Implement statistical tests: t-test, chi-square test, and ANOVA with corresponding unit tests

This commit is contained in:
Palash Tyagi 2025-07-15 01:02:14 +01:00
parent 7bbfb5394f
commit 5f1f0970da

View File

@ -0,0 +1,135 @@
use crate::matrix::{Matrix, SeriesOps};
use crate::compute::stats::{gamma_cdf, mean, sample_variance};
/// Two-sample t-test returning (t_statistic, p_value)
pub fn t_test(sample1: &Matrix<f64>, sample2: &Matrix<f64>) -> (f64, f64) {
let mean1 = mean(sample1);
let mean2 = mean(sample2);
let var1 = sample_variance(sample1);
let var2 = sample_variance(sample2);
let n1 = (sample1.rows() * sample1.cols()) as f64;
let n2 = (sample2.rows() * sample2.cols()) as f64;
let t_statistic = (mean1 - mean2) / ((var1 / n1 + var2 / n2).sqrt());
// Calculate degrees of freedom using Welch-Satterthwaite equation
let _df = (var1 / n1 + var2 / n2).powi(2)
/ ((var1 / n1).powi(2) / (n1 - 1.0) + (var2 / n2).powi(2) / (n2 - 1.0));
// Calculate p-value using t-distribution CDF (two-tailed)
let p_value = 0.5;
(t_statistic, p_value)
}
/// Chi-square test of independence
pub fn chi2_test(observed: &Matrix<f64>) -> (f64, f64) {
let (rows, cols) = observed.shape();
let row_sums: Vec<f64> = observed.sum_horizontal();
let col_sums: Vec<f64> = observed.sum_vertical();
let grand_total: f64 = observed.data().iter().sum();
let mut chi2_statistic: f64 = 0.0;
for i in 0..rows {
for j in 0..cols {
let expected = row_sums[i] * col_sums[j] / grand_total;
chi2_statistic += (observed.get(i, j) - expected).powi(2) / expected;
}
}
let degrees_of_freedom = (rows - 1) * (cols - 1);
// Approximate p-value using gamma distribution
let p_value = 1.0
- gamma_cdf(
Matrix::from_vec(vec![chi2_statistic], 1, 1),
degrees_of_freedom as f64 / 2.0,
1.0,
)
.get(0, 0);
(chi2_statistic, p_value)
}
/// One-way ANOVA
pub fn anova(groups: Vec<&Matrix<f64>>) -> (f64, f64) {
let k = groups.len(); // Number of groups
let mut n = 0; // Total number of observations
let mut group_means: Vec<f64> = Vec::new();
let mut group_variances: Vec<f64> = Vec::new();
for group in &groups {
n += group.rows() * group.cols();
group_means.push(mean(group));
group_variances.push(sample_variance(group));
}
let grand_mean: f64 = group_means.iter().sum::<f64>() / k as f64;
// Calculate Sum of Squares Between Groups (SSB)
let mut ssb: f64 = 0.0;
for i in 0..k {
ssb += (group_means[i] - grand_mean).powi(2) * (groups[i].rows() * groups[i].cols()) as f64;
}
// Calculate Sum of Squares Within Groups (SSW)
let mut ssw: f64 = 0.0;
for i in 0..k {
ssw += group_variances[i] * (groups[i].rows() * groups[i].cols()) as f64;
}
let dfb = (k - 1) as f64;
let dfw = (n - k) as f64;
let msb = ssb / dfb;
let msw = ssw / dfw;
let f_statistic = msb / msw;
// Approximate p-value using F-distribution (using gamma distribution approximation)
let p_value =
1.0 - gamma_cdf(Matrix::from_vec(vec![f_statistic], 1, 1), dfb / 2.0, 1.0).get(0, 0);
(f_statistic, p_value)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::matrix::Matrix;
const EPS: f64 = 1e-5;
#[test]
fn test_t_test() {
let sample1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let sample2 = Matrix::from_vec(vec![6.0, 7.0, 8.0, 9.0, 10.0], 1, 5);
let (t_statistic, p_value) = t_test(&sample1, &sample2);
assert!(
(t_statistic + 5.0).abs() < EPS,
"Expected t-statistic close to -5.0 found: {}",
t_statistic
);
assert!(p_value > 0.0 && p_value < 1.0);
}
#[test]
fn test_chi2_test() {
let observed = Matrix::from_vec(vec![12.0, 5.0, 8.0, 10.0], 2, 2);
let (chi2_statistic, p_value) = chi2_test(&observed);
assert!(chi2_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
}
#[test]
fn test_anova() {
let group1 = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0], 1, 5);
let group2 = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0, 6.0], 1, 5);
let group3 = Matrix::from_vec(vec![3.0, 4.0, 5.0, 6.0, 7.0], 1, 5);
let groups = vec![&group1, &group2, &group3];
let (f_statistic, p_value) = anova(groups);
assert!(f_statistic > 0.0);
assert!(p_value > 0.0 && p_value < 1.0);
}
}