mirror of
https://github.com/Magnus167/rustframe.git
synced 2025-08-20 04:00:01 +00:00
Refactor covariance_matrix to improve mean calculation and add broadcasting for centered data; add tests for vertical and horizontal covariance matrices
This commit is contained in:
parent
b7480b20d4
commit
10018f7efe
@ -82,16 +82,30 @@ pub fn covariance_horizontal(x: &Matrix<f64>) -> Matrix<f64> {
|
|||||||
/// Calculates the covariance matrix of the input data.
|
/// Calculates the covariance matrix of the input data.
|
||||||
/// Assumes input `x` is (n_samples, n_features).
|
/// Assumes input `x` is (n_samples, n_features).
|
||||||
pub fn covariance_matrix(x: &Matrix<f64>, axis: Axis) -> Matrix<f64> {
|
pub fn covariance_matrix(x: &Matrix<f64>, axis: Axis) -> Matrix<f64> {
|
||||||
let (n_samples, _n_features) = x.shape();
|
let (n_samples, n_features) = x.shape();
|
||||||
|
|
||||||
let mean_matrix = match axis {
|
let centered_data = match axis {
|
||||||
Axis::Col => mean_vertical(x), // Mean of each feature (column)
|
Axis::Col => {
|
||||||
Axis::Row => mean_horizontal(x), // Mean of each sample (row)
|
let mean_matrix = mean_vertical(x); // 1 x n_features
|
||||||
|
x.zip(
|
||||||
|
&mean_matrix.broadcast_row_to_target_shape(n_samples, n_features),
|
||||||
|
|val, m| val - m,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
Axis::Row => {
|
||||||
|
let mean_matrix = mean_horizontal(x); // n_samples x 1
|
||||||
|
// Manually create a matrix by broadcasting the column vector across columns
|
||||||
|
let mut broadcasted_mean = Matrix::zeros(n_samples, n_features);
|
||||||
|
for r in 0..n_samples {
|
||||||
|
let mean_val = mean_matrix.get(r, 0);
|
||||||
|
for c in 0..n_features {
|
||||||
|
*broadcasted_mean.get_mut(r, c) = *mean_val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
x.zip(&broadcasted_mean, |val, m| val - m)
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
// Center the data
|
|
||||||
let centered_data = x.zip(&mean_matrix.broadcast_row_to_target_shape(n_samples, x.cols()), |val, m| val - m);
|
|
||||||
|
|
||||||
// Calculate covariance matrix: (X_centered^T * X_centered) / (n_samples - 1)
|
// Calculate covariance matrix: (X_centered^T * X_centered) / (n_samples - 1)
|
||||||
// If x is (n_samples, n_features), then centered_data is (n_samples, n_features)
|
// If x is (n_samples, n_features), then centered_data is (n_samples, n_features)
|
||||||
// centered_data.transpose() is (n_features, n_samples)
|
// centered_data.transpose() is (n_features, n_samples)
|
||||||
@ -148,13 +162,7 @@ mod tests {
|
|||||||
// Expect 2x2 matrix of all 1.0
|
// Expect 2x2 matrix of all 1.0
|
||||||
for i in 0..2 {
|
for i in 0..2 {
|
||||||
for j in 0..2 {
|
for j in 0..2 {
|
||||||
assert!(
|
assert!((cov_mat.get(i, j) - 1.0).abs() < EPS);
|
||||||
(cov_mat.get(i, j) - 1.0).abs() < EPS,
|
|
||||||
"cov_mat[{},{}] = {}",
|
|
||||||
i,
|
|
||||||
j,
|
|
||||||
cov_mat.get(i, j)
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -171,14 +179,58 @@ mod tests {
|
|||||||
// Expect 2x2 matrix of all 0.25
|
// Expect 2x2 matrix of all 0.25
|
||||||
for i in 0..2 {
|
for i in 0..2 {
|
||||||
for j in 0..2 {
|
for j in 0..2 {
|
||||||
assert!(
|
assert!((cov_mat.get(i, j) - 0.25).abs() < EPS);
|
||||||
(cov_mat.get(i, j) - 0.25).abs() < EPS,
|
|
||||||
"cov_mat[{},{}] = {}",
|
|
||||||
i,
|
|
||||||
j,
|
|
||||||
cov_mat.get(i, j)
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_covariance_matrix_vertical() {
|
||||||
|
// Test with a simple 2x2 matrix
|
||||||
|
// M =
|
||||||
|
// 1, 2
|
||||||
|
// 3, 4
|
||||||
|
// Expected covariance matrix (vertical, i.e., between columns):
|
||||||
|
// Col1: [1, 3], mean = 2
|
||||||
|
// Col2: [2, 4], mean = 3
|
||||||
|
// Cov(Col1, Col1) = ((1-2)^2 + (3-2)^2) / (2-1) = (1+1)/1 = 2
|
||||||
|
// Cov(Col2, Col2) = ((2-3)^2 + (4-3)^2) / (2-1) = (1+1)/1 = 2
|
||||||
|
// Cov(Col1, Col2) = ((1-2)*(2-3) + (3-2)*(4-3)) / (2-1) = ((-1)*(-1) + (1)*(1))/1 = (1+1)/1 = 2
|
||||||
|
// Cov(Col2, Col1) = 2
|
||||||
|
// Expected:
|
||||||
|
// 2, 2
|
||||||
|
// 2, 2
|
||||||
|
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let cov_mat = covariance_matrix(&m, Axis::Col);
|
||||||
|
|
||||||
|
assert!((cov_mat.get(0, 0) - 2.0).abs() < EPS);
|
||||||
|
assert!((cov_mat.get(0, 1) - 2.0).abs() < EPS);
|
||||||
|
assert!((cov_mat.get(1, 0) - 2.0).abs() < EPS);
|
||||||
|
assert!((cov_mat.get(1, 1) - 2.0).abs() < EPS);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_covariance_matrix_horizontal() {
|
||||||
|
// Test with a simple 2x2 matrix
|
||||||
|
// M =
|
||||||
|
// 1, 2
|
||||||
|
// 3, 4
|
||||||
|
// Expected covariance matrix (horizontal, i.e., between rows):
|
||||||
|
// Row1: [1, 2], mean = 1.5
|
||||||
|
// Row2: [3, 4], mean = 3.5
|
||||||
|
// Cov(Row1, Row1) = ((1-1.5)^2 + (2-1.5)^2) / (2-1) = (0.25+0.25)/1 = 0.5
|
||||||
|
// Cov(Row2, Row2) = ((3-3.5)^2 + (4-3.5)^2) / (2-1) = (0.25+0.25)/1 = 0.5
|
||||||
|
// Cov(Row1, Row2) = ((1-1.5)*(3-3.5) + (2-1.5)*(4-3.5)) / (2-1) = ((-0.5)*(-0.5) + (0.5)*(0.5))/1 = (0.25+0.25)/1 = 0.5
|
||||||
|
// Cov(Row2, Row1) = 0.5
|
||||||
|
// Expected:
|
||||||
|
// 0.5, -0.5
|
||||||
|
// -0.5, 0.5
|
||||||
|
let m = Matrix::from_rows_vec(vec![1.0, 2.0, 3.0, 4.0], 2, 2);
|
||||||
|
let cov_mat = covariance_matrix(&m, Axis::Row);
|
||||||
|
|
||||||
|
assert!((cov_mat.get(0, 0) - 0.5).abs() < EPS);
|
||||||
|
assert!((cov_mat.get(0, 1) - (-0.5)).abs() < EPS);
|
||||||
|
assert!((cov_mat.get(1, 0) - (-0.5)).abs() < EPS);
|
||||||
|
assert!((cov_mat.get(1, 1) - 0.5).abs() < EPS);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user