Implement Rng trait and RangeSample conversion for random number generation

This commit is contained in:
Palash Tyagi 2025-07-28 20:17:21 +01:00
parent 556b08216f
commit d0b0f295b1

139
src/random/random_core.rs Normal file
View File

@ -0,0 +1,139 @@
use std::f64::consts::PI;
use std::ops::Range;
/// Trait implemented by random number generators.
pub trait Rng {
/// Generate the next random `u64` value.
fn next_u64(&mut self) -> u64;
/// Generate a value uniformly in the given range.
fn random_range<T>(&mut self, range: Range<T>) -> T
where
T: RangeSample,
{
T::from_u64(self.next_u64(), &range)
}
/// Generate a boolean with probability 0.5 of being `true`.
fn gen_bool(&mut self) -> bool {
self.random_range(0..2usize) == 1
}
/// Sample from a normal distribution using the Box-Muller transform.
fn normal(&mut self, mean: f64, sd: f64) -> f64 {
let u1 = self.random_range(0.0..1.0);
let u2 = self.random_range(0.0..1.0);
mean + sd * (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
}
}
/// Conversion from a raw `u64` into a type within a range.
pub trait RangeSample: Sized {
fn from_u64(value: u64, range: &Range<Self>) -> Self;
}
impl RangeSample for usize {
fn from_u64(value: u64, range: &Range<Self>) -> Self {
let span = range.end - range.start;
(value as usize % span) + range.start
}
}
impl RangeSample for f64 {
fn from_u64(value: u64, range: &Range<Self>) -> Self {
let span = range.end - range.start;
range.start + (value as f64 / u64::MAX as f64) * span
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::random::{CryptoRng, Prng, SliceRandom};
#[test]
fn test_prng_determinism() {
let mut a = Prng::new(42);
let mut b = Prng::new(42);
for _ in 0..5 {
assert_eq!(a.next_u64(), b.next_u64());
}
}
#[test]
fn test_random_range_f64() {
let mut rng = Prng::new(1);
for _ in 0..10 {
let v = rng.random_range(-1.0..1.0);
assert!(v >= -1.0 && v < 1.0);
}
}
#[test]
fn test_shuffle_slice() {
let mut rng = Prng::new(3);
let mut arr = [1, 2, 3, 4, 5];
let orig = arr.clone();
arr.shuffle(&mut rng);
assert_eq!(arr.len(), orig.len());
let mut sorted = arr.to_vec();
sorted.sort();
assert_eq!(sorted, orig.to_vec());
}
#[test]
fn test_random_range_usize() {
let mut rng = Prng::new(9);
for _ in 0..100 {
let v = rng.random_range(10..20);
assert!(v >= 10 && v < 20);
}
}
#[test]
fn test_gen_bool_balance() {
let mut rng = Prng::new(123);
let mut trues = 0;
for _ in 0..1000 {
if rng.gen_bool() {
trues += 1;
}
}
let ratio = trues as f64 / 1000.0;
assert!(ratio > 0.4 && ratio < 0.6);
}
#[test]
fn test_normal_distribution() {
let mut rng = Prng::new(7);
let mut sum = 0.0;
let mut sum_sq = 0.0;
let mean = 5.0;
let sd = 2.0;
let n = 5000;
for _ in 0..n {
let val = rng.normal(mean, sd);
sum += val;
sum_sq += val * val;
}
let sample_mean = sum / n as f64;
let sample_var = sum_sq / n as f64 - sample_mean * sample_mean;
assert!((sample_mean - mean).abs() < 0.1);
assert!((sample_var - sd * sd).abs() < 0.2 * sd * sd);
}
#[test]
fn test_crypto_rng_nonzero() {
let mut rng = CryptoRng::new();
let mut all_same = true;
let mut prev = rng.next_u64();
for _ in 0..5 {
let val = rng.next_u64();
if val != prev {
all_same = false;
}
prev = val;
}
assert!(!all_same, "CryptoRng produced identical values");
}
}