diff --git a/docs/src/machine-learning.md b/docs/src/machine-learning.md index b245b6e..445e867 100644 --- a/docs/src/machine-learning.md +++ b/docs/src/machine-learning.md @@ -41,9 +41,6 @@ let new_point = Matrix::from_vec(vec![0.0, 0.0], 1, 2); let cluster = model.predict(&new_point)[0]; ``` -For helper functions and upcoming modules, visit the -[utilities](./utilities.md) section. - ## Logistic Regression ```rust @@ -72,7 +69,7 @@ let transformed = pca.transform(&data); assert_eq!(transformed.cols(), 1); ``` -### Gaussian Naive Bayes +## Gaussian Naive Bayes Gaussian Naive Bayes classifier for continuous features: @@ -101,7 +98,7 @@ let predictions = model.predict(&x); assert_eq!(predictions.rows(), 4); ``` -### Dense Neural Networks +## Dense Neural Networks Simple fully connected neural network: @@ -142,5 +139,144 @@ let predictions = model.predict(&x); assert_eq!(predictions.rows(), 4); ``` +## Real-world Examples + +### Housing Price Prediction + +```rust +# extern crate rustframe; +use rustframe::compute::models::linreg::LinReg; +use rustframe::matrix::Matrix; + +// Features: square feet and bedrooms +let features = Matrix::from_rows_vec(vec![ + 2100.0, 3.0, + 1600.0, 2.0, + 2400.0, 4.0, + 1400.0, 2.0, +], 4, 2); + +// Sale prices +let target = Matrix::from_vec(vec![400_000.0, 330_000.0, 369_000.0, 232_000.0], 4, 1); + +let mut model = LinReg::new(2); +model.fit(&features, &target, 1e-8, 10_000); + +// Predict price of a new home +let new_home = Matrix::from_vec(vec![2000.0, 3.0], 1, 2); +let predicted_price = model.predict(&new_home); +println!("Predicted price: ${}", predicted_price.data()[0]); +``` + +### Spam Detection + +```rust +# extern crate rustframe; +use rustframe::compute::models::logreg::LogReg; +use rustframe::matrix::Matrix; + +// 20 e-mails × 5 features = 100 numbers (row-major, spam first) +let x = Matrix::from_rows_vec( + vec![ + // ─────────── spam examples ─────────── + 2.0, 1.0, 1.0, 1.0, 1.0, // "You win a FREE offer - click for money-back bonus!" + 1.0, 0.0, 1.0, 1.0, 0.0, // "FREE offer! Click now!" + 0.0, 2.0, 0.0, 1.0, 1.0, // "Win win win - money inside, click…" + 1.0, 1.0, 0.0, 0.0, 1.0, // "Limited offer to win easy money…" + 1.0, 0.0, 1.0, 0.0, 1.0, // ... + 0.0, 1.0, 1.0, 1.0, 0.0, // ... + 2.0, 0.0, 0.0, 1.0, 1.0, // ... + 0.0, 1.0, 1.0, 0.0, 1.0, // ... + 1.0, 1.0, 1.0, 1.0, 0.0, // ... + 1.0, 0.0, 0.0, 1.0, 1.0, // ... + // ─────────── ham examples ─────────── + 0.0, 0.0, 0.0, 0.0, 0.0, // "See you at the meeting tomorrow." + 0.0, 0.0, 0.0, 1.0, 0.0, // "Here's the Zoom click-link." + 0.0, 0.0, 0.0, 0.0, 1.0, // "Expense report: money attached." + 0.0, 0.0, 0.0, 1.0, 1.0, // ... + 0.0, 1.0, 0.0, 0.0, 0.0, // "Did we win the bid?" + 0.0, 0.0, 0.0, 0.0, 0.0, // ... + 0.0, 0.0, 0.0, 1.0, 0.0, // ... + 1.0, 0.0, 0.0, 0.0, 0.0, // "Special offer for staff lunch." + 0.0, 0.0, 0.0, 0.0, 0.0, // ... + 0.0, 0.0, 0.0, 1.0, 0.0, + ], + 20, + 5, +); + +// Labels: 1 = spam, 0 = ham +let y = Matrix::from_vec( + vec![ + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 10 spam + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, // 10 ham + ], + 20, + 1, +); + +// Train +let mut model = LogReg::new(5); +model.fit(&x, &y, 0.01, 5000); + +// Predict +// e.g. "free money offer" +let email_data = vec![1.0, 0.0, 1.0, 0.0, 1.0]; +let email = Matrix::from_vec(email_data, 1, 5); +let prob_spam = model.predict_proba(&email); +println!("Probability of spam: {:.4}", prob_spam.data()[0]); +``` + +### Iris Flower Classification + +```rust +# extern crate rustframe; +use rustframe::compute::models::gaussian_nb::GaussianNB; +use rustframe::matrix::Matrix; + +// Features: sepal length and petal length +let x = Matrix::from_rows_vec(vec![ + 5.1, 1.4, // setosa + 4.9, 1.4, // setosa + 6.2, 4.5, // versicolor + 5.9, 5.1, // virginica +], 4, 2); + +let y = Matrix::from_vec(vec![0.0, 0.0, 1.0, 2.0], 4, 1); +let names = vec!["setosa", "versicolor", "virginica"]; + +let mut model = GaussianNB::new(1e-9, true); +model.fit(&x, &y); + +let sample = Matrix::from_vec(vec![5.0, 1.5], 1, 2); +let predicted_class = model.predict(&sample); +let class_name = names[predicted_class.data()[0] as usize]; +println!("Predicted class: {} ({:?})", class_name, predicted_class.data()[0]); +``` + +### Customer Segmentation + +```rust +# extern crate rustframe; +use rustframe::compute::models::k_means::KMeans; +use rustframe::matrix::Matrix; + +// Each row: [age, annual_income] +let customers = Matrix::from_rows_vec( + vec![ + 25.0, 40_000.0, 34.0, 52_000.0, 58.0, 95_000.0, 45.0, 70_000.0, + ], + 4, + 2, +); + +let (model, labels) = KMeans::fit(&customers, 2, 20, 1e-4); + +let new_customer = Matrix::from_vec(vec![30.0, 50_000.0], 1, 2); +let cluster = model.predict(&new_customer)[0]; +println!("New customer belongs to cluster: {}", cluster); +println!("Cluster labels: {:?}", labels); +``` + For helper functions and upcoming modules, visit the [utilities](./utilities.md) section.