mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00
Add tests for DenseNN training and MSE loss calculation
This commit is contained in:
parent
46abeb12a7
commit
96f434bf94
@ -207,15 +207,22 @@ impl DenseNN {
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------
|
||||
// Simple tests
|
||||
// ------------------------------
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::matrix::Matrix;
|
||||
|
||||
/// Compute MSE = 1/m * Σ (ŷ - y)²
|
||||
fn mse_loss(y_hat: &Matrix<f64>, y: &Matrix<f64>) -> f64 {
|
||||
let m = y.rows() as f64;
|
||||
y_hat
|
||||
.zip(y, |yh, yv| (yh - yv).powi(2))
|
||||
.data()
|
||||
.iter()
|
||||
.sum::<f64>()
|
||||
/ m
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_predict_shape() {
|
||||
let config = DenseNNConfig {
|
||||
@ -236,7 +243,7 @@ mod tests {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_train_no_epochs() {
|
||||
fn test_train_no_epochs_does_nothing() {
|
||||
let config = DenseNNConfig {
|
||||
input_size: 1,
|
||||
hidden_layers: vec![2],
|
||||
@ -248,35 +255,86 @@ mod tests {
|
||||
epochs: 0,
|
||||
};
|
||||
let mut model = DenseNN::new(config);
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
|
||||
let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
|
||||
|
||||
let before = model.predict(&x);
|
||||
model.train(&x, &before);
|
||||
model.train(&x, &y);
|
||||
let after = model.predict(&x);
|
||||
|
||||
for i in 0..before.rows() {
|
||||
assert!((before[(i, 0)] - after[(i, 0)]).abs() < 1e-12);
|
||||
for j in 0..before.cols() {
|
||||
assert!(
|
||||
(before[(i, j)] - after[(i, j)]).abs() < 1e-12,
|
||||
"prediction changed despite 0 epochs"
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_nn_step() {
|
||||
fn test_train_one_epoch_changes_predictions() {
|
||||
// Single-layer sigmoid regression so gradients flow.
|
||||
let config = DenseNNConfig {
|
||||
input_size: 1,
|
||||
hidden_layers: vec![2],
|
||||
activations: vec![ActivationKind::Relu, ActivationKind::Sigmoid],
|
||||
hidden_layers: vec![],
|
||||
activations: vec![ActivationKind::Sigmoid],
|
||||
output_size: 1,
|
||||
initializer: InitializerKind::He,
|
||||
loss: LossKind::BCE,
|
||||
learning_rate: 0.01,
|
||||
epochs: 10000,
|
||||
initializer: InitializerKind::Uniform(0.1),
|
||||
loss: LossKind::MSE,
|
||||
learning_rate: 1.0,
|
||||
epochs: 1,
|
||||
};
|
||||
let mut model = DenseNN::new(config);
|
||||
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
|
||||
let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 1.0], 4, 1);
|
||||
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
|
||||
let y = Matrix::from_vec(vec![0.0, 1.0], 2, 1);
|
||||
|
||||
let before = model.predict(&x);
|
||||
model.train(&x, &y);
|
||||
let preds = model.predict(&x);
|
||||
assert!((preds[(0, 0)] - 0.0).abs() < 0.5);
|
||||
assert!((preds[(1, 0)] - 0.0).abs() < 0.5);
|
||||
assert!((preds[(2, 0)] - 1.0).abs() < 0.5);
|
||||
assert!((preds[(3, 0)] - 1.0).abs() < 0.5);
|
||||
let after = model.predict(&x);
|
||||
|
||||
// At least one of the two outputs must move by >ϵ
|
||||
let mut moved = false;
|
||||
for i in 0..before.rows() {
|
||||
if (before[(i, 0)] - after[(i, 0)]).abs() > 1e-8 {
|
||||
moved = true;
|
||||
}
|
||||
}
|
||||
assert!(moved, "predictions did not change after 1 epoch");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_training_reduces_mse_loss() {
|
||||
// Same single‐layer sigmoid setup; check loss goes down.
|
||||
let config = DenseNNConfig {
|
||||
input_size: 1,
|
||||
hidden_layers: vec![],
|
||||
activations: vec![ActivationKind::Sigmoid],
|
||||
output_size: 1,
|
||||
initializer: InitializerKind::Uniform(0.1),
|
||||
loss: LossKind::MSE,
|
||||
learning_rate: 1.0,
|
||||
epochs: 10,
|
||||
};
|
||||
let mut model = DenseNN::new(config);
|
||||
|
||||
let x = Matrix::from_vec(vec![0.0, 1.0, 0.5], 3, 1);
|
||||
let y = Matrix::from_vec(vec![0.0, 1.0, 0.5], 3, 1);
|
||||
|
||||
let before_preds = model.predict(&x);
|
||||
let before_loss = mse_loss(&before_preds, &y);
|
||||
|
||||
model.train(&x, &y);
|
||||
|
||||
let after_preds = model.predict(&x);
|
||||
let after_loss = mse_loss(&after_preds, &y);
|
||||
|
||||
assert!(
|
||||
after_loss < before_loss,
|
||||
"MSE did not decrease (before: {}, after: {})",
|
||||
before_loss,
|
||||
after_loss
|
||||
);
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user