mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00
add first draft of a matrix implementation
This commit is contained in:
parent
7c128105cb
commit
6c82f40b3a
272
src/frame/mat.rs
Normal file
272
src/frame/mat.rs
Normal file
@ -0,0 +1,272 @@
|
||||
use std::ops::{Index, IndexMut};
|
||||
|
||||
/// A column‑major 2D matrix of `T`
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct Matrix<T> {
|
||||
rows: usize,
|
||||
cols: usize,
|
||||
data: Vec<T>,
|
||||
}
|
||||
|
||||
impl<T> Matrix<T> {
|
||||
/// Build from columns (each inner Vec is one column)
|
||||
pub fn from_cols(cols_data: Vec<Vec<T>>) -> Self {
|
||||
let cols = cols_data.len();
|
||||
assert!(cols > 0, "need at least one column");
|
||||
let rows = cols_data[0].len();
|
||||
assert!(rows > 0, "need at least one row");
|
||||
for (i, col) in cols_data.iter().enumerate().skip(1) {
|
||||
assert!(
|
||||
col.len() == rows,
|
||||
"col {} has len {}, expected {}",
|
||||
i,
|
||||
col.len(),
|
||||
rows
|
||||
);
|
||||
}
|
||||
let mut data = Vec::with_capacity(rows * cols);
|
||||
for col in cols_data {
|
||||
data.extend(col);
|
||||
}
|
||||
Matrix { rows, cols, data }
|
||||
}
|
||||
|
||||
pub fn from_vec(data: Vec<T>, rows: usize, cols: usize) -> Self {
|
||||
assert!(rows > 0, "need at least one row");
|
||||
assert!(cols > 0, "need at least one column");
|
||||
assert_eq!(data.len(), rows * cols, "data length mismatch");
|
||||
Matrix { rows, cols, data }
|
||||
}
|
||||
|
||||
pub fn rows(&self) -> usize {
|
||||
self.rows
|
||||
}
|
||||
pub fn cols(&self) -> usize {
|
||||
self.cols
|
||||
}
|
||||
|
||||
pub fn get(&self, r: usize, c: usize) -> &T {
|
||||
&self[(r, c)]
|
||||
}
|
||||
pub fn get_mut(&mut self, r: usize, c: usize) -> &mut T {
|
||||
&mut self[(r, c)]
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn column(&self, c: usize) -> &[T] {
|
||||
let start = c * self.rows;
|
||||
&self.data[start..start + self.rows]
|
||||
}
|
||||
|
||||
pub fn iter_columns(&self) -> impl Iterator<Item = &[T]> {
|
||||
(0..self.cols).map(move |c| self.column(c))
|
||||
}
|
||||
|
||||
pub fn iter_rows(&self) -> impl Iterator<Item = Row<'_, T>> {
|
||||
(0..self.rows).map(move |r| Row {
|
||||
matrix: self,
|
||||
row: r,
|
||||
})
|
||||
}
|
||||
|
||||
/// Swaps two columns in the matrix.
|
||||
pub fn swap_columns(&mut self, c1: usize, c2: usize) {
|
||||
assert!(
|
||||
c1 < self.cols && c2 < self.cols,
|
||||
"column index out of bounds"
|
||||
);
|
||||
if c1 == c2 {
|
||||
return;
|
||||
}
|
||||
|
||||
for r in 0..self.rows {
|
||||
self.data.swap(c1 * self.rows + r, c2 * self.rows + r);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Index<(usize, usize)> for Matrix<T> {
|
||||
type Output = T;
|
||||
#[inline]
|
||||
fn index(&self, (r, c): (usize, usize)) -> &T {
|
||||
assert!(r < self.rows && c < self.cols, "index out of bounds");
|
||||
&self.data[c * self.rows + r]
|
||||
}
|
||||
}
|
||||
impl<T> IndexMut<(usize, usize)> for Matrix<T> {
|
||||
#[inline]
|
||||
fn index_mut(&mut self, (r, c): (usize, usize)) -> &mut T {
|
||||
assert!(r < self.rows && c < self.cols, "index out of bounds");
|
||||
&mut self.data[c * self.rows + r]
|
||||
}
|
||||
}
|
||||
|
||||
/// A view of one row
|
||||
pub struct Row<'a, T> {
|
||||
matrix: &'a Matrix<T>,
|
||||
row: usize,
|
||||
}
|
||||
impl<'a, T> Row<'a, T> {
|
||||
pub fn get(&self, c: usize) -> &T {
|
||||
&self.matrix[(self.row, c)]
|
||||
}
|
||||
pub fn iter(&self) -> impl Iterator<Item = &T> {
|
||||
(0..self.matrix.cols).map(move |c| &self.matrix[(self.row, c)])
|
||||
}
|
||||
}
|
||||
|
||||
/// Macro to generate element‐wise impls for +, -, *, /
|
||||
macro_rules! impl_elementwise_op {
|
||||
($OpTrait:ident, $method:ident, $op:tt) => {
|
||||
impl<'a, 'b, T> std::ops::$OpTrait<&'b Matrix<T>> for &'a Matrix<T>
|
||||
where
|
||||
T: Clone + std::ops::$OpTrait<Output = T>,
|
||||
{
|
||||
type Output = Matrix<T>;
|
||||
|
||||
fn $method(self, rhs: &'b Matrix<T>) -> Matrix<T> {
|
||||
assert_eq!(self.rows, rhs.rows, "row count mismatch");
|
||||
assert_eq!(self.cols, rhs.cols, "col count mismatch");
|
||||
let data = self
|
||||
.data
|
||||
.iter()
|
||||
.cloned()
|
||||
.zip(rhs.data.iter().cloned())
|
||||
.map(|(a, b)| a $op b)
|
||||
.collect();
|
||||
Matrix { rows: self.rows, cols: self.cols, data }
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// invoke it 4 times:
|
||||
impl_elementwise_op!(Add, add, +);
|
||||
impl_elementwise_op!(Sub, sub, -);
|
||||
impl_elementwise_op!(Mul, mul, *);
|
||||
impl_elementwise_op!(Div, div, /);
|
||||
|
||||
// === New code begins here =====================================================
|
||||
/// Axis along which to apply a reduction.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub enum Axis {
|
||||
/// Operate column‑wise (vertical).
|
||||
Col,
|
||||
/// Operate row‑wise (horizontal).
|
||||
Row,
|
||||
}
|
||||
|
||||
pub type FloatMatrix = Matrix<f64>;
|
||||
pub type FloatVector = Vec<f64>;
|
||||
pub type BoolMatrix = Matrix<bool>;
|
||||
pub type IntMatrix = Matrix<i32>;
|
||||
|
||||
impl Matrix<f64> {
|
||||
/// Apply a function along *columns* and collect its result in a `Vec`.
|
||||
/// This is very fast because each column is contiguous in memory.
|
||||
#[inline]
|
||||
fn apply_colwise<U, F>(&self, mut f: F) -> Vec<U>
|
||||
where
|
||||
F: FnMut(&[f64]) -> U,
|
||||
{
|
||||
let mut out = Vec::with_capacity(self.cols);
|
||||
for c in 0..self.cols {
|
||||
out.push(f(self.column(c)));
|
||||
}
|
||||
out
|
||||
}
|
||||
|
||||
/// Apply a function along *rows* and collect its result in a `Vec`.
|
||||
/// Slower than the column version because data are not contiguous, but a single
|
||||
/// reusable buffer is used to minimize allocations.
|
||||
#[inline]
|
||||
fn apply_rowwise<U, F>(&self, mut f: F) -> Vec<U>
|
||||
where
|
||||
F: FnMut(&[f64]) -> U,
|
||||
{
|
||||
let mut out = Vec::with_capacity(self.rows);
|
||||
// Re‑use one buffer for all rows to avoid repeated allocations.
|
||||
let mut buf = vec![0.0f64; self.cols];
|
||||
for r in 0..self.rows {
|
||||
for c in 0..self.cols {
|
||||
buf[c] = self[(r, c)];
|
||||
}
|
||||
out.push(f(&buf));
|
||||
}
|
||||
out
|
||||
}
|
||||
|
||||
/// Generic helper that dispatches to [`Matrix::apply_colwise`] or
|
||||
/// [`Matrix::apply_rowwise`] depending on `axis`.
|
||||
#[inline]
|
||||
pub fn apply_axis<U, F>(&self, axis: Axis, f: F) -> Vec<U>
|
||||
where
|
||||
F: FnMut(&[f64]) -> U,
|
||||
{
|
||||
match axis {
|
||||
Axis::Col => self.apply_colwise(f),
|
||||
Axis::Row => self.apply_rowwise(f),
|
||||
}
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------
|
||||
// Convenience reductions built on top of `apply_axis`.
|
||||
// By convention "vertical" = column‑wise, "horizontal" = row‑wise.
|
||||
// ---------------------------------------------------------------------
|
||||
|
||||
/// Column‑wise sum, ignoring `NaN`s.
|
||||
pub fn sum_vertical(&self) -> FloatVector {
|
||||
self.apply_colwise(|col| col.iter().copied().filter(|v| !v.is_nan()).sum())
|
||||
}
|
||||
|
||||
/// Row‑wise sum, ignoring `NaN`s.
|
||||
pub fn sum_horizontal(&self) -> FloatVector {
|
||||
self.apply_rowwise(|row| row.iter().copied().filter(|v| !v.is_nan()).sum())
|
||||
}
|
||||
|
||||
/// Column‑wise product, ignoring `NaN`s.
|
||||
pub fn prod_vertical(&self) -> FloatVector {
|
||||
self.apply_colwise(|col| {
|
||||
col.iter()
|
||||
.copied()
|
||||
.filter(|v| !v.is_nan())
|
||||
.fold(1.0, |acc, x| acc * x)
|
||||
})
|
||||
}
|
||||
|
||||
/// Row‑wise product, ignoring `NaN`s.
|
||||
pub fn prod_horizontal(&self) -> FloatVector {
|
||||
self.apply_rowwise(|row| {
|
||||
row.iter()
|
||||
.copied()
|
||||
.filter(|v| !v.is_nan())
|
||||
.fold(1.0, |acc, x| acc * x)
|
||||
})
|
||||
}
|
||||
|
||||
/// Column‑wise count of `NaN`s.
|
||||
pub fn count_nan_vertical(&self) -> Vec<usize> {
|
||||
self.apply_colwise(|col| col.iter().filter(|x| x.is_nan()).count())
|
||||
}
|
||||
|
||||
/// Row‑wise count of `NaN`s.
|
||||
pub fn count_nan_horizontal(&self) -> Vec<usize> {
|
||||
self.apply_rowwise(|row| row.iter().filter(|x| x.is_nan()).count())
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------
|
||||
// Existing helpers
|
||||
// ---------------------------------------------------------------------
|
||||
|
||||
pub fn is_nan(&self) -> BoolMatrix {
|
||||
let mut data = Vec::with_capacity(self.rows * self.cols);
|
||||
for r in 0..self.rows {
|
||||
for c in 0..self.cols {
|
||||
data.push(self[(r, c)].is_nan());
|
||||
}
|
||||
}
|
||||
BoolMatrix::from_vec(data, self.rows, self.cols)
|
||||
}
|
||||
|
||||
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user