert_eq!(matrix_f.count_horizontal(), vec![0]); + assert!(!matrix_f.any()); + assert!(!matrix_f.all()); + assert_eq!(matrix_f.count(), 0); + } + + #[test] + fn test_bool_ops_1xn_matrix() { + let matrix = BoolMatrix::from_vec(vec![true, false, false, true], 1, 4); // 1 row, 4 cols + // Data: [T, F, F, T] + + assert_eq!(matrix.any_vertical(), vec![true, false, false, true]); + assert_eq!(matrix.all_vertical(), vec![true, false, false, true]); + assert_eq!(matrix.count_vertical(), vec![1, 0, 0, 1]); + + assert_eq!(matrix.any_horizontal(), vec![true]); // T | F | F | T = T + assert_eq!(matrix.all_horizontal(), vec![false]); // T & F & F & T = F + assert_eq!(matrix.count_horizontal(), vec![2]); // count true in [T, F, F, T] = 2 + + assert!(matrix.any()); + assert!(!matrix.all()); + assert_eq!(matrix.count(), 2); + } + + #[test] + fn test_bool_ops_nx1_matrix() { + let matrix = BoolMatrix::from_vec(vec![true, false, false, true], 4, 1); // 4 rows, 1 col + // Data: [T, F, F, T] + + assert_eq!(matrix.any_vertical(), vec![true]); // T|F|F|T = T + assert_eq!(matrix.all_vertical(), vec![false]); // T&F&F&T = F + assert_eq!(matrix.count_vertical(), vec![2]); // count true in [T, F, F, T] = 2 + + assert_eq!(matrix.any_horizontal(), vec![true, false, false, true]); + assert_eq!(matrix.all_horizontal(), vec![true, false, false, true]); + assert_eq!(matrix.count_horizontal(), vec![1, 0, 0, 1]); + + assert!(matrix.any()); + assert!(!matrix.all()); + assert_eq!(matrix.count(), 2); + } +}