mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-08-20 07:30:00 +00:00
354 lines
12 KiB
Rust
354 lines
12 KiB
Rust
use crate::utils::bdates::{get_bdates_list_with_freq, BDateFreq};
|
||
use crate::utils::dateutils::get_min_max_real_dates;
|
||
use crate::utils::misc::get_cid;
|
||
use crate::utils::qdf::core::check_quantamental_dataframe;
|
||
use chrono::NaiveDate;
|
||
use polars::prelude::*;
|
||
use std::collections::{BTreeMap, HashMap};
|
||
use std::error::Error;
|
||
|
||
use crate::utils::qdf::get_unique_metrics;
|
||
|
||
// struct Blacklist which is a wrapper around hashmap and btreemap
|
||
#[derive(Debug, Clone)]
|
||
pub struct Blacklist {
|
||
pub blacklist: BTreeMap<String, (String, String)>,
|
||
}
|
||
|
||
// impl hashmap into
|
||
impl Blacklist {
|
||
pub fn into_hashmap(self) -> HashMap<String, (String, String)> {
|
||
self.blacklist.into_iter().collect()
|
||
}
|
||
}
|
||
|
||
/// Apply a blacklist to a Quantamental DataFrame with Lazy API.
|
||
///
|
||
/// * `blacklist` is a map from any “ticker‑like” key to a tuple of
|
||
/// `(start_date, end_date)` in **inclusive** `"YYYY‑MM‑DD"` format.
|
||
/// * `metrics` – if `None`, every metric from `get_unique_metrics(df)`
|
||
/// is used.
|
||
/// * `group_by_cid = Some(false)` is not implemented yet (parity with
|
||
/// the eager version).
|
||
pub fn apply_blacklist_lazy(
|
||
df: &mut DataFrame,
|
||
blacklist: &BTreeMap<String, (String, String)>,
|
||
metrics: Option<Vec<String>>,
|
||
group_by_cid: Option<bool>,
|
||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||
check_quantamental_dataframe(df)?;
|
||
Ok(df.clone())
|
||
}
|
||
/// Create a blacklist from a Quantamental DataFrame.
|
||
/// The blacklist is a mapping of tickers to date ranges where the specified metrics are null or NaN.
|
||
/// # Arguments:
|
||
/// * `df` - The Quantamental DataFrame.
|
||
/// * `group_by_cid` - If true, group the blacklist by `cid`. Defaults to true.
|
||
/// * `blacklist_name` - The name of the blacklist. Defaults to "BLACKLIST".
|
||
/// * `metrics` - The metrics to check for null or NaN values. If None, all metrics are used.
|
||
pub fn create_blacklist_from_qdf(
|
||
df: &DataFrame,
|
||
group_by_cid: Option<bool>,
|
||
blacklist_name: Option<String>,
|
||
metrics: Option<Vec<String>>,
|
||
) -> Result<BTreeMap<String, (String, String)>, Box<dyn Error>> {
|
||
check_quantamental_dataframe(df)?;
|
||
let metrics = metrics.unwrap_or_else(|| get_unique_metrics(df).unwrap());
|
||
let blacklist_name = blacklist_name.unwrap_or_else(|| "BLACKLIST".into());
|
||
let group_by_cid = group_by_cid.unwrap_or(true);
|
||
|
||
let (min_date, max_date) = get_min_max_real_dates(df, "real_date".into())?;
|
||
let min_date_str = min_date.format("%Y-%m-%d").to_string();
|
||
let max_date_str = max_date.format("%Y-%m-%d").to_string();
|
||
// let all_bdates = get_bdates_series_default_opt(min_date_str, max_date_str, None)?;
|
||
let all_bdates = get_bdates_list_with_freq(
|
||
min_date_str.clone().as_str(),
|
||
max_date_str.clone().as_str(),
|
||
BDateFreq::Daily,
|
||
)?;
|
||
|
||
// if none of the metrics are null or NaN, return an empty blacklist
|
||
if !metrics.iter().any(|metric| {
|
||
df.column(metric)
|
||
.map(|col| col.is_null().any())
|
||
.unwrap_or(false)
|
||
}) {
|
||
return Ok(BTreeMap::new());
|
||
}
|
||
|
||
// let null_mask = get_nan_mask(df, metrics)?;
|
||
// let df = df.filter(&null_mask)?.clone();
|
||
|
||
let df = df
|
||
.clone()
|
||
.lazy()
|
||
.with_columns([
|
||
(cols(metrics.clone()).is_null().or(cols(metrics).is_nan())).alias("null_mask")
|
||
])
|
||
.filter(col("null_mask"))
|
||
// if is now empty, return an empty blacklist
|
||
.sort(
|
||
["cid", "xcat"],
|
||
SortMultipleOptions::default().with_maintain_order(true),
|
||
)
|
||
.group_by([col("cid"), col("xcat")])
|
||
// .agg([col("real_date").sort(SortOptions::default())])
|
||
.agg([col("real_date")
|
||
.dt()
|
||
.strftime("%Y-%m-%d")
|
||
.sort(SortOptions::default())])
|
||
.select([
|
||
concat_str([col("cid"), col("xcat")], "_", true).alias("ticker"),
|
||
col("real_date").alias("real_dates"),
|
||
])
|
||
.collect()?;
|
||
|
||
// assert!(0 == 1, "{:?}", df);
|
||
|
||
let ticker_vec = df
|
||
.column("ticker")?
|
||
.str()?
|
||
.into_iter()
|
||
.filter_map(|opt| opt.map(|s| s.to_string()))
|
||
.collect::<Vec<String>>();
|
||
|
||
let rdt = get_vec_of_vec_of_dates_from_df(df)?;
|
||
|
||
let mut blk: HashMap<String, Vec<String>> = HashMap::new();
|
||
for (tkr, dates) in ticker_vec.iter().zip(rdt.iter()) {
|
||
if group_by_cid {
|
||
let _cid = get_cid(tkr.clone())?;
|
||
if blk.contains_key(&_cid) {
|
||
blk.get_mut(&_cid).unwrap().extend(dates.iter().cloned());
|
||
} else {
|
||
blk.insert(_cid, dates.clone());
|
||
}
|
||
} else {
|
||
blk.insert(tkr.to_string(), dates.clone());
|
||
}
|
||
}
|
||
for (_key, vals) in blk.iter_mut() {
|
||
// order is important - dedup depends on the vec being sorted
|
||
vals.sort();
|
||
vals.dedup();
|
||
}
|
||
|
||
let all_bdates_strs = all_bdates
|
||
.iter()
|
||
.map(|date| date.format("%Y-%m-%d").to_string())
|
||
.collect::<Vec<String>>();
|
||
|
||
let mut blacklist: HashMap<String, (String, String)> = HashMap::new();
|
||
for (tkr, dates) in blk.iter() {
|
||
let date_ranges = convert_dates_list_to_date_ranges(dates.clone(), all_bdates_strs.clone());
|
||
for (rng_idx, (start_date, end_date)) in date_ranges.iter() {
|
||
let range_key = format!("{}_{}_{}", tkr, blacklist_name.clone(), rng_idx);
|
||
blacklist.insert(range_key, (start_date.clone(), end_date.clone()));
|
||
}
|
||
}
|
||
// Ok(blacklist)
|
||
|
||
let mut btree_map: BTreeMap<String, (String, String)> = BTreeMap::new();
|
||
for (key, (start_date, end_date)) in blacklist.iter() {
|
||
btree_map.insert(key.clone(), (start_date.clone(), end_date.clone()));
|
||
}
|
||
|
||
Ok(btree_map)
|
||
}
|
||
|
||
/// Get a mask of NaN values for the specified metrics in the DataFrame.
|
||
#[allow(dead_code)]
|
||
fn get_nan_mask(
|
||
df: &DataFrame,
|
||
metrics: Vec<String>,
|
||
) -> Result<ChunkedArray<BooleanType>, Box<dyn Error>> {
|
||
let null_masks: Vec<ChunkedArray<BooleanType>> = metrics
|
||
.iter()
|
||
.map(|metric| {
|
||
let null_mask = df.column(metric.as_str())?.is_null();
|
||
let nan_mask = df.column(metric.as_str())?.is_nan()?;
|
||
Ok(null_mask | nan_mask)
|
||
})
|
||
.collect::<Result<_, Box<dyn Error>>>()?;
|
||
let null_mask = null_masks
|
||
.into_iter()
|
||
.reduce(|acc, mask| acc | mask)
|
||
.unwrap_or_else(|| BooleanChunked::full_null("null_mask".into(), df.height()));
|
||
Ok(null_mask)
|
||
}
|
||
|
||
fn convert_dates_list_to_date_ranges(
|
||
blacklist: Vec<String>,
|
||
all_bdates_strs: Vec<String>,
|
||
) -> HashMap<String, (String, String)> {
|
||
// Step 1: Map every date in all_bdates_strs to its index
|
||
let mut all_map: HashMap<String, usize> = HashMap::new();
|
||
for (i, d) in all_bdates_strs.iter().enumerate() {
|
||
all_map.insert(d.clone(), i);
|
||
}
|
||
|
||
// Step 2: Convert each blacklisted date into its index, if it exists
|
||
let mut blacklisted_indices: Vec<usize> = Vec::new();
|
||
for dt in blacklist {
|
||
if let Some(&idx) = all_map.get(&dt) {
|
||
blacklisted_indices.push(idx);
|
||
}
|
||
}
|
||
|
||
// Step 3: Sort the blacklisted indices
|
||
blacklisted_indices.sort_unstable();
|
||
|
||
// Step 4: Traverse and group consecutive indices into ranges
|
||
let mut result: HashMap<i64, (String, String)> = HashMap::new();
|
||
let mut string_result: HashMap<String, (String, String)> = HashMap::new();
|
||
|
||
if blacklisted_indices.is_empty() {
|
||
return string_result;
|
||
}
|
||
|
||
let mut range_idx: i64 = 0;
|
||
let mut start_idx = blacklisted_indices[0];
|
||
let mut end_idx = start_idx;
|
||
|
||
for &cur_idx in blacklisted_indices.iter().skip(1) {
|
||
if cur_idx == end_idx + 1 {
|
||
// We are still in a contiguous run
|
||
end_idx = cur_idx;
|
||
} else {
|
||
// We hit a break in contiguity, so store the last range
|
||
result.insert(
|
||
range_idx,
|
||
(
|
||
all_bdates_strs[start_idx].clone(),
|
||
all_bdates_strs[end_idx].clone(),
|
||
),
|
||
);
|
||
range_idx += 1;
|
||
|
||
// Start a new range
|
||
start_idx = cur_idx;
|
||
end_idx = cur_idx;
|
||
}
|
||
}
|
||
|
||
// Don't forget to store the final range after the loop
|
||
result.insert(
|
||
range_idx,
|
||
(
|
||
all_bdates_strs[start_idx].clone(),
|
||
all_bdates_strs[end_idx].clone(),
|
||
),
|
||
);
|
||
|
||
let max_digits = result.keys().max().unwrap_or(&-1).to_string().len();
|
||
for (key, (start_date, end_date)) in result.iter() {
|
||
let new_key = format!("{:0width$}", key, width = max_digits);
|
||
string_result.insert(new_key, (start_date.clone(), end_date.clone()));
|
||
}
|
||
|
||
string_result
|
||
}
|
||
|
||
fn get_vec_of_vec_of_dates_from_df(df: DataFrame) -> Result<Vec<Vec<String>>, Box<dyn Error>> {
|
||
let rdt = df
|
||
.column("real_dates")?
|
||
// .clone()
|
||
.as_series()
|
||
.unwrap()
|
||
.list()?
|
||
.into_iter()
|
||
.filter_map(|opt| opt)
|
||
.collect::<Vec<Series>>()
|
||
.iter()
|
||
.map(|s| {
|
||
s.str()
|
||
.unwrap()
|
||
.into_iter()
|
||
.filter_map(|opt| opt.map(|s| s.to_string()))
|
||
.collect::<Vec<String>>()
|
||
})
|
||
.collect::<Vec<Vec<String>>>();
|
||
Ok(rdt)
|
||
}
|
||
|
||
#[allow(dead_code)]
|
||
fn get_vec_of_vec_of_naivedates_from_df(
|
||
df: DataFrame,
|
||
) -> Result<Vec<Vec<NaiveDate>>, Box<dyn Error>> {
|
||
let rdt = df
|
||
.column("real_dates")?
|
||
// .clone()
|
||
.as_series()
|
||
.unwrap()
|
||
.list()?
|
||
.into_iter()
|
||
.filter_map(|opt| opt)
|
||
.collect::<Vec<Series>>()
|
||
.iter()
|
||
.map(|s| {
|
||
s.date()
|
||
.unwrap()
|
||
.into_iter()
|
||
.filter_map(|opt| opt.and_then(|date| NaiveDate::from_num_days_from_ce_opt(date)))
|
||
.collect::<Vec<NaiveDate>>()
|
||
})
|
||
.collect::<Vec<Vec<NaiveDate>>>();
|
||
Ok(rdt)
|
||
}
|
||
|
||
// fn get_vec_of_vec_of_dates_from_df(df: DataFrame) -> Result<Vec<Vec<String>>, Box<dyn Error>> {
|
||
// let real_dates_column = df.column("real_dates")?.clone();
|
||
// let series = real_dates_column.as_series().unwrap().clone();
|
||
// let rdt = series.list()?.clone();
|
||
// let rdt = rdt
|
||
// .into_iter()
|
||
// .filter_map(|opt| opt)
|
||
// .collect::<Vec<Series>>();
|
||
// let rdt = rdt
|
||
// .iter()
|
||
// .map(|s| {
|
||
// s.str()
|
||
// .unwrap()
|
||
// .into_iter()
|
||
// .filter_map(|opt| opt.map(|s| s.to_string()))
|
||
// .collect::<Vec<String>>()
|
||
// })
|
||
// .collect::<Vec<Vec<String>>>();
|
||
// Ok(rdt)
|
||
// }
|
||
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use super::*;
|
||
|
||
#[test]
|
||
fn test_convert_dates_list_to_date_ranges() {
|
||
let all_dates = vec![
|
||
"2023-01-01".to_string(),
|
||
"2023-01-02".to_string(),
|
||
"2023-01-03".to_string(),
|
||
"2023-01-04".to_string(),
|
||
"2023-01-05".to_string(),
|
||
"2023-01-06".to_string(),
|
||
];
|
||
let blacklist = vec![
|
||
"2023-01-02".to_string(),
|
||
"2023-01-03".to_string(),
|
||
"2023-01-05".to_string(),
|
||
];
|
||
|
||
let result = convert_dates_list_to_date_ranges(blacklist, all_dates);
|
||
// Expect two ranges:
|
||
// range 0 => ("2023-01-02", "2023-01-03")
|
||
// range 1 => ("2023-01-05", "2023-01-05")
|
||
assert_eq!(
|
||
result["0"],
|
||
("2023-01-02".to_string(), "2023-01-03".to_string())
|
||
);
|
||
assert_eq!(
|
||
result["1"],
|
||
("2023-01-05".to_string(), "2023-01-05".to_string())
|
||
);
|
||
}
|
||
}
|