From 2845f357b7a893b3311a6afd066bd5d84993d27d Mon Sep 17 00:00:00 2001 From: Palash Tyagi <23239946+Magnus167@users.noreply.github.com> Date: Mon, 4 Aug 2025 00:04:41 +0100 Subject: [PATCH] Revise introduction for clarity and detail, enhancing the overview of RustFrame's features and capabilities --- docs/src/introduction.md | 42 +++++++++++++++++++++++++++++++++------- 1 file changed, 35 insertions(+), 7 deletions(-) diff --git a/docs/src/introduction.md b/docs/src/introduction.md index 80a43e7..96df2cd 100644 --- a/docs/src/introduction.md +++ b/docs/src/introduction.md @@ -1,10 +1,38 @@ # Introduction -Welcome to the **RustFrame User Guide**. This book provides a tour of -RustFrame's capabilities from basic data handling to advanced machine learning -workflows. Each chapter contains runnable snippets so you can follow along. +Welcome to the **RustFrame User Guide**. Rustframe is a lightweight dataframe +and math toolkit for Rust written in 100% safe Rust. It focuses on keeping the +API approachable while offering handy features for small analytical or +educational projects. -1. [Data manipulation](./data-manipulation.md) for loading and transforming data. -2. [Compute features](./compute.md) for statistics and analytics. -3. [Machine learning](./machine-learning.md) for predictive models. -4. [Utilities](./utilities.md) for supporting helpers and upcoming modules. +Rustframe bundles: + +- column‑labelled frames built on a fast column‑major matrix +- familiar element‑wise math and aggregation routines +- a growing `compute` module for statistics and machine learning +- utilities for dates and random numbers + +```rust +# extern crate rustframe; +use rustframe::{frame::Frame, matrix::{Matrix, SeriesOps}}; + +let data = Matrix::from_cols(vec![vec![1.0, 2.0], vec![3.0, 4.0]]); +let frame = Frame::new(data, vec!["A", "B"], None); + +// Perform column wise aggregation +assert_eq!(frame.sum_vertical(), vec![3.0, 7.0]); +``` + +## Resources + +- [GitHub repository](https://github.com/Magnus167/rustframe) +- [Crates.io](https://crates.io/crates/rustframe) & [API docs](https://docs.rs/rustframe) +- [Code coverage](https://codecov.io/gh/Magnus167/rustframe) + +This guide walks through the main building blocks of the library. Each chapter +contains runnable snippets so you can follow along: + +1. [Data manipulation](./data-manipulation.md) for loading and transforming data +2. [Compute features](./compute.md) for statistics and analytics +3. [Machine learning](./machine-learning.md) for predictive models +4. [Utilities](./utilities.md) for supporting helpers and upcoming modules