mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00
Refactor benchmark configurations to improve size categorization and sampling settings
This commit is contained in:
parent
498f822672
commit
4e74c2dcfe
@ -9,26 +9,36 @@ use rustframe::{
|
|||||||
};
|
};
|
||||||
use std::time::Duration;
|
use std::time::Duration;
|
||||||
|
|
||||||
pub fn for_short_runs() -> Criterion {
|
// Define size categories
|
||||||
|
const SIZES_SMALL: [usize; 1] = [1];
|
||||||
|
const SIZES_MEDIUM: [usize; 3] = [100, 250, 500];
|
||||||
|
const SIZES_LARGE: [usize; 1] = [1000];
|
||||||
|
|
||||||
|
// Configuration functions for different size categories
|
||||||
|
fn config_small_arrays() -> Criterion {
|
||||||
Criterion::default()
|
Criterion::default()
|
||||||
// (samples != total iterations)
|
.sample_size(500) // More samples for very fast operations
|
||||||
// limits the number of statistical data points.
|
.measurement_time(Duration::from_millis(500))
|
||||||
.sample_size(50)
|
|
||||||
// measurement time per sample
|
|
||||||
.measurement_time(Duration::from_millis(2000))
|
|
||||||
// reduce warm-up time as well for faster overall run
|
|
||||||
.warm_up_time(Duration::from_millis(50))
|
.warm_up_time(Duration::from_millis(50))
|
||||||
// can make it much shorter if needed, e.g., 50ms measurement, 100ms warm-up
|
|
||||||
// .measurement_time(Duration::from_millis(50))
|
|
||||||
// .warm_up_time(Duration::from_millis(100))
|
|
||||||
}
|
}
|
||||||
|
|
||||||
const BENCH_SIZES: [usize; 5] = [1, 100, 250, 500, 1000];
|
fn config_medium_arrays() -> Criterion {
|
||||||
|
Criterion::default()
|
||||||
|
.sample_size(100)
|
||||||
|
.measurement_time(Duration::from_millis(2000))
|
||||||
|
.warm_up_time(Duration::from_millis(100))
|
||||||
|
}
|
||||||
|
|
||||||
fn bool_matrix_operations_benchmark(c: &mut Criterion) {
|
fn config_large_arrays() -> Criterion {
|
||||||
let sizes = BENCH_SIZES;
|
Criterion::default()
|
||||||
|
.sample_size(50)
|
||||||
|
.measurement_time(Duration::from_millis(5000))
|
||||||
|
.warm_up_time(Duration::from_millis(200))
|
||||||
|
}
|
||||||
|
|
||||||
for &size in &sizes {
|
// Modified benchmark functions to accept a slice of sizes
|
||||||
|
fn bool_matrix_operations_benchmark(c: &mut Criterion, sizes: &[usize]) {
|
||||||
|
for &size in sizes {
|
||||||
let data1: Vec<bool> = (0..size * size).map(|x| x % 2 == 0).collect();
|
let data1: Vec<bool> = (0..size * size).map(|x| x % 2 == 0).collect();
|
||||||
let data2: Vec<bool> = (0..size * size).map(|x| x % 3 == 0).collect();
|
let data2: Vec<bool> = (0..size * size).map(|x| x % 3 == 0).collect();
|
||||||
let bm1 = BoolMatrix::from_vec(data1.clone(), size, size);
|
let bm1 = BoolMatrix::from_vec(data1.clone(), size, size);
|
||||||
@ -60,10 +70,8 @@ fn bool_matrix_operations_benchmark(c: &mut Criterion) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn matrix_boolean_operations_benchmark(c: &mut Criterion) {
|
fn matrix_boolean_operations_benchmark(c: &mut Criterion, sizes: &[usize]) {
|
||||||
let sizes = BENCH_SIZES;
|
for &size in sizes {
|
||||||
|
|
||||||
for &size in &sizes {
|
|
||||||
let data1: Vec<bool> = (0..size * size).map(|x| x % 2 == 0).collect();
|
let data1: Vec<bool> = (0..size * size).map(|x| x % 2 == 0).collect();
|
||||||
let data2: Vec<bool> = (0..size * size).map(|x| x % 3 == 0).collect();
|
let data2: Vec<bool> = (0..size * size).map(|x| x % 3 == 0).collect();
|
||||||
let bm1 = BoolMatrix::from_vec(data1.clone(), size, size);
|
let bm1 = BoolMatrix::from_vec(data1.clone(), size, size);
|
||||||
@ -95,10 +103,8 @@ fn matrix_boolean_operations_benchmark(c: &mut Criterion) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn matrix_operations_benchmark(c: &mut Criterion) {
|
fn matrix_operations_benchmark(c: &mut Criterion, sizes: &[usize]) {
|
||||||
let sizes = BENCH_SIZES;
|
for &size in sizes {
|
||||||
|
|
||||||
for &size in &sizes {
|
|
||||||
let data: Vec<f64> = (0..size * size).map(|x| x as f64).collect();
|
let data: Vec<f64> = (0..size * size).map(|x| x as f64).collect();
|
||||||
let ma = Matrix::from_vec(data.clone(), size, size);
|
let ma = Matrix::from_vec(data.clone(), size, size);
|
||||||
|
|
||||||
@ -127,8 +133,7 @@ fn matrix_operations_benchmark(c: &mut Criterion) {
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
// Benchmarking matrix addition
|
for &size in sizes {
|
||||||
for &size in &sizes {
|
|
||||||
let data1: Vec<f64> = (0..size * size).map(|x| x as f64).collect();
|
let data1: Vec<f64> = (0..size * size).map(|x| x as f64).collect();
|
||||||
let data2: Vec<f64> = (0..size * size).map(|x| (x + 1) as f64).collect();
|
let data2: Vec<f64> = (0..size * size).map(|x| (x + 1) as f64).collect();
|
||||||
let ma = Matrix::from_vec(data1.clone(), size, size);
|
let ma = Matrix::from_vec(data1.clone(), size, size);
|
||||||
@ -167,10 +172,7 @@ fn generate_frame(size: usize) -> Frame<f64> {
|
|||||||
.unwrap()
|
.unwrap()
|
||||||
.list()
|
.list()
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
// let col_names= str(i) for i in range(1, 1000)
|
|
||||||
let col_names: Vec<String> = (1..=size).map(|i| format!("col_{}", i)).collect();
|
let col_names: Vec<String> = (1..=size).map(|i| format!("col_{}", i)).collect();
|
||||||
|
|
||||||
Frame::new(
|
Frame::new(
|
||||||
Matrix::from_vec(data.clone(), size, size),
|
Matrix::from_vec(data.clone(), size, size),
|
||||||
col_names,
|
col_names,
|
||||||
@ -178,10 +180,8 @@ fn generate_frame(size: usize) -> Frame<f64> {
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn benchmark_frame_operations(c: &mut Criterion) {
|
fn benchmark_frame_operations(c: &mut Criterion, sizes: &[usize]) {
|
||||||
let sizes = BENCH_SIZES;
|
for &size in sizes {
|
||||||
|
|
||||||
for &size in &sizes {
|
|
||||||
let fa = generate_frame(size);
|
let fa = generate_frame(size);
|
||||||
let fb = generate_frame(size);
|
let fb = generate_frame(size);
|
||||||
|
|
||||||
@ -232,13 +232,46 @@ fn benchmark_frame_operations(c: &mut Criterion) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Define the criterion group and pass the custom configuration function
|
// Runner functions for each size category
|
||||||
|
fn run_benchmarks_small(c: &mut Criterion) {
|
||||||
|
bool_matrix_operations_benchmark(c, &SIZES_SMALL);
|
||||||
|
matrix_boolean_operations_benchmark(c, &SIZES_SMALL);
|
||||||
|
matrix_operations_benchmark(c, &SIZES_SMALL);
|
||||||
|
benchmark_frame_operations(c, &SIZES_SMALL);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn run_benchmarks_medium(c: &mut Criterion) {
|
||||||
|
bool_matrix_operations_benchmark(c, &SIZES_MEDIUM);
|
||||||
|
matrix_boolean_operations_benchmark(c, &SIZES_MEDIUM);
|
||||||
|
matrix_operations_benchmark(c, &SIZES_MEDIUM);
|
||||||
|
benchmark_frame_operations(c, &SIZES_MEDIUM);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn run_benchmarks_large(c: &mut Criterion) {
|
||||||
|
bool_matrix_operations_benchmark(c, &SIZES_LARGE);
|
||||||
|
matrix_boolean_operations_benchmark(c, &SIZES_LARGE);
|
||||||
|
matrix_operations_benchmark(c, &SIZES_LARGE);
|
||||||
|
benchmark_frame_operations(c, &SIZES_LARGE);
|
||||||
|
}
|
||||||
|
|
||||||
criterion_group!(
|
criterion_group!(
|
||||||
name = combined_benches;
|
name = benches_small_arrays;
|
||||||
config = for_short_runs(); // Use the custom configuration here
|
config = config_small_arrays();
|
||||||
targets = bool_matrix_operations_benchmark,
|
targets = run_benchmarks_small
|
||||||
matrix_boolean_operations_benchmark,
|
);
|
||||||
matrix_operations_benchmark,
|
criterion_group!(
|
||||||
benchmark_frame_operations
|
name = benches_medium_arrays;
|
||||||
|
config = config_medium_arrays();
|
||||||
|
targets = run_benchmarks_medium
|
||||||
|
);
|
||||||
|
criterion_group!(
|
||||||
|
name = benches_large_arrays;
|
||||||
|
config = config_large_arrays();
|
||||||
|
targets = run_benchmarks_large
|
||||||
|
);
|
||||||
|
|
||||||
|
criterion_main!(
|
||||||
|
benches_small_arrays,
|
||||||
|
benches_medium_arrays,
|
||||||
|
benches_large_arrays
|
||||||
);
|
);
|
||||||
criterion_main!(combined_benches);
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user