Refactor GaussianNB implementation for improved clarity and stability, including enhanced variance handling and additional unit tests

This commit is contained in:
Palash Tyagi 2025-07-06 20:13:59 +01:00
parent 261d0d7007
commit 70d2a7a2b4

View File

@ -1,69 +1,105 @@
use crate::matrix::{Matrix}; use crate::matrix::Matrix;
use std::collections::HashMap; use std::collections::HashMap;
/// A Gaussian Naive Bayes classifier.
///
/// # Parameters
/// - `var_smoothing`: Portion of the largest variance of all features to add to variances for stability.
/// - `use_unbiased_variance`: If `true`, uses Bessel's correction (dividing by (n-1)); otherwise divides by n.
///
pub struct GaussianNB { pub struct GaussianNB {
classes: Vec<f64>, // distinct labels // Distinct class labels
priors: Vec<f64>, // P(class) classes: Vec<f64>,
// Prior probabilities P(class)
priors: Vec<f64>,
// Feature means per class
means: Vec<Matrix<f64>>, means: Vec<Matrix<f64>>,
// Feature variances per class
variances: Vec<Matrix<f64>>, variances: Vec<Matrix<f64>>,
eps: f64, // var-smoothing // var_smoothing
eps: f64,
// flag for unbiased variance
use_unbiased: bool,
} }
impl GaussianNB { impl GaussianNB {
pub fn new(var_smoothing: f64) -> Self { /// Create a new GaussianNB.
///
/// # Arguments
/// * `var_smoothing` - small float added to variances for numerical stability.
/// * `use_unbiased_variance` - whether to apply Bessel's correction (divide by n-1).
pub fn new(var_smoothing: f64, use_unbiased_variance: bool) -> Self {
Self { Self {
classes: vec![], classes: Vec::new(),
priors: vec![], priors: Vec::new(),
means: vec![], means: Vec::new(),
variances: vec![], variances: Vec::new(),
eps: var_smoothing, eps: var_smoothing,
use_unbiased: use_unbiased_variance,
} }
} }
/// Fit the model according to the training data `x` and labels `y`.
///
/// # Panics
/// Panics if `x` or `y` is empty, or if their dimensions disagree.
pub fn fit(&mut self, x: &Matrix<f64>, y: &Matrix<f64>) { pub fn fit(&mut self, x: &Matrix<f64>, y: &Matrix<f64>) {
let m = x.rows(); let m = x.rows();
let n = x.cols(); let n = x.cols();
assert_eq!(y.rows(), m); assert_eq!(y.rows(), m, "Row count of X and Y must match");
assert_eq!(y.cols(), 1); assert_eq!(y.cols(), 1, "Y must be a column vector");
if m == 0 || n == 0 { if m == 0 || n == 0 {
panic!("Input matrix x or y is empty"); panic!("Input matrix x or y is empty");
} }
// ----- group samples by label ----- // Group sample indices by label
let mut groups: HashMap<u64, Vec<usize>> = HashMap::new(); let mut groups: HashMap<u64, Vec<usize>> = HashMap::new();
for i in 0..m { for i in 0..m {
let label_bits = y[(i, 0)].to_bits(); let label = y[(i, 0)];
groups.entry(label_bits).or_default().push(i); let bits = label.to_bits();
groups.entry(bits).or_default().push(i);
} }
if groups.is_empty() { if groups.is_empty() {
panic!("No class labels found in y"); panic!("No class labels found in y");
} }
self.classes = groups // Extract and sort class labels
.keys() self.classes = groups.keys().cloned().map(f64::from_bits).collect();
.cloned()
.map(f64::from_bits)
.collect::<Vec<_>>();
// Note: If NaN is present in class labels, this may panic. Ensure labels are valid floats.
self.classes.sort_by(|a, b| a.partial_cmp(b).unwrap()); self.classes.sort_by(|a, b| a.partial_cmp(b).unwrap());
self.priors.clear(); self.priors.clear();
self.means.clear(); self.means.clear();
self.variances.clear(); self.variances.clear();
// Precompute max variance for smoothing scale
let mut max_var_feature = 0.0;
for j in 0..n {
let mut col_vals = Vec::with_capacity(m);
for i in 0..m {
col_vals.push(x[(i, j)]);
}
let mean_all = col_vals.iter().sum::<f64>() / m as f64;
let var_all = col_vals.iter().map(|v| (v - mean_all).powi(2)).sum::<f64>() / m as f64;
if var_all > max_var_feature {
max_var_feature = var_all;
}
}
let smoothing = self.eps * max_var_feature;
// Compute per-class statistics
for &c in &self.classes { for &c in &self.classes {
let label_bits = c.to_bits(); let idx = &groups[&c.to_bits()];
let idx = &groups[&label_bits];
let count = idx.len(); let count = idx.len();
if count == 0 { if count == 0 {
panic!("Class group for label {c} is empty"); panic!("Class group for label {} is empty", c);
} }
// Prior
self.priors.push(count as f64 / m as f64); self.priors.push(count as f64 / m as f64);
let mut mean = Matrix::zeros(1, n); let mut mean = Matrix::zeros(1, n);
let mut var = Matrix::zeros(1, n); let mut var = Matrix::zeros(1, n);
// mean // Mean
for &i in idx { for &i in idx {
for j in 0..n { for j in 0..n {
mean[(0, j)] += x[(i, j)]; mean[(0, j)] += x[(i, j)];
@ -73,17 +109,22 @@ impl GaussianNB {
mean[(0, j)] /= count as f64; mean[(0, j)] /= count as f64;
} }
// variance // Variance
for &i in idx { for &i in idx {
for j in 0..n { for j in 0..n {
let d = x[(i, j)] - mean[(0, j)]; let d = x[(i, j)] - mean[(0, j)];
var[(0, j)] += d * d; var[(0, j)] += d * d;
} }
} }
let denom = if self.use_unbiased {
(count as f64 - 1.0).max(1.0)
} else {
count as f64
};
for j in 0..n { for j in 0..n {
var[(0, j)] = var[(0, j)] / count as f64 + self.eps; // always add eps after division var[(0, j)] = var[(0, j)] / denom + smoothing;
if var[(0, j)] <= 0.0 { if var[(0, j)] <= 0.0 {
var[(0, j)] = self.eps; // ensure strictly positive variance var[(0, j)] = smoothing;
} }
} }
@ -92,33 +133,82 @@ impl GaussianNB {
} }
} }
/// Return class labels (shape m×1) for samples in X. /// Perform classification on an array of test vectors `x`.
pub fn predict(&self, x: &Matrix<f64>) -> Matrix<f64> { pub fn predict(&self, x: &Matrix<f64>) -> Matrix<f64> {
let m = x.rows(); let m = x.rows();
let k = self.classes.len();
let n = x.cols(); let n = x.cols();
let k = self.classes.len();
let mut preds = Matrix::zeros(m, 1); let mut preds = Matrix::zeros(m, 1);
let ln_2pi = (2.0 * std::f64::consts::PI).ln(); let ln_2pi = (2.0 * std::f64::consts::PI).ln();
for i in 0..m { for i in 0..m {
let mut best_class = 0usize; let mut best = (0, f64::NEG_INFINITY);
let mut best_log_prob = f64::NEG_INFINITY; for c_idx in 0..k {
for c in 0..k { let mut log_prob = self.priors[c_idx].ln();
// log P(y=c) + Σ log N(x_j | μ, σ²)
let mut log_prob = self.priors[c].ln();
for j in 0..n { for j in 0..n {
let mean = self.means[c][(0, j)]; let diff = x[(i, j)] - self.means[c_idx][(0, j)];
let var = self.variances[c][(0, j)]; let var = self.variances[c_idx][(0, j)];
let diff = x[(i, j)] - mean;
log_prob += -0.5 * (diff * diff / var + var.ln() + ln_2pi); log_prob += -0.5 * (diff * diff / var + var.ln() + ln_2pi);
} }
if log_prob > best_log_prob { if log_prob > best.1 {
best_log_prob = log_prob; best = (c_idx, log_prob);
best_class = c;
} }
} }
preds[(i, 0)] = self.classes[best_class]; preds[(i, 0)] = self.classes[best.0];
} }
preds preds
} }
} }
#[cfg(test)]
mod tests {
use super::*;
use crate::matrix::Matrix;
#[test]
fn test_simple_two_class() {
// Simple dataset: one feature, two classes 0 and 1
// Class 0: values [1.0, 1.2, 0.8]
// Class 1: values [3.0, 3.2, 2.8]
let x = Matrix::from_vec(vec![1.0, 1.2, 0.8, 3.0, 3.2, 2.8], 6, 1);
let y = Matrix::from_vec(vec![0.0, 0.0, 0.0, 1.0, 1.0, 1.0], 6, 1);
let mut clf = GaussianNB::new(1e-9, false);
clf.fit(&x, &y);
let test = Matrix::from_vec(vec![1.1, 3.1], 2, 1);
let preds = clf.predict(&test);
assert_eq!(preds[(0, 0)], 0.0);
assert_eq!(preds[(1, 0)], 1.0);
}
#[test]
fn test_unbiased_variance() {
// Same as above but with unbiased variance
let x = Matrix::from_vec(vec![2.0, 2.2, 1.8, 4.0, 4.2, 3.8], 6, 1);
let y = Matrix::from_vec(vec![0.0, 0.0, 0.0, 1.0, 1.0, 1.0], 6, 1);
let mut clf = GaussianNB::new(1e-9, true);
clf.fit(&x, &y);
let test = Matrix::from_vec(vec![2.1, 4.1], 2, 1);
let preds = clf.predict(&test);
assert_eq!(preds[(0, 0)], 0.0);
assert_eq!(preds[(1, 0)], 1.0);
}
#[test]
#[should_panic]
fn test_empty_input() {
let x = Matrix::zeros(0, 0);
let y = Matrix::zeros(0, 1);
let mut clf = GaussianNB::new(1e-9, false);
clf.fit(&x, &y);
}
#[test]
#[should_panic = "Row count of X and Y must match"]
fn test_mismatched_rows() {
let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
let y = Matrix::from_vec(vec![0.0], 1, 1);
let mut clf = GaussianNB::new(1e-9, false);
clf.fit(&x, &y);
clf.predict(&x);
}
}