mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00
Merge 39a95e63d9ae7451c902949deb2fc44936127c15 into 27e9eab02829523c98744bdf9f7d780ebc352b48
This commit is contained in:
commit
14a349c352
127
README.md
127
README.md
@ -176,6 +176,133 @@ let zipped_matrix = a.zip(&b, |x, y| x + y);
|
|||||||
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
assert_eq!(zipped_matrix.data(), &[6.0, 8.0, 10.0, 12.0]);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## DataFrame Usage Example
|
||||||
|
|
||||||
|
```rust
|
||||||
|
use chrono::NaiveDate;
|
||||||
|
use rustframe::dataframe::DataFrame;
|
||||||
|
use rustframe::utils::{BDateFreq, BDatesList};
|
||||||
|
use std::any::TypeId;
|
||||||
|
use std::collections::HashMap;
|
||||||
|
|
||||||
|
// Helper for NaiveDate
|
||||||
|
fn d(y: i32, m: u32, d: u32) -> NaiveDate {
|
||||||
|
NaiveDate::from_ymd_opt(y, m, d).unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create a new DataFrame
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
|
||||||
|
// Add columns of different types
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3, 4, 5]);
|
||||||
|
df.add_column("col_float1", vec![1.1, 2.2, 3.3, 4.4, 5.5]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec![
|
||||||
|
"apple".to_string(),
|
||||||
|
"banana".to_string(),
|
||||||
|
"cherry".to_string(),
|
||||||
|
"date".to_string(),
|
||||||
|
"elderberry".to_string(),
|
||||||
|
],
|
||||||
|
);
|
||||||
|
df.add_column("col_bool", vec![true, false, true, false, true]);
|
||||||
|
// df.add_column("col_date", vec![d(2023,1,1), d(2023,1,2), d(2023,1,3), d(2023,1,4), d(2023,1,5)]);
|
||||||
|
df.add_column(
|
||||||
|
"col_date",
|
||||||
|
BDatesList::from_n_periods("2023-01-01".to_string(), BDateFreq::Daily, 5)
|
||||||
|
.unwrap()
|
||||||
|
.list()
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
|
||||||
|
println!("DataFrame after initial column additions:\n{}", df);
|
||||||
|
|
||||||
|
// Demonstrate frame re-use when adding columns of existing types
|
||||||
|
let initial_frames_count = df.num_internal_frames();
|
||||||
|
println!(
|
||||||
|
"\nInitial number of internal frames: {}",
|
||||||
|
initial_frames_count
|
||||||
|
);
|
||||||
|
|
||||||
|
df.add_column("col_int2", vec![6, 7, 8, 9, 10]);
|
||||||
|
df.add_column("col_float2", vec![6.6, 7.7, 8.8, 9.9, 10.0]);
|
||||||
|
|
||||||
|
let frames_after_reuse = df.num_internal_frames();
|
||||||
|
println!(
|
||||||
|
"Number of internal frames after adding more columns of existing types: {}",
|
||||||
|
frames_after_reuse
|
||||||
|
);
|
||||||
|
assert_eq!(initial_frames_count, frames_after_reuse); // Should be equal, demonstrating re-use
|
||||||
|
|
||||||
|
println!(
|
||||||
|
"\nDataFrame after adding more columns of existing types:\n{}",
|
||||||
|
df
|
||||||
|
);
|
||||||
|
|
||||||
|
// Get number of rows and columns
|
||||||
|
println!("Rows: {}", df.rows()); // Output: Rows: 5
|
||||||
|
println!("Columns: {}", df.cols()); // Output: Columns: 5
|
||||||
|
|
||||||
|
// Get column names
|
||||||
|
println!("Column names: {:?}", df.get_column_names());
|
||||||
|
// Output: Column names: ["col_int", "col_float", "col_string", "col_bool", "col_date"]
|
||||||
|
|
||||||
|
// Get a specific column by name and type
|
||||||
|
let int_col = df.get_column::<i32>("col_int1").unwrap();
|
||||||
|
// Output: Integer column: [1, 2, 3, 4, 5]
|
||||||
|
println!("Integer column (col_int1): {:?}", int_col);
|
||||||
|
|
||||||
|
let int_col2 = df.get_column::<i32>("col_int2").unwrap();
|
||||||
|
// Output: Integer column: [6, 7, 8, 9, 10]
|
||||||
|
println!("Integer column (col_int2): {:?}", int_col2);
|
||||||
|
|
||||||
|
let float_col = df.get_column::<f64>("col_float1").unwrap();
|
||||||
|
// Output: Float column: [1.1, 2.2, 3.3, 4.4, 5.5]
|
||||||
|
println!("Float column (col_float1): {:?}", float_col);
|
||||||
|
|
||||||
|
// Attempt to get a column with incorrect type (returns None)
|
||||||
|
let wrong_type_col = df.get_column::<bool>("col_int1");
|
||||||
|
// Output: Wrong type column: None
|
||||||
|
println!("Wrong type column: {:?}", wrong_type_col);
|
||||||
|
|
||||||
|
// Get a row by index
|
||||||
|
let row_0 = df.get_row(0).unwrap();
|
||||||
|
println!("Row 0: {:?}", row_0);
|
||||||
|
// Output: Row 0: {"col_int1": "1", "col_float1": "1.1", "col_string": "apple", "col_bool": "true", "col_date": "2023-01-01", "col_int2": "6", "col_float2": "6.6"}
|
||||||
|
|
||||||
|
let row_2 = df.get_row(2).unwrap();
|
||||||
|
println!("Row 2: {:?}", row_2);
|
||||||
|
// Output: Row 2: {"col_int1": "3", "col_float1": "3.3", "col_string": "cherry", "col_bool": "true", "col_date": "2023-01-03", "col_int2": "8", "col_float2": "8.8"}
|
||||||
|
|
||||||
|
// Attempt to get an out-of-bounds row (returns None)
|
||||||
|
let row_out_of_bounds = df.get_row(10);
|
||||||
|
// Output: Row out of bounds: None
|
||||||
|
println!("Row out of bounds: {:?}", row_out_of_bounds);
|
||||||
|
|
||||||
|
// Drop a column
|
||||||
|
df.drop_column("col_bool");
|
||||||
|
println!("\nDataFrame after dropping 'col_bool':\n{}", df);
|
||||||
|
|
||||||
|
println!("Columns after drop: {}", df.cols());
|
||||||
|
println!("Column names after drop: {:?}", df.get_column_names());
|
||||||
|
|
||||||
|
// Drop another column, ensuring the underlying Frame is removed if empty
|
||||||
|
df.drop_column("col_float1");
|
||||||
|
println!("\nDataFrame after dropping 'col_float1':\n{}", df);
|
||||||
|
|
||||||
|
println!("Columns after second drop: {}", df.cols());
|
||||||
|
println!(
|
||||||
|
"Column names after second drop: {:?}",
|
||||||
|
df.get_column_names()
|
||||||
|
);
|
||||||
|
|
||||||
|
// Attempt to drop a non-existent column (will panic)
|
||||||
|
// df.drop_column("non_existent_col"); // Uncomment to see panic
|
||||||
|
```
|
||||||
|
|
||||||
### More examples
|
### More examples
|
||||||
|
|
||||||
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
See the [examples](./examples/) directory for some demonstrations of Rustframe's syntax and functionality.
|
||||||
|
659
src/dataframe/df.rs
Normal file
659
src/dataframe/df.rs
Normal file
@ -0,0 +1,659 @@
|
|||||||
|
use crate::frame::{Frame, RowIndex};
|
||||||
|
use std::any::{Any, TypeId};
|
||||||
|
use std::collections::HashMap;
|
||||||
|
use std::fmt; // Import TypeId
|
||||||
|
|
||||||
|
const DEFAULT_DISPLAY_ROWS: usize = 5;
|
||||||
|
const DEFAULT_DISPLAY_COLS: usize = 10;
|
||||||
|
|
||||||
|
// Trait to enable type-agnostic operations on Frame objects within DataFrame
|
||||||
|
pub trait SubFrame: Send + Sync + fmt::Debug + Any {
|
||||||
|
fn rows(&self) -> usize;
|
||||||
|
fn get_value_as_string(&self, physical_row_idx: usize, col_name: &str) -> String;
|
||||||
|
fn clone_box(&self) -> Box<dyn SubFrame>;
|
||||||
|
fn delete_column_from_frame(&mut self, col_name: &str);
|
||||||
|
fn get_frame_cols(&self) -> usize; // Add a method to get the number of columns in the underlying frame
|
||||||
|
|
||||||
|
// Methods for downcasting to concrete types
|
||||||
|
fn as_any(&self) -> &dyn Any;
|
||||||
|
fn as_any_mut(&mut self) -> &mut dyn Any;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Implement SubFrame for any Frame<T> that meets the requirements
|
||||||
|
impl<T> SubFrame for Frame<T>
|
||||||
|
where
|
||||||
|
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
||||||
|
{
|
||||||
|
fn rows(&self) -> usize {
|
||||||
|
self.rows()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_value_as_string(&self, physical_row_idx: usize, col_name: &str) -> String {
|
||||||
|
self.get_row(physical_row_idx).get(col_name).to_string()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn clone_box(&self) -> Box<dyn SubFrame> {
|
||||||
|
Box::new(self.clone())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn delete_column_from_frame(&mut self, col_name: &str) {
|
||||||
|
self.delete_column(col_name);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_frame_cols(&self) -> usize {
|
||||||
|
self.cols()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_any(&self) -> &dyn Any {
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_any_mut(&mut self) -> &mut dyn Any {
|
||||||
|
self
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub struct DataFrame {
|
||||||
|
frames_by_type: HashMap<TypeId, Box<dyn SubFrame>>, // Maps TypeId to the Frame holding columns of that type
|
||||||
|
column_to_type: HashMap<String, TypeId>, // Maps column name to its TypeId
|
||||||
|
column_names: Vec<String>,
|
||||||
|
index: RowIndex,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl DataFrame {
|
||||||
|
pub fn new() -> Self {
|
||||||
|
DataFrame {
|
||||||
|
frames_by_type: HashMap::new(),
|
||||||
|
column_to_type: HashMap::new(),
|
||||||
|
column_names: Vec::new(),
|
||||||
|
index: RowIndex::Range(0..0), // Initialize with an empty range index
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the number of rows in the DataFrame.
|
||||||
|
pub fn rows(&self) -> usize {
|
||||||
|
self.index.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the number of columns in the DataFrame.
|
||||||
|
pub fn cols(&self) -> usize {
|
||||||
|
self.column_names.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a reference to the vector of column names.
|
||||||
|
pub fn get_column_names(&self) -> &Vec<String> {
|
||||||
|
&self.column_names
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the number of internal Frame objects (one per unique data type).
|
||||||
|
pub fn num_internal_frames(&self) -> usize {
|
||||||
|
self.frames_by_type.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a reference to a column of a specific type, if it exists.
|
||||||
|
pub fn get_column<T>(&self, col_name: &str) -> Option<&[T]>
|
||||||
|
where
|
||||||
|
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
||||||
|
{
|
||||||
|
let expected_type_id = TypeId::of::<T>();
|
||||||
|
if let Some(actual_type_id) = self.column_to_type.get(col_name) {
|
||||||
|
if *actual_type_id == expected_type_id {
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get(actual_type_id) {
|
||||||
|
if let Some(frame) = sub_frame_box.as_any().downcast_ref::<Frame<T>>() {
|
||||||
|
return Some(frame.column(col_name));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
None
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a HashMap representing a row, mapping column names to their string values.
|
||||||
|
pub fn get_row(&self, row_idx: usize) -> Option<HashMap<String, String>> {
|
||||||
|
if row_idx >= self.rows() {
|
||||||
|
return None;
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut row_data = HashMap::new();
|
||||||
|
for col_name in &self.column_names {
|
||||||
|
if let Some(type_id) = self.column_to_type.get(col_name) {
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get(type_id) {
|
||||||
|
let value = sub_frame_box.get_value_as_string(row_idx, col_name);
|
||||||
|
row_data.insert(col_name.clone(), value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Some(row_data)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn add_column<T>(&mut self, col_name: &str, data: Vec<T>)
|
||||||
|
where
|
||||||
|
T: Clone + PartialEq + fmt::Display + fmt::Debug + 'static + Send + Sync + Any,
|
||||||
|
{
|
||||||
|
let type_id = TypeId::of::<T>();
|
||||||
|
let col_name_string = col_name.to_string();
|
||||||
|
|
||||||
|
// Check for duplicate column name across the entire DataFrame
|
||||||
|
if self.column_to_type.contains_key(&col_name_string) {
|
||||||
|
panic!(
|
||||||
|
"DataFrame::add_column: duplicate column name: '{}'",
|
||||||
|
col_name_string
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// If this is the first column being added, set the DataFrame's index
|
||||||
|
if self.column_names.is_empty() {
|
||||||
|
self.index = RowIndex::Range(0..data.len());
|
||||||
|
} else {
|
||||||
|
// Ensure new column has the same number of rows as existing columns
|
||||||
|
if data.len() != self.index.len() {
|
||||||
|
panic!(
|
||||||
|
"DataFrame::add_column: new column '{}' has {} rows, but existing columns have {} rows",
|
||||||
|
col_name_string,
|
||||||
|
data.len(),
|
||||||
|
self.index.len()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if a Frame of this type already exists
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get_mut(&type_id) {
|
||||||
|
// Downcast to the concrete Frame<T> and add the column
|
||||||
|
if let Some(frame) = sub_frame_box.as_any_mut().downcast_mut::<Frame<T>>() {
|
||||||
|
frame.add_column(col_name_string.clone(), data);
|
||||||
|
} else {
|
||||||
|
// This should ideally not happen if TypeId matches, but good for safety
|
||||||
|
panic!(
|
||||||
|
"Type mismatch when downcasting existing SubFrame for TypeId {:?}",
|
||||||
|
type_id
|
||||||
|
);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// No Frame of this type exists, create a new one
|
||||||
|
// The Frame::new constructor expects a Matrix and column names.
|
||||||
|
// We create a Matrix from a single column vector.
|
||||||
|
let new_frame = Frame::new(
|
||||||
|
crate::matrix::Matrix::from_cols(vec![data]),
|
||||||
|
vec![col_name_string.clone()],
|
||||||
|
Some(self.index.clone()), // Pass the DataFrame's index to the new Frame
|
||||||
|
);
|
||||||
|
self.frames_by_type.insert(type_id, Box::new(new_frame));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Update column mappings and names
|
||||||
|
self.column_to_type.insert(col_name_string.clone(), type_id);
|
||||||
|
self.column_names.push(col_name_string);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Drops a column from the DataFrame.
|
||||||
|
/// Panics if the column does not exist.
|
||||||
|
pub fn drop_column(&mut self, col_name: &str) {
|
||||||
|
let col_name_string = col_name.to_string();
|
||||||
|
|
||||||
|
// 1. Get the TypeId associated with the column
|
||||||
|
let type_id = self
|
||||||
|
.column_to_type
|
||||||
|
.remove(&col_name_string)
|
||||||
|
.unwrap_or_else(|| {
|
||||||
|
panic!(
|
||||||
|
"DataFrame::drop_column: column '{}' not found",
|
||||||
|
col_name_string
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
// 2. Remove the column name from the ordered list
|
||||||
|
self.column_names.retain(|name| name != &col_name_string);
|
||||||
|
|
||||||
|
// 3. Find the Frame object and delete the column from it
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get_mut(&type_id) {
|
||||||
|
sub_frame_box.delete_column_from_frame(&col_name_string);
|
||||||
|
|
||||||
|
// 4. If the Frame object for this type becomes empty, remove it from frames_by_type
|
||||||
|
if sub_frame_box.get_frame_cols() == 0 {
|
||||||
|
self.frames_by_type.remove(&type_id);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// This should not happen if column_to_type was consistent
|
||||||
|
panic!(
|
||||||
|
"DataFrame::drop_column: internal error, no frame found for type_id {:?}",
|
||||||
|
type_id
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl fmt::Display for DataFrame {
|
||||||
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||||
|
// Display column headers
|
||||||
|
for col_name in self.column_names.iter().take(DEFAULT_DISPLAY_COLS) {
|
||||||
|
write!(f, "{:<15}", col_name)?;
|
||||||
|
}
|
||||||
|
if self.column_names.len() > DEFAULT_DISPLAY_COLS {
|
||||||
|
write!(f, "...")?;
|
||||||
|
}
|
||||||
|
writeln!(f)?;
|
||||||
|
|
||||||
|
// Display data rows
|
||||||
|
let mut displayed_rows = 0;
|
||||||
|
for i in 0..self.index.len() {
|
||||||
|
if displayed_rows >= DEFAULT_DISPLAY_ROWS {
|
||||||
|
writeln!(f, "...")?;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
for col_name in self.column_names.iter().take(DEFAULT_DISPLAY_COLS) {
|
||||||
|
if let Some(type_id) = self.column_to_type.get(col_name) {
|
||||||
|
if let Some(sub_frame_box) = self.frames_by_type.get(type_id) {
|
||||||
|
write!(f, "{:<15}", sub_frame_box.get_value_as_string(i, col_name))?;
|
||||||
|
} else {
|
||||||
|
// This case indicates an inconsistency: column_to_type has an entry,
|
||||||
|
// but frames_by_type doesn't have the corresponding Frame.
|
||||||
|
write!(f, "{:<15}", "[ERROR]")?;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// This case indicates an inconsistency: column_names has an entry,
|
||||||
|
// but column_to_type doesn't have the corresponding column.
|
||||||
|
write!(f, "{:<15}", "[ERROR]")?;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if self.column_names.len() > DEFAULT_DISPLAY_COLS {
|
||||||
|
write!(f, "...")?;
|
||||||
|
}
|
||||||
|
writeln!(f)?;
|
||||||
|
displayed_rows += 1;
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl fmt::Debug for DataFrame {
|
||||||
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||||
|
f.debug_struct("DataFrame")
|
||||||
|
.field("column_names", &self.column_names)
|
||||||
|
.field("index", &self.index)
|
||||||
|
.field("column_to_type", &self.column_to_type)
|
||||||
|
.field("frames_by_type", &self.frames_by_type)
|
||||||
|
.finish()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use crate::frame::Frame;
|
||||||
|
use crate::matrix::Matrix;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_new() {
|
||||||
|
let df = DataFrame::new();
|
||||||
|
assert_eq!(df.rows(), 0);
|
||||||
|
assert_eq!(df.cols(), 0);
|
||||||
|
assert!(df.get_column_names().is_empty());
|
||||||
|
assert!(df.frames_by_type.is_empty());
|
||||||
|
assert!(df.column_to_type.is_empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_add_column_initial() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
let data = vec![1, 2, 3];
|
||||||
|
df.add_column("col_int", data.clone());
|
||||||
|
|
||||||
|
assert_eq!(df.rows(), 3);
|
||||||
|
assert_eq!(df.cols(), 1);
|
||||||
|
assert_eq!(df.get_column_names(), &vec!["col_int".to_string()]);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert_eq!(df.column_to_type.get("col_int"), Some(&TypeId::of::<i32>()));
|
||||||
|
|
||||||
|
// Verify the underlying frame
|
||||||
|
let sub_frame_box = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap();
|
||||||
|
let frame = sub_frame_box.as_any().downcast_ref::<Frame<i32>>().unwrap();
|
||||||
|
assert_eq!(frame.rows(), 3);
|
||||||
|
assert_eq!(frame.cols(), 1);
|
||||||
|
assert_eq!(frame.columns(), &vec!["col_int".to_string()]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_add_column_same_type() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_int2", vec![4, 5, 6]);
|
||||||
|
|
||||||
|
assert_eq!(df.rows(), 3);
|
||||||
|
assert_eq!(df.cols(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec!["col_int1".to_string(), "col_int2".to_string()]
|
||||||
|
);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert_eq!(
|
||||||
|
df.column_to_type.get("col_int1"),
|
||||||
|
Some(&TypeId::of::<i32>())
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
df.column_to_type.get("col_int2"),
|
||||||
|
Some(&TypeId::of::<i32>())
|
||||||
|
);
|
||||||
|
|
||||||
|
// Verify the underlying frame
|
||||||
|
let sub_frame_box = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap();
|
||||||
|
let frame = sub_frame_box.as_any().downcast_ref::<Frame<i32>>().unwrap();
|
||||||
|
assert_eq!(frame.rows(), 3);
|
||||||
|
assert_eq!(frame.cols(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
frame.columns(),
|
||||||
|
&vec!["col_int1".to_string(), "col_int2".to_string()]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_add_column_different_type() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
||||||
|
);
|
||||||
|
|
||||||
|
assert_eq!(df.rows(), 3);
|
||||||
|
assert_eq!(df.cols(), 3);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec![
|
||||||
|
"col_int".to_string(),
|
||||||
|
"col_float".to_string(),
|
||||||
|
"col_string".to_string()
|
||||||
|
]
|
||||||
|
);
|
||||||
|
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
||||||
|
|
||||||
|
assert_eq!(df.column_to_type.get("col_int"), Some(&TypeId::of::<i32>()));
|
||||||
|
assert_eq!(
|
||||||
|
df.column_to_type.get("col_float"),
|
||||||
|
Some(&TypeId::of::<f64>())
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
df.column_to_type.get("col_string"),
|
||||||
|
Some(&TypeId::of::<String>())
|
||||||
|
);
|
||||||
|
|
||||||
|
// Verify underlying frames
|
||||||
|
let int_frame = df
|
||||||
|
.frames_by_type
|
||||||
|
.get(&TypeId::of::<i32>())
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Frame<i32>>()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(int_frame.columns(), &vec!["col_int".to_string()]);
|
||||||
|
|
||||||
|
let float_frame = df
|
||||||
|
.frames_by_type
|
||||||
|
.get(&TypeId::of::<f64>())
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Frame<f64>>()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(float_frame.columns(), &vec!["col_float".to_string()]);
|
||||||
|
|
||||||
|
let string_frame = df
|
||||||
|
.frames_by_type
|
||||||
|
.get(&TypeId::of::<String>())
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Frame<String>>()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(string_frame.columns(), &vec!["col_string".to_string()]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_get_column() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
||||||
|
);
|
||||||
|
|
||||||
|
// Test getting existing columns with correct type
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column::<i32>("col_int").unwrap(),
|
||||||
|
vec![1, 2, 3].as_slice()
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column::<f64>("col_float").unwrap(),
|
||||||
|
vec![1.1, 2.2, 3.3].as_slice()
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column::<String>("col_string").unwrap(),
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()].as_slice()
|
||||||
|
);
|
||||||
|
|
||||||
|
// Test getting non-existent column
|
||||||
|
assert_eq!(df.get_column::<i32>("non_existent"), None);
|
||||||
|
|
||||||
|
// Test getting existing column with incorrect type
|
||||||
|
assert_eq!(df.get_column::<f64>("col_int"), None);
|
||||||
|
assert_eq!(df.get_column::<i32>("col_float"), None);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_get_row() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
||||||
|
);
|
||||||
|
|
||||||
|
// Test getting an existing row
|
||||||
|
let row0 = df.get_row(0).unwrap();
|
||||||
|
assert_eq!(row0.get("col_int"), Some(&"1".to_string()));
|
||||||
|
assert_eq!(row0.get("col_float"), Some(&"1.1".to_string()));
|
||||||
|
assert_eq!(row0.get("col_string"), Some(&"a".to_string()));
|
||||||
|
|
||||||
|
let row1 = df.get_row(1).unwrap();
|
||||||
|
assert_eq!(row1.get("col_int"), Some(&"2".to_string()));
|
||||||
|
assert_eq!(row1.get("col_float"), Some(&"2.2".to_string()));
|
||||||
|
assert_eq!(row1.get("col_string"), Some(&"b".to_string()));
|
||||||
|
|
||||||
|
// Test getting an out-of-bounds row
|
||||||
|
assert_eq!(df.get_row(3), None);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic(expected = "DataFrame::add_column: duplicate column name: 'col_int'")]
|
||||||
|
fn test_dataframe_add_column_duplicate_name() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_int", vec![4, 5, 6]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic(
|
||||||
|
expected = "DataFrame::add_column: new column 'col_int2' has 2 rows, but existing columns have 3 rows"
|
||||||
|
)]
|
||||||
|
fn test_dataframe_add_column_mismatched_rows() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_int2", vec![4, 5]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_display() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3, 4, 5, 6]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3, 4.4, 5.5, 6.6]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec![
|
||||||
|
"a".to_string(),
|
||||||
|
"b".to_string(),
|
||||||
|
"c".to_string(),
|
||||||
|
"d".to_string(),
|
||||||
|
"e".to_string(),
|
||||||
|
"f".to_string(),
|
||||||
|
],
|
||||||
|
);
|
||||||
|
|
||||||
|
let expected_output = "\
|
||||||
|
col_int col_float col_string
|
||||||
|
1 1.1 a
|
||||||
|
2 2.2 b
|
||||||
|
3 3.3 c
|
||||||
|
4 4.4 d
|
||||||
|
5 5.5 e
|
||||||
|
...
|
||||||
|
";
|
||||||
|
assert_eq!(format!("{}", df), expected_output);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_debug() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
|
||||||
|
let debug_output = format!("{:?}", df);
|
||||||
|
assert!(debug_output.contains("DataFrame {"));
|
||||||
|
assert!(debug_output.contains("column_names: [\"col_int\", \"col_float\"]"));
|
||||||
|
assert!(debug_output.contains("index: Range(0..3)"));
|
||||||
|
assert!(debug_output.contains("column_to_type: {"));
|
||||||
|
assert!(debug_output.contains("frames_by_type: {"));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_drop_column_single_type() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_int2", vec![4, 5, 6]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 3);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec![
|
||||||
|
"col_int1".to_string(),
|
||||||
|
"col_int2".to_string(),
|
||||||
|
"col_float".to_string()
|
||||||
|
]
|
||||||
|
);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
|
||||||
|
df.drop_column("col_int1");
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec!["col_int2".to_string(), "col_float".to_string()]
|
||||||
|
);
|
||||||
|
assert!(df.column_to_type.get("col_int1").is_none());
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>())); // Frame<i32> should still exist
|
||||||
|
let int_frame = df
|
||||||
|
.frames_by_type
|
||||||
|
.get(&TypeId::of::<i32>())
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Frame<i32>>()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(int_frame.columns(), &vec!["col_int2".to_string()]);
|
||||||
|
|
||||||
|
df.drop_column("col_int2");
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 1);
|
||||||
|
assert_eq!(df.get_column_names(), &vec!["col_float".to_string()]);
|
||||||
|
assert!(df.column_to_type.get("col_int2").is_none());
|
||||||
|
assert!(!df.frames_by_type.contains_key(&TypeId::of::<i32>())); // Frame<i32> should be removed
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_drop_column_mixed_types() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float", vec![1.1, 2.2, 3.3]);
|
||||||
|
df.add_column(
|
||||||
|
"col_string",
|
||||||
|
vec!["a".to_string(), "b".to_string(), "c".to_string()],
|
||||||
|
);
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 3);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
||||||
|
|
||||||
|
df.drop_column("col_float");
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
df.get_column_names(),
|
||||||
|
&vec!["col_int".to_string(), "col_string".to_string()]
|
||||||
|
);
|
||||||
|
assert!(df.column_to_type.get("col_float").is_none());
|
||||||
|
assert!(!df.frames_by_type.contains_key(&TypeId::of::<f64>())); // Frame<f64> should be removed
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<String>()));
|
||||||
|
|
||||||
|
df.drop_column("col_int");
|
||||||
|
df.drop_column("col_string");
|
||||||
|
|
||||||
|
assert_eq!(df.cols(), 0);
|
||||||
|
assert!(df.get_column_names().is_empty());
|
||||||
|
assert!(df.frames_by_type.is_empty());
|
||||||
|
assert!(df.column_to_type.is_empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic(expected = "DataFrame::drop_column: column 'non_existent' not found")]
|
||||||
|
fn test_dataframe_drop_column_non_existent() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int", vec![1, 2, 3]);
|
||||||
|
df.drop_column("non_existent");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_dataframe_add_column_reuses_existing_frame() {
|
||||||
|
let mut df = DataFrame::new();
|
||||||
|
df.add_column("col_int1", vec![1, 2, 3]);
|
||||||
|
df.add_column("col_float1", vec![1.1, 2.2, 3.3]);
|
||||||
|
|
||||||
|
// Initially, there should be two frames (one for i32, one for f64)
|
||||||
|
assert_eq!(df.frames_by_type.len(), 2);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
|
||||||
|
// Add another integer column
|
||||||
|
df.add_column("col_int2", vec![4, 5, 6]);
|
||||||
|
|
||||||
|
// The number of frames should still be 2, as the existing i32 frame should be reused
|
||||||
|
assert_eq!(df.frames_by_type.len(), 2);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
|
||||||
|
// Verify the i32 frame now contains both integer columns
|
||||||
|
let int_frame = df.frames_by_type.get(&TypeId::of::<i32>()).unwrap().as_any().downcast_ref::<Frame<i32>>().unwrap();
|
||||||
|
assert_eq!(int_frame.columns(), &vec!["col_int1".to_string(), "col_int2".to_string()]);
|
||||||
|
assert_eq!(int_frame.cols(), 2);
|
||||||
|
|
||||||
|
// Add another float column
|
||||||
|
df.add_column("col_float2", vec![4.4, 5.5, 6.6]);
|
||||||
|
|
||||||
|
// The number of frames should still be 2, as the existing f64 frame should be reused
|
||||||
|
assert_eq!(df.frames_by_type.len(), 2);
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<i32>()));
|
||||||
|
assert!(df.frames_by_type.contains_key(&TypeId::of::<f64>()));
|
||||||
|
|
||||||
|
// Verify the f64 frame now contains both float columns
|
||||||
|
let float_frame = df.frames_by_type.get(&TypeId::of::<f64>()).unwrap().as_any().downcast_ref::<Frame<f64>>().unwrap();
|
||||||
|
assert_eq!(float_frame.columns(), &vec!["col_float1".to_string(), "col_float2".to_string()]);
|
||||||
|
assert_eq!(float_frame.cols(), 2);
|
||||||
|
}
|
||||||
|
}
|
4
src/dataframe/mod.rs
Normal file
4
src/dataframe/mod.rs
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
//! This module provides the DataFrame structure for handling tabular data with mixed types.
|
||||||
|
pub mod df;
|
||||||
|
|
||||||
|
pub use df::{DataFrame, SubFrame};
|
@ -316,7 +316,7 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns an immutable slice of the specified column's data.
|
/// Returns an immutable slice of the specified column's data by name.
|
||||||
/// Panics if the column name is not found.
|
/// Panics if the column name is not found.
|
||||||
pub fn column(&self, name: &str) -> &[T] {
|
pub fn column(&self, name: &str) -> &[T] {
|
||||||
let idx = self
|
let idx = self
|
||||||
@ -325,7 +325,13 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
self.matrix.column(idx)
|
self.matrix.column(idx)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a mutable slice of the specified column's data.
|
/// Returns an immutable slice of the specified column's data by its physical index.
|
||||||
|
/// Panics if the index is out of bounds.
|
||||||
|
pub fn column_by_physical_idx(&self, idx: usize) -> &[T] {
|
||||||
|
self.matrix.column(idx)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a mutable slice of the specified column's data by name.
|
||||||
/// Panics if the column name is not found.
|
/// Panics if the column name is not found.
|
||||||
pub fn column_mut(&mut self, name: &str) -> &mut [T] {
|
pub fn column_mut(&mut self, name: &str) -> &mut [T] {
|
||||||
let idx = self
|
let idx = self
|
||||||
@ -334,6 +340,12 @@ impl<T: Clone + PartialEq> Frame<T> {
|
|||||||
self.matrix.column_mut(idx)
|
self.matrix.column_mut(idx)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Returns a mutable slice of the specified column's data by its physical index.
|
||||||
|
/// Panics if the index is out of bounds.
|
||||||
|
pub fn column_mut_by_physical_idx(&mut self, idx: usize) -> &mut [T] {
|
||||||
|
self.matrix.column_mut(idx)
|
||||||
|
}
|
||||||
|
|
||||||
// Row access methods
|
// Row access methods
|
||||||
|
|
||||||
/// Returns an immutable view of the row for the given integer key.
|
/// Returns an immutable view of the row for the given integer key.
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#![doc = include_str!("../README.md")]
|
#![doc = include_str!("../README.md")]
|
||||||
|
|
||||||
|
/// Documentation for the [`crate::dataframe`] module.
|
||||||
|
pub mod dataframe;
|
||||||
|
|
||||||
/// Documentation for the [`crate::matrix`] module.
|
/// Documentation for the [`crate::matrix`] module.
|
||||||
pub mod matrix;
|
pub mod matrix;
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user