Add test for variance smoothing with zero smoothing in GaussianNB

This commit is contained in:
Palash Tyagi 2025-07-12 01:34:08 +01:00
parent eebe772da6
commit bc87e40481

View File

@ -208,4 +208,26 @@ mod tests {
let mut clf = GaussianNB::new(1e-9, false); let mut clf = GaussianNB::new(1e-9, false);
clf.fit(&x, &y); clf.fit(&x, &y);
} }
#[test]
fn test_variance_smoothing_override_with_zero_smoothing() {
// Scenario: var_smoothing is 0, and a feature has zero variance within a class.
// This should trigger the `if var[(0, j)] <= 0.0 { var[(0, j)] = smoothing; }` line.
let x = Matrix::from_vec(vec![1.0, 1.0, 2.0], 3, 1); // Class 0: [1.0, 1.0], Class 1: [2.0]
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0], 3, 1);
let mut clf = GaussianNB::new(0.0, false); // var_smoothing = 0.0
clf.fit(&x, &y);
// For class 0 (index 0 in clf.classes), the feature (index 0) had values [1.0, 1.0], so variance was 0.
// Since var_smoothing was 0, smoothing is 0.
// The line `var[(0, j)] = smoothing;` should have set the variance to 0.0.
let class_0_idx = clf.classes.iter().position(|&c| c == 0.0).unwrap();
assert_eq!(clf.variances[class_0_idx][(0, 0)], 0.0);
// For class 1 (index 1 in clf.classes), the feature (index 0) had value [2.0].
// Variance calculation for a single point results in 0.
// The if condition will be true, and var[(0, j)] will be set to smoothing (0.0).
let class_1_idx = clf.classes.iter().position(|&c| c == 1.0).unwrap();
assert_eq!(clf.variances[class_1_idx][(0, 0)], 0.0);
}
} }